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Overview

General Scenario & Problem Description
Proposed Solutions (sketch)

Query-answering from linked data IA2 2023 Umberto Straccia 2 / 301



General Scenario & Problem Description

Input: conjunctive query over a global mediator schema

Problem: query the N resources

▶ if N large, quering all N resources is unrealistic
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Proposed Solution [Calì and Straccia, 2015,
Calì and Straccia, 2017, Straccia and Troncy, 2006]

To integrate Distributed Information Resources (DIRs), one may adopt
the Global As View (GAV) [Lenzerini, 2002] approach:

Queries are posed on a Global Mediator Schema
▶ It contains relational structures (relations), where each relation is

associated with a query on the underlying Local Information
Resources (LIRs)

▶ A query over the mediator schema is processed by evaluating
suitable queries over the LIRs
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The Case of Small Size Mediators

For query q over global schema G
1 Rewrite the query q into a set {qi} of queries over of the local

schemas S
2 Submit the queries to the LIRs accessed through wrappers
3 Merge all the ranked lists and provide the result back to the user
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The Case of Large Size Mediators

Quering all LIRs is unfeasible
Borrow ideas from textual Distributed Information
Retrieval [Shokouhi and Si, 2011, Thomas, 2012]. That is,

▶ Sample each LIR
▶ Use the samples to determine the top-s most relevant LIRs to query
▶ Once queries are submitted, merge the ranked list of answers
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Sample the LIRs before hand
For query q over global schema G

1 Rewrite the query q into a set {qi} of queries over of the local
schemas S

2 Use the samples to determine which of the qi are the top-s most
relevant queries

3 Submit the queries to the LIRs accessed through wrappers
4 Merge all the ranked lists and provide the result back to the user
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Figure: Architecture of a Mediator.
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Data integration Model (General)
Data integration setting: Global As View (GAV)
G = {R1, . . . ,Rn}

▶ Relational entities of the Mediator’s Global Schema
D = {D1, . . . ,Dm}

▶ LIRs, distributed local databases Di

S = {S1, ...,Sm}
▶ Local relational entities used to access Di ∈ D
▶ There is exactly one relation Si through which we access Di

For Si ∈ S, Di ∈ D, vector of variables and constants z, the local
answer set of local query Si(z) over database Di , is

ans(Si(z),Di) = {t | Di |= Si(t) s.t.

t agrees with z on the constants in z}.

We assume tuples in ans(Si(z),Di) are ordered
ansk (Si(z),Di), top-k retrieved tuples
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Data Integration Model (General) cont.
More than one database may be used to instantiate a global relation
R ∈ G

E.g., R(carModel,year,partNumber) ∈ G, there may be more than
one information resources through which the Mediator may find car
spare parts

We model this using so-called mapping rules, i.e.

▶ For each global R ∈ G, letMR be the set of kR mapping rules
w.r.t. R

R(x) ← S1R (x)
...

R(x) ← SkR (x) ,

M, set of all mapping rules w.r.t.R ∈ G, i.e.M =
⋃

R∈GMR .

We assume that each S ∈ S is typed, in the sense that each attribute of
a relation in S has a type (e.g. string, integer etc.).
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Conjunctive Query (CQ) q(x) over global schema G is a rule r

q(x)← ∃y.φ(x, y)

where

▶ φ(x,y) is a conjunction of relations R ∈ G
▶ q(x) is called head
▶ ∃y.φ(x,y) is called body
▶ x are called distinguished variables
▶ y are called non-distinguished variables
▶ The existential ∃y may be omitted

A Disjunctive Query (DQ) q(x) is a set {r1, ..., rn} of CQs ri with head q(x)

The answer set of CQ q is

ans(q,D,M) = {t | D ∪M∪ {q} |= q(t)}

i.e. the query body of some rule ri evaluates to true

As for LIRs, ans(q,D,M) is an ordered set

ansk (q,D,M) are the top-k retrieved tuples in ans(q,D,M)
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Complex Conjunctive Query (CCQ) q(x) over global schema G is a rule r
(see [Straccia, 2014, Zimmermann et al., 2012]):

q(x, s) ← ∃y.φ(x, y),
GroupedBy(w),
s = @[f (z)] ,

where additionally
▶ @ ∈ {SUM,AVG,MAX,MIN,COUNT} is an aggregation operator
▶ s = @[f (z)] is scoring atom and s is scoring variable
▶ grouping, aggregation and scoring are optional

A Complex Disjunctive Query (CDQ) q(x) is a set {r1, ..., rn} of CCQs ri with
head q(x)

The answer set of a CCQ q is

ans(q,D,M) = {⟨t, s⟩ | D ∪M∪ {q} |= q(t, s)} ,

where each tuple has an unique score

As for LIRs, ans(q,D,M) is an ordered set

ansk (q,D,M) are the top-k retrieved tuples in ans(q,D,M)

▶ possibly without computing the whole answer set

(e.g. [Straccia, 2012, Straccia, 2014, Straccia and Madrid, 2012])
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Scoring Function Examples

Fuzzy set membership functions

(a) (b) (c) (d)

Figure: (a) triangular function tri(a,b, c), (b) left shoulder
function ls(a,b), (c) right shoulder function rs(a,b), and (d) fuzzy sets
over centroids

Conjunction x ∧ y : min(x, y), x · y , . . .

Disjunction x ∨ y : max(x, y), x + y − x · y , ,. . .

Linear combination: a · x + (1− a) · y , . . .

.

.

.
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Example (Soft Shopping Agent)
User query:

q(x, p, k, s) ← HasPrice(x, p), sp = ls(10000, 14000)(p),

HasKM(x, k), sk = ls(13000, 17000)(k),

s = 0.7 · sp + 0.3 · sk

ID MODEL PRICE KM
455 MAZDA 3 12500 10000
34 ALFA 156 12000 15000

1812 FORD FOCUS 11000 16000
.
.
.

.

.

.
.
.
.

.

.

.

Problem: All tuples of the database have a score

▶ We cannot compute the score of all tuples, then rank them. Brute force approach not feasible for very large

databases

Top-k problem: Determine efficiently just the top-k ranked tuples, without evaluating the score of all tuples. E.g. top-3
tuples

ID PRICE SCORE
1812 11000 0.6
455 12500 0.56
34 12000 0.50
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Example (Multimedia Information
Retrieval [Meghini et al., 2001])

isAbout
region obj degr

o1 snoopy 0.8
o2 woodstock 0.9

ISA
obj1 obj2 deg

snoopy Dog 1.0
woodstock Bird 1.0

Dog SmallAnimal 0.4
Bird SmallAnimal 0.7

SmallAnimal Animal 1.0
snoopy SmallAnimal 0.4

woodstock SmallAnimal 0.7
snoopy Animal 0.4

woodstock Animal 0.7

(ISA transitively closed w.r.t.·)

Query: “Find image regions about animals”

q(x, s) ← isAbout(x, y, s1), ISA(y, Animal, s2), s = s1 · s2

ansk (q,D,M) = [⟨o2, 0.63⟩, ⟨o1, 0.32⟩, . . .]

Top-k retrieval problem: |ans(q,D,M)| may be quite large
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Example (TripAdvisor User Judgements about Hotels)

Query: “Find hotels’ that are good and cheap”
▶ Definition of good and cheap may be subjective and context

sensisitve
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Example (Air quality in the province of Lucca)

75

74

Query: “Find locations with Bad air quality”
▶ Problem 1: defined via theresholds

▶ Problem 2: worst case among criteria adopted
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Example (Matchmaking [Ragone et al., 2009])

A car seller sells an Audi TT for 31500e, as from the catalog price

A buyer is looking for a sports-car, but wants to to pay not more than around 30000e

Problem: with strict conditions there is no match

More fine grained approach: to consider prices as soft constraints (fuzzy sets) (as usual in
negotiation)

▶ Seller prefers to sell above 31500e, but can go down to 30500e
▶ Buyer prefers to spend less than 30000e, but can go up to 32000e
▶ (Pareto optimal solution: Highest degree of matching is 0.75
▶ The car may be sold at 31250e.
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Example (Ontology-based Machine
Learning [Cardillo and Straccia, 2022, Cardillo et al., 2023])
Excerpt of a mammography ontology and data.
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Example (Ontology-based Machine
Learning [Cardillo and Straccia, 2022, Cardillo et al., 2023])
Excerpt of a mammography ontology and data.

Patient hasDensity hasShape hasMargin hasBiRads hasAge . . .
p0 low lobular spiculated 5 67 . . .
p10 high irregular spiculated 5 76 . . .
p102 - irregular ill-defined 4 58 . . .
p108 low round circumscribed 4 57 . . .
p109 - irregular ill-defined 5 33 . . .
p110 low irregular ill-defined 4 45 . . .
p111 low irregular ill-defined 5 71 . . .
. . . . . . . . . . . . . . . . . . . . .

p0, p10, p109, p111 positive examples
p102, p108, p110 negative examples

What characterizes the patients with cancer ?

Cacer(x, s) ← hasMargin(x, y1), ill − defined(y1, s1),

hasShape(x, y2), irregular(y2, s2),

hasAge(x, y3), hasAge_high(y3, s3), s = f (s1, s2, s3)

rs(54, 67))
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CQ Answering over Distributed LIRs
Immediate solution: for a query

q(x)← R′1(z1), . . . ,R′l (zl)

Determine the set r(q,M) of rewritings of q

q(x)← S′1(z1), . . . ,S′l (zl)

▶ where each R′
i ∈ G has been replaced with some S′

j ∈ S
⋆ Ri(x)← Sj(x) ∈M

Notice that there may be as many as∏
R′

i

kR′
i

rewritings for q (kR′
i

is the number of mapping rules w.r.t. R′i )

Note: number of rewritings can exponential viz. O(( |M|k )|q|), with k > 1

Response time may be exceedingly long in practice
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CQ Answering over Distributed LIRs via Sampling

Goal: Given a query q, how to select the top-s best rewritings q′ ∈ r(q,M)
(with s ≪ |r(q,M)|, e.g. s = 10 and |r(q,M)| = 100) such that a suitable,
objective criteria is met.

Using sampling: Recap,
1 Compute automatically a meaningful sample for each Di ∈ D and store the data

into the sampling database (Resource
Sampling [Callan and Connell, 2001, Caverlee et al., 2006])

2 Using the sample database, determine which are the top-s best query rewritings
q′ ∈ r(q,M) according to some criteria (Resource
Selection [Si and Callan, 2004, Thomas and Hawking, 2009])

3 Submit the selected queries to the LIRs and merge the results (Ranked List
Merging [Markov et al., 2013, Renda and Straccia, 2003,
Shokouhi and Zobel, 2009, Yu et al., 2002])
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Resource Sampling

To sample a local LIR: use Query-Based Sampling (QBS)
1 We start with a random query;
2 We submit the query to the LIR and store the retrieved tuples in

the sample DB
3 We build a new query from the sample data
4 We iterate steps 2 and 3 until a stopping condition holds; such a

condition expresses the fact that the sample changed less than a
certain amount in the last iteration

We use information entropy on the sample data to
Construct new queries
Define the stopping criteria
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Resource Sampling (cont.)

Let D ∈ D be the database for which we want to build a sample
Let S ∈ S be the related relational entity of arity p through which
we query D
We assume that the attributes’ type of S are either ‘number’ or
‘string’ (bag of words)
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Resource Sampling (cont.)
1 Initialise query dictionaries Qi (1 ≤ i ≤ p) for each attribute of S

▶ Qi is a multiset of constants t that will be used to query the database D
▶ If the i-th attribute of S is of type ‘number’ then Qi will be a set of numbers

▶ If the i-th attribute of S is of type ‘string’ then Qi will be a set of words
2 Initialise the sample SD of D as SD = ∅
3 Choose an attribute (index) 1 ≤ i ≤ p

4 Build a one-constant query S(x1, t, x2) from t ∈ Qi , where t has not already been selected

▶ If such t does not exists, select t randomly from an external vocabulary
5 Submit the query S(x1, t, x2) to the database D

6 Retrieve the top-k tuples from D in response to S(x1, t, x2)

▶ i.e. determine ansk (S(x1, t, x2), D)

7 Update the sample SD with the retrieved tuples: i.e.

SD := SD ∪ ansk (S(x1, t, x2), D) .

8 Update the query dictionary Qi (1 ≤ i ≤ p) with the relative constants in the retrieved tuples, i.e.

Qi := Qi ∪
⋃

⟨t1,...,ti ,...,tp⟩∈ansk (S(x1,t,x2),D)

{ti}

▶ Note: If ti is a ‘string’ (bag of words) then we add all words in ti , that are not stop words to Qi
9 Goto Step 3, until a stopping condition is met
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Resource Sampling (cont.)

Critical factors
Step 1. Choice of the query dictionary Qi

Step 3 and 4. The query selection algorithm
Step 8. The stopping condition
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Resource Sampling (cont.)

Step 1. t can randomly be selected, or taken from a controlled vocabulary, or extracted from the web page
through which we access to D

Steps 3 and 4 One option is to chose i and t ∈ Qi random

Use entropy [Hankerson et al., 1998] instead:
▶ Let xi be an attribute of S (that is, xi is our random variable)
▶ The values xi can take are the values t ∈ Qi
▶ Let pi (t) be the probability that t occurs in the i-th column of tuples in SD
▶ The entropy of xi is defined as

H(xi ) = −
∑
t∈Qi

pi (t) log2 pi (t) (1)

▶ For Step 3., choose attribute index i with maximal entropy, i.e.

i = arg max
1≤i≤p

H(xi ) .

▶ For Step 4, select then t ∈ Qi for which pi (t) log2 pi (t) is minimal, i.e.

t = arg min
t∈Qi

pi (t) log2 pi (t)

▶ Rationale: hope to reduce the entropy of xi and t at the next round
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Resource Sampling (cont.)
Step 8. Stopping criteria: based on joint entropy

The joint entropy is

H(x1, . . . , xp) = −
∑

t1∈Q1

· · ·
∑

tp∈Qp

p(t1, . . . , tp) log2 p(t1, . . . , tp) ,

where p(t1, . . . , tp) is the probability that the tuple ⟨t1, . . . , tp⟩ occurs in Q1 × . . .× Qp

Note that in general

max(H(x1), . . . , H(xp)) ≤ H(x1, . . . , xp) ≤
∑

1≤i≤p

H(xi ) .

Use estimate of joint entropy under probabilistic independence: i.e. p(t1, . . . , tn) =
∏

i pi (ti ).
So,

H(x1, . . . , xp) =
∑

1≤i≤p

H(xi ) (2)

Stopping criteria 1: stop when for ϵ ∈ [0,
∑

1≤i≤p log2 |Qi |]

∑
1≤i≤p

H(xi ) ≤ ϵ

Stopping criteria 2: stop if joint entropy does not change too much, i.e. stop if

| Hj+1(x1, . . . , xp)− Hj (x1, . . . , xp) |≤ δ (3)

where Hj (x1, . . . , xp) joint entropy after the j-th loop of Steps 3. - 8. and δ ≥ 0.
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Resource Selection
To select a query rewriting:

1 Let q be the CQ over the global schema

2 Let qi be a rewriting over local DBs

3 Using the sample DBs, determine a score s(qi | q)

▶ The score estimates the ‘goodness’ of query qi w.r.t. q in retrieving answers to q

4 Rank the rewritings in decreasing order of the score s(qi | q) and select only the top-s (with s ≪ |r(q,M)|,
e.g. s = 10) among them to be submitted to the real databases inD

Score s(qi | q): adaption of the ReDDE.top method [Arguello et al., 2009]

ReDDE.top is among the most effective for textual DIR (resembles somewhat kNN-classifiers)

The score score s(qi | q) is defined as

s(qi | q) =
Cqi

Cmax · Rqi
·

∑
⟨t,s⟩∈ansh(q,DS ,M)

s · I(⟨t, s⟩, qi )

▶ Rqi is the sample DB size of rewriting qi
▶ Cqi is the estimated DB size of rewriting qi
▶ Cmax is the maximum among all the Cqi
▶ DS sample database of S

▶ I(⟨t, s⟩, qi ) = 1 if ⟨t, s⟩ ∈ ans(qi ,DS ,M), else 0
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Resource Selection (cont.). Estimating DB Size

Estimatating the size of a source database D ∈ D
▶ Sampling-resempling method (e.g.see [Shokouhi and Si, 2011])
▶ Also known as mark-recapture methods in the context in ecology to

estimate the population size of particular species of animal in a
region [Sutherland, 2006]

▶ Standard mark-recapture technique: given number of animals is
captured, marked, and released. After a suitable time has elapsed,
a second set is captured. By inspecting the intersection of the two
sets, the population size can be estimated

▶ We adapt here the so-called the Schumacher-Eschmeyer Method
(oldest methods used in ecology for estimating population size)
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Resource Selection. Estimating DB Size (cont.)
Let T be the number of applications of the sampling algorithm to a database D ∈ D

After applying the sampling algorithm T times from scratch we obtain T samples S1
D , . . . , S|T |

D of the database D

Let Ki be the total number of tuples in the i-th sample of D, i.e. Ki = |Si
D |

Let Ri be the number of tuples in Si
D that have been found in a previous run, i.e. R1 = 0 and for 2 ≤ i ≤ T

Ri = |{t | t ∈ Si
D ∩ (

⋃
1≤j≤i−1

Si
D)}|

Note: Ri is the number of recaptured tuples

Let Mi be is the number of tuples gathered so far, prior to the most recent sample, i.e. M1 = 0 and for 2 ≤ i ≤ T

Mi = |
⋃

1≤j≤i−1

Sj
D | =

∑
1≤j≤i−1

(Kj − Rj )

An estimate N̂D of the number ND of tuples in D is determined by

N̂D =

∑T
i=1 Ki M

2
i∑T

i=1 Ri Mi

Note: T may not be known a priori, but a possible way to stop the iterations is when the estimate N̂T
D does not

significantly change w.r.t. the estimate N̂T+1
D
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Resource Selection (cont). Parameters

Given a CQ q of the form q(x)← R′
1(z1), . . . , R′

k (zk ), where R′
i ∈ G

A rewriting qi ∈ r(q,M) of the form q(x)← S′
1(z1), . . . , S′

k (zk ), where S′
i ∈ S

Let {D1, . . . , Dr} the databases the relations S′
1, . . . , S′

k access to (1 ≤ r ≤ k )

Let SDj
be the sample database of Dj

Let N̂Dj
is the estimated size of database Dj

Then Rqi is defined as

Rqi =
r∑

j=1

|SDj
|

Then Cqi is defined as

Cqi =

rq∑
j=1

N̂Dj
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Remark. Dealing with Numerical Attributes

There is a problem if a query involves some constraints on numerical attributes, such as ‘the price is 28 euro’

Hence, a sample database SD may not contain ‘28’ and, thus, ansh(q,DS ,M) may be empty

▶ As a consequence, the score s(qi | q) turns out to be 0

Of course, the fact that that value does not occur in the sample database does not mean that the value does not occur in
the real local database from which the sample has been drawn

To mitigate such an effect, one may rely on soft constraints, inspired by fuzzy set
theory [Klir and Yuan, 1995, Zadeh, 1965]

Intuitively, in place of a hard constraints such as ‘the price is 28 euro’, we relax this constraint to a soft constraint of the
form ‘the price is about 28 euro’, where ‘about 28’ is a fuzzy set with a triangular membership function centered in 28,
e.g. tri(24, 28, 32)

Formally, for hard constraints (x ≥ n), (x ≤ n) and (x = n), occurring in a CQ (α > 0)
Case (x ≥ n) replace it with scoring atom s :=rs(n − α, n)(x)
Case (x ≤ n) replace it with scoring atom s :=ls(n, n + α)(x)
Case (x = n) replace it with scoring atom s :=tri(n − α, n, n + α)(x)

In case of multiple hard constraints c1, . . . , ck occur in a CQ, each of which is replaced with the function fi (xi ), as
indicated above, then all of them may be replaced with the scoring atom

s :=f (f1(x1), . . . , fk (xk )) (4)

where f is a suitable scoring function
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Example (Find a house)
As illustrative example, consider the case in which the query is

‘Find a house whose price is less than or equal to 150000 euro that is 80 square meters large at minimum.’

We may encode such a request as the CQ

q(x, x1, x2) ← House(x), hasPrice(x, x1), hasSqm(x, x2),

(x1 ≤ 150000), (x2 ≥ 80)

Then the CQ above may be relaxed, according to our transformation, to the form (αi > 0)

q(x, x1, x2, s) ← House(x), hasPrice(x, x1), hasSqm(x, x2),

s :=ls(150000, 150000 + α1)(x1) · rs(80− α2, 80)(x2)

Note that the tuples of the answer set are now scored in decreasing order of satisfaction of the original hard constraints. The
score decreases the ‘more’ the hard constraints are violated.
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Remark. Dealing with String Valued Attributes

Like for numerical hard constraints, in case textual hard constraints occur in a
CQ, we may not find a match in the sample database

A simple way to address the problem is to replace a textual hard constraint with
a soft constraint by means of a text similarity-based scoring atom

Specifically, given a query

q(x)← ∃φ(z1, t , z2)

where t is a textual hard constraint on some attribute

Relax the query with

q(x, s)← ∃φ(z1, y , z2), s :=sim(y , t)

where sim(y , t) computes the degree of similarity between the text t and the
textual value y occurring in a tuple in the sample database

The case of multiple hard constraints is addressed as for the numerical case
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Ranked List Merging

To merge ranked lists:

1 Given the selected top-s queries q1, . . . ,qs

2 Assume each query returns a ranked list ℓ1, . . . , ℓs of tuples

▶ ℓi = {⟨ti
1, s

i
1⟩, . . . , ⟨ti

|li |, s
i
|li |⟩}

▶ If no score is provided, score is determined by the rank of the tuple
in some way

▶ E.g. s = (rmax − r + 1)/rmax, where rmax is the number of returned tuples in
a ranked list and r is the rank of tuple t in that list

3 Merge them by build a unique list from which we select the top-k tuples
only
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Ranked List Merging (cont.)
Merging continued:

We use the so-called minmax score normalisation method [Markov et al., 2013, Renda and Straccia, 2002]

Let V = {v1, . . . , vt} be a set of t score values

Let vmin (vmax) be the minimum (maximum) among the vi ∈ V

The minimax normalisation of a score v ∈ V w.r.t.V , denoted vV
min max ∈ [0, 1], is defined as

vV
min max =

v − vmin

vmax − vmin

Now, consider top-s query rewritings Q = {q1, . . . , qs} of query q

Let R = {s(q1 | q), . . . , s(qs | q)} be the score values of qi ∈ Q

For query qi ∈ Q, consider
▶ Its ranked list of answers ℓi = {⟨ti1, si

1⟩, . . . , ⟨t
i
|li |

, si
|li |
⟩}

▶ The set of score values S = {si
1, . . . , si

|li |
}

▶ For ⟨t, s⟩ ∈ ℓi , we normalise s as follows: the normalised score snorm ∈ [0, 1] of t is

snorm = sR
min max · sS

min max

Finally, we take the union of the ranked list in which all tuple scores’ have been normalised

ℓnorm = {⟨t, snorm⟩ | ⟨t, s⟩ ∈
s⋃

i=1

ℓi}

(if a tuple t occurs in more than one ranked list, take t’s highest normalised score)

Return the top-k tuples in ℓnorm (order ℓnorm and then select the top-k)
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Ranked List Merging (cont.)

Return the top-k tuples in ℓnorm continued:

Size of ℓnorm may still become large: but, we may avoid to order whole ℓnorm

Improvement: use the Disjunctive Threshold Algorithm (DTA) [Straccia, 2006]
▶ Consider top-s query rewritings Q = {q1, . . . , qs} of query q
▶ For query qi ∈ Q, consider its ranked list of answers ℓi = {⟨ti1, si

1⟩, . . . , ⟨t
i
|li |

, si
|li |
⟩}

▶ Now process each list ℓi in alternating fashion, and top-down w.r.t. score values
⋆ For each ⟨t, s⟩ seen, normalise the score s
⋆ If s is one of the k highest we have seen, then add ⟨t, s⟩ to ℓnorm (ties are broken arbitrarily)
⋆ For each ℓi , let vi be the score value of the last tuple seen in this set
⋆ Define the threshold

θ = max(v1, ..., vs)

⋆ As soon as at least k tuples have been seen whose score is at least equal to θ, then halt
⋆ Indeed, any successive retrieved tuple will have score≤ θ
⋆ Return the top-k tuples in ℓnorm
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Example (DTA)
Suppose we are interested in retrieving the top-3 answers of

ℓ1 = [⟨a, 1.0⟩, ⟨d, 0.7⟩, ⟨e, 0.6⟩]
ℓ2 = [⟨b, 0.9⟩, ⟨c, 0.8⟩, ⟨f , 0.5⟩]

We process alternatively ℓ1 then ℓ2 in decreasing order of the score

The table below summaries the execution of the DTA algorithm
Step tuple s1 s2 θ ranked list ℓnorm

1 ⟨a, 1.0⟩ 1.0 - 1.0 ⟨a, 1.0⟩
2 ⟨b, 0.9⟩ 1.0 0.9 1.0 ⟨a, 1.0⟩, ⟨b, 0.9⟩
3 ⟨d, 0.7⟩ 0.7 0.9 0.9 ⟨a, 1.0⟩, ⟨b, 0.9⟩, ⟨d, 0.7⟩
4 ⟨c, 0.8⟩ 0.8 0.7 0.8 ⟨a, 1.0⟩, ⟨b, 0.9⟩, ⟨d, 0.7⟩, ⟨c, 0.8⟩

At Step 4. we stop as the ranked list already contains three tuples above the threshold θ = 0.8

So, the final output is
top-k(ℓnorm) = [⟨a, 1.0⟩, ⟨b, 0.9⟩, ⟨c, 0.8⟩]

Note that not all tuples have been processed
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Ontology Based Data Access (OBDA)
(The Case of Structured Mediator Schema)
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Ontology Based Data Access (OBDA)

So far, the mediator schema is based on schema mappings only,
i.e. rules of the form

R(x)← S(x)

They tell how to materilise the global relation R by acccessing the
local relation S
For instance, hasPipeMaterial(x,y) ← (SELECT idcana, materiau_l

FROM starwars.wastewatercanalisation)(x,y)

▶ hasPipeMaterial is a global relation
▶ wastewatercanalisation is a relational table the local

database starwars
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Ontology Based Data Access (OBDA)

The global mediator schema is an ontology

An ontology is a description of a set of conceptual entities of a domain
that shows their properties and the relations between them

It ensures a common understanding of information and makes explicit
domain assumptions

▶ Allows organizations to make better sense of their data

Ontologies do not only represent sharable and reusable knowledge, but
can also used to infer new knowledge about a domain

To enable such a representation, we need to formally specify
components such as individuals, classes, attributes and relations as well
as restrictions, rules and axioms
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The Semantic Web Family of Languages

Semantic Web family of languages widely used to specify ontologies

Wide variety of languages

▶ RDFS: Triple language, -Resource Description Framework

⋆ The logical counterpart is ρdf

▶ RIF: Rule language, -Rule Interchange Format,

⋆ Relate to the Logic Programming (LP) paradigm

▶ OWL 2: Conceptual language, -Ontology Web Language

⋆ Relate to Description Logics (DLs)
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The case of RDFS
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Resource Description Framework Schema (RDFS)

RDFS: W3C standard and popular logic for KR
Statements

▶ Triples of the form (s,p,o)
▶ Informally, binary predicate p(s,o)

(fever,hasTreatment,paracetamol)

▶ Special predicates: typing and specialisations, etc.
(paracetamol, type,antipyretic)
(antipyretic, sc,drug)

Knowledge Graphs may be seen as a special case
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ρdf
The logic ρdf

▶ A minimal, but significant RDFS fragment
▶ Covers all essential features of RDFS

ρdf: defined on subset of the RDFS vocabulary:

ρdf = {sp, sc, type,dom, range}

Informally,
▶ (p, sp,q)

⋆ p is a sub property of property q
▶ (c, sc,d)

⋆ c is a sub class of class d
▶ (a, type,b)

⋆ a is of type b
▶ (p,dom, c)

⋆ domain of property p is c
▶ (p, range, c)

⋆ range of property p is c
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ρdf Syntax

Alphabets:
▶ U (RDF URI references)
▶ B (Blank nodes)
▶ L (Literals)

Terms: UBL (a,b, . . . ,w)
Variables: B (x , y , z)
Triple:

(s,p,o) ∈ UBL× U× UBL

▶ s,o /∈ ρdf
▶ s subject, p predicate, o object

Note: e.g. (type, sp,p) not allowed
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Graph/Knowledge Base G: set of triples τ

Ground graph: no blank nodes, i.e. variables
Map (or variable assignment):

▶ µ : UBL→ UBL, µ(t) = t , for all t ∈ UL

µ(G) = {(µ(s), µ(p), µ(o)) | (s,p,o) ∈ G}

▶ Map µ from G1 to G2, and write µ : G1 → G2
⋆ if µ is such that µ(G1) ⊆ G2
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Example

G = {(paracetamol, type,antipyretic),

(antipyretic, sc,drugTreatment),

(morphine, type,opioid), (opioid, sc,drugTreatment),

(drugTreatment, sc,treatment),

(brainTumour, type,tumour),

(hasDrugTreatment, sp,hasTreatment),

(hasTreatment, dom,illness),

(hasTreatment, range,treatment),

(hasDrugTreatment, range,drugTreatment),

(fever,hasDrugTreatment,paracetamol)

(brainTumour,hasDrugTreatment,morphine) }
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Example

G =

 (o1,IsAbout,snoopy) (o2,IsAbout,woodstock)
(snoopy, type,dog) (woodstock, type,bird)
(dog, sc,animal) (bird, sc,animal)


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ρdf (Intentional) Semantics

ρdf interpretation:

I = ⟨∆R,∆P,∆C,∆L,P[[·]],C[[·]], ·I⟩ ,

1 ∆R are the resources
2 ∆P are property names
3 ∆C ⊆ ∆R are the classes
4 ∆L ⊆ ∆R are the literal values and contains all the literals in L ∩ V
5 P[[·]] is a function P[[·]] : ∆P → 2∆R×∆R

6 C[[·]] is a function C[[·]] : ∆C → 2∆R

7 ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P, where ·I is
the identity for literals; and

8 ·I maps each variable x ∈ B into a value xI ∈ ∆R
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ρdf model/entailment

I G if and only if I satisfies conditions

Simple:

1 for each (s, p, o) ∈ G, pI ∈ ∆P and (sI , oI ) ∈ P[[pI ]]

Subproperty:

1 P[[spI ]] is transitive over ∆P
2 if (p, q) ∈ P[[spI ]] then p, q ∈ ∆P and P[[p]] ⊆ P[[q]]

Subclass:
1 P[[scI ]] is transitive over ∆C
2 if (c, d) ∈ P[[scI ]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d ]]

Typing I:

1 x ∈ C[[c]] if and only if (x, c) ∈ P[[typeI ]];
2 if (p, c) ∈ P[[domI ]] and (x, y) ∈ P[[p]] then x ∈ C[[c]]
3 if (p, c) ∈ P[[rangeI ]] and (x, y) ∈ P[[p]] then y ∈ C[[c]]

Typing II:

1 for each e ∈ ρdf, eI ∈ ∆P ;
2 if (p, c) ∈ P[[domI ]] then p ∈ ∆P and c ∈ ∆C
3 if (p, c) ∈ P[[rangeI ]] then p ∈ ∆P and c ∈ ∆C
4 if (x, c) ∈ P[[typeI ]] then c ∈ ∆C.

G H if and only if every model of G is also a model of H
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Deductive System for ρdf
G H

1 Simple:
(a) G

G′ for a map µ : G′ → G (b) G
G′ for G′ ⊆ G

2 Subproperty:
(a) (A,sp,B),(B,sp,C)

(A,sp,C)
(b) (D,sp,E),(X ,D,Y )

(X ,E,Y )

3 Subclass:
(a) (A,sc,B),(B,sc,C)

(A,sc,C)
(b) (A,sc,B),(X ,type,A)

(X ,type,B)

4 Typing:
(a) (D,dom,B),(X ,D,Y )

(X ,type,B)
(b) (D,range,B),(X ,D,Y )

(Y ,type,B)

5 Implicit Typing:

(a) (A,dom,B),(D,sp,A),(X ,D,Y )
(X ,type,B)

(b) (A,range,B),(D,sp,A),(X ,D,Y )
(Y ,type,B)

Closure of G:
Cl(G) = {τ | G ∗ τ}

where ∗ is as except rule (1a) is excluded
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Some ρdf Properties
1 Every ρdf-graph is satisfiable (i.e. has canonical model)

▶ RDFS is paraconsistent

2 G H if and only if G |= H
3 The closure of G is unique and |Cl(G)| ∈ Θ(|G|2)
4 Deciding G H is an NP-complete problem

5 If H is ground, then G H if and only if H ⊆ Cl(G)
6 There is no triple τ such that ∅ |= τ
7 RDFS can represent only positive statements, e.g. “Paracetamol

is a treatment for fever”
▶ RDFS with negative statements, see [Straccia and Casini, 2022]

“Opioids and antipyretics are disjoint classes"
“Radio therapies are non drug treatments"
“Ebola has no treatment"

▶ Note: “Paracetamol is not a treatment for Ebola"
⋆ Can not be inferred (under OWA)
⋆ Can be under CWA, but CWA is not acceptable for RDFS
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RDFS CQ Answering

Conjunctive query: is a Datalog-like rule of the form

q(x)← ∃y.τ1, . . . , τn

where τ1, . . . , τn are triples in which variables in x and y may occur
(we may omit ∃y)
The answer set of CQ q is

ans(q,G) = {t | G ∪ {q} |= q(t)}

Example:

q(x, y)← (x, creates, y), (x, type, Flemish), (x, paints, y), (y, exhibited, Uffizi)

“retrieve all the artifacts x created by Flemish artists y , being
exhibited at Uffizi Gallery"
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Standalone RDFS CQ Answering

A simple query answering procedure for a (local) RDFS graph is
the following:

▶ Compute the closure of a graph off-line
▶ Store the RDF triples into a Relational database
▶ Translate the query into a SQL statement
▶ Execute the SQL statement over the relational database

In practice, some care should be in place due to the large size of
data: ≥ 109 triples
To date, several systems exists
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RDFS CQ Answering over Distributed LIRs
An RDFS Global Schema G is made of RDFS triples of the form

(p, sp,q), (c, sc,d), (p,dom, c), (p, range, c)

The setM of RDFS Mapping Rules contains mappings of the form

(x ,p, y)← S(x ,p, y)

where S(x ,p, y) is a relation over a LIR and p ̸∈ {sp, sc, range,dom}

Conjunctive query: is a Datalog-like rule of the form

q(x)← ∃y.τ1, . . . , τn

where τ1, . . . , τn are triples in which variables in x and y may occur (we
may omit ∃y)

The answer set of a CQ q is

ans(q,D,G,M) = {t | D ∪ G ∪M∪ {q} |= q(t)}
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Example

Global Schema G: {(Dog, sc, Animal), (Bird, sc, Animal)}
Mapping RulesM: (r, isAbout, o)← (SELECT region, obj FROM imageClass)(r, o)

(i, type, c)← (SELECT obj, class FROM instances)(i, c)

LIRs:

imageClass
region obj degr

o1 snoopy 0.8
o2 woodstock 0.9

instances
obj class

snoopy Dog
woodstock Bird

Query: q(x)← (x, IsAbout, y), (y, type, Animal)

answer(q,D,G,M) = {o1, o2}
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RDFS CQ Answering over Distributed LIRs (cont.)
What if the results from the LIRs have a score?

Mapping rules are of the form
⟨(x, p, y), s⟩ ← ⟨S(x, p, y), s⟩

where now s is the score assigned to the triple (x, p, y) and p ̸∈ {sp, sc, range, dom}. If s omitted, then 1.0 is assumed

Conjunctive query: extends previous RDFS query and is of the form

⟨q(x), s⟩ ← ∃y.φ(x, y), s = f (z)

where
▶ φ(x, y) is conjunction of ⟨τi , si ⟩
▶ τi are triples involving literals and variables in x, y
▶ z is a tuple of literals, or variables in x, y or scores si
▶ si is the score assigned to τi

▶ the scoring variables s and si are distinct from those in x and y and s is distinct from each si

The answer set of a CQ q is

ans(q,D,G,M) = {⟨t, s⟩ | D ∪ G ∪M∪ {q} |= q(t, s)} ,

where each tuple has an unique score

As for LIRs, ans(q,D,G,M) is an ordered set

ansk (q,D,G,M) are the top-k retrieved tuples in ans(q,D,G,M)
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Example

Global Schema G: {(Dog, sc, Animal), (Bird, sc, Animal)}
Mapping RulesM: ⟨(r, isAbout, o), d⟩ ← (SELECT region, obj, degr FROM imageClass)(r, o, d)

(s, type, c)← (SELECT obj, class FROM instances)(s, c)

LIRs:

imageClass
region obj degr

o1 snoopy 0.8
o2 woodstock 0.9

instances
obj class

snoopy Dog
woodstock Bird

Query: ⟨q(x), s⟩ ← ⟨(x, IsAbout, y), s1⟩, (y, type, Animal), s = s1

answer(q,D,G,M): {⟨o2, 0.9⟩, ⟨o1, 0.8⟩}
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RDFS CQ Answering over Distributed LIRs (cont.)

How do we answer queries over a Global Schema?

Apply Query Refomulation Algorithm

By considering G only, the query q is reformulated into a set of conjunctive queries r(q,G)

Informally, the basic idea is that the reformulation procedure closely resembles a top-down resolution procedure for logic
programming, where, e.g. “schema triple” (c, sc, d) is seen as a logic programming rule of the form d(x)← c(x)

So, query
q(x, s)← ⟨q(x), s⟩ ← ⟨(x, IsAbout, y), s1⟩, (y, type, Animal), s = s1

is rewritten as (the DCQ)

q(x, s) ← ⟨q(x), s⟩ ← ⟨(x, IsAbout, y), s1⟩, (y, type, Animal), s = s1

q(x, s) ← ⟨q(x), s⟩ ← ⟨(x, IsAbout, y), s1⟩, (y, type, Dog), s = s1

q(x, s) ← ⟨q(x), s⟩ ← ⟨(x, IsAbout, y), s1⟩, (y, type, Bird), s = s1

Exactly as it happens for top-down resolution methods in logic programming
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RDFS CQ Answering over Distributed LIRs (cont.)
Consider global schema G, mapping rulesM and CQ query q

It suffices to provide a translation to Logic Prgramming (LP) and use a top-down algorithm for LPs

We use a predicate triple to encode triples

(x, p, y) 7→ triple(x, p, y, 1.0)

⟨(x, p, y), s⟩ 7→ triple(x, p, y, s)

where s is the score

We need also to encode the semantics of the RDFS operators (see deduction rules for RDFS)

For a suitable t-norm (function to interpret conjunction, e.g. minimum, product), let RDFSrules be

triple(a, sp, c, s) ← triple(a, sp, b, s1), triple(b, sp, c, s2), s = s1⊗ s2

triple(x, e, y, s) ← triple(d, sp, e, s1), triple(x, d, y, s2), s = s1⊗ s2

triple(a, sc, c, s) ← triple(a, sc, b, s1), triple(b, sc, c, s2), s = s1⊗ s2

triple(x, type, b, s) ← triple(a, sc, b, s1), triple(x, type, a, s2), s = s1⊗ s2

triple(x, type, b, s) ← triple(d, dom, b, s1), triple(x, d, y, s2), s = s1⊗ s2

triple(y, type, b, s) ← triple(d, range, b, s1), triple(x, d, y, s2), s = s1⊗ s2

triple(x, type, b, s) ← triple(a, dom, b, s1), triple(d, sp, a, s2), triple(x, d, y, s3),

s = s1⊗ s2⊗ s3

triple(y, type, b, s) ← triple(a, range, b, s1), triple(d, sp, a, s2), triple(x, d, y, s3),

s = s1⊗ s2⊗ s3
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RDFS CQ Answering over Distributed LIRs (cont.)

A mapping rule
⟨(x, p, y), s⟩ ← ⟨S(x, p, y), s⟩

is transformed into
triple(x, p, y, s)← S(x, p, y, s)

For instance,

triple(r, isAbout, o, d)← (SELECT region, obj, degr FROM imageClass)(r, o, d)

A CQ
⟨q(x), s⟩ ← ∃y.⟨τ1, s1⟩, . . . , ⟨τn, sn⟩, s = f (z)

is transformed then in the obvious way into

q(x, s) ← ∃y.triple(τ1, s1), . . . , triple(τ1, sn), s = f (z)

where triple(τ1, si ) is the transformation of ⟨τ1, si ⟩
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Example (Multimedia Information Retrieval)
Global Schema G: {triple(Dog, sc, Animal, 1.0), triple(Bird, sc, Animal, 1.0)}

Mapping RulesM: triple(r, isAbout, o, d)← (SELECT region, obj, degr FROM imageClass)(r, o, d)
triple(s, type, c, 1.0)← (SELECT obj, class FROM instances)(s, c)

LIRs:

imageClass
region obj degr

o1 snoopy 0.8
o2 woodstock 0.9

instances
obj class

snoopy Dog
woodstock Bird

Query: q(x, s)← triple(x, IsAbout, y, s1), triple(y, type, Animal, 1.0), s = s1

r(q,G):

q(x, s) ← triple(x, IsAbout, y, s1), triple(y, type, Animal, 1.0), s = s1

q(x, s) ← triple(x, IsAbout, y, s1), triple(y, type, Dog, 1.0), s = s1

q(x, s) ← triple(x, IsAbout, y, s1), triple(y, type, Bird, 1.0), s = s1

answer(q,D,G,M): {⟨o2, 0.9⟩, ⟨o1, 0.8⟩}
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The case of OWL 2
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The Web Ontology Language OWL 2
OWL 2 is a family of the object oriented languages

class Person partial Human

restriction (hasName someValuesFrom String)

restriction (hasBirthPlace someValuesFrom Geoplace)

“The class Person is a subclass of class Human and has two attributes: hasName having a string as value, and
hasBirthPlace whose value is an instance of the class Geoplace”.

Description Logics are the logics that stand behind OWL 2

OWL languages differntiate in syntax and computational complexity of reasoning problems
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OWL 2 Profiles

OWL 2 EL Useful for large size of properties and/or classes
The EL acronym refers to the EL family of DLs

OWL 2 QL Useful for very large volumes of instance data
Conjunctive query answering via query rewriting and SQL
OWL 2 QL relates to the DL family DL-Lite

OWL 2 RL Useful for scalable reasoning without sacrificing too much
expressive power
OWL 2 RL maps to Datalog (an LP language)
Computational complexity: same as for Datalog, polynomial in
size of the data, EXPTIME w.r.t. size of knowledge base
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Description Logics (DLs)

Concept/Class: are unary predicates
Role or attribute: binary predicates
Taxonomy: Concept and role hierarchies can be expressed
Individual: constants

Operators: to build complex classes out from class names
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Basic ingredients:
▶ a:C, meaning that individual a is an instance of concept/class C

a:Person ⊓ ∃hasChild.Femal

▶ (a,b):R, meaning that the pair of individuals ⟨a,b⟩ is an instance of
the property/role R

(tom,mary):hasChild

▶ C ⊑ D, meaning that the class C is a subclass of class D

Father ⊑ Male ⊓ ∃hasChild.Person
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The DL Family

A given DL is defined by set of concept and role forming operators

Basic language: ALC (Attributive Language with Complement)
Syntax Semantics Example

C, D → ⊤ | ⊤(x)
⊥ | ⊥(x)
A | A(x) Human

C ⊓ D | C(x) ∧ D(x) Human ⊓ Male
C ⊔ D | C(x) ∨ D(x) Nice ⊔ Rich
¬C | ¬C(x) ¬Meat
∃R.C | ∃y.R(x, y) ∧ C(y) ∃has_child.Blond
∀R.C ∀y.R(x, y)⇒ C(y) ∀has_child.Human

C ⊑ D ∀x.C(x)⇒ D(x) Happy_Father ⊑ Man ⊓ ∃has_child.Female
a:C C(a) John:Happy_Father
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Note on DL Naming
AL: C,D −→ ⊤ | ⊥ |A |C ⊓ D | ¬A | ∃R.⊤ |∀R.C
C: Concept negation, ¬C. Thus, ALC = AL+ C
S: Used for ALC with transitive roles R+

U : Concept disjunction, C1 ⊔ C2

E : Existential quantification, ∃R.C
H: Role inclusion axioms, R1 ⊑ R2, e.g. is_component_of ⊑ is_part_of
N : Number restrictions, (≥ n R) and (≤ n R), e.g. (≥ 3 has_Child) (has at least 3

children)
Q: Qualified number restrictions, (≥ n R.C) and (≤ n R.C),

e.g. (≤ 2 has_Child .Adult) (has at most 2 adult children)
O: Nominals (singleton class), {a}, e.g. ∃has_child .{mary}.

Note: a:C equiv to {a} ⊑ C and (a, b):R equiv to {a} ⊑ ∃R.{b}
I: Inverse role, R−, e.g. isPartOf = hasPart−

F : Functional role, f , e.g. functional(hasAge)
R+: transitive role, e.g. transitive(isPartOf )

For instance,

SHIF = S +H+ I + F = ALCR+HIF OWL-Lite
SHOIN = S +H+O + I +N = ALCR+HOIN OWL-DL
SROIQ = S +R+O + I +Q = ALCR+ROIN OWL 2
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Basics on Concrete Domains

Concrete domains: reals, integers, strings, . . .
(tim,14):hasAge
(sf , “SoftComputing”):hasAcronym
(source1, “ComputerScience”):isAbout
(service2, “InformationRetrievalTool ′′):Matches
Minor = Person ⊓ ∃hasAge. ≤18

Notation: (D). E.g., ALC(D) is ALC + concrete domains
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Syntax and semantics of the DL SROIQ(D) (OWL 2)

Concepts Syntax (C) FOL Reading of C(x)
(C1) A A(x)
(C2) ⊤ 1
(C3) ⊥ 0
(C4) C ⊓ D C(x) ∧ D(x)
(C5) C ⊔ D C(x) ∨ D(x)
(C6) ¬C ¬C(x)
(C7) ∀R.C ∀y.R(x, y)→ C(y)
(C8) ∃R.C ∃y.R(x, y) ∧ C(y)
(C9) ∀T .d ∀v.T (x, v)→ d(v)
(C10) ∃T .d ∃v.T (x, v) ∧ d(v)
(C11) {a} x = a
(C12) (≥ m S.C) ∃y1 . . . ∃ym.

∧m
i=1(S(x, yi ) ∧ C(yi )) ∧

∧
1≤j<k≤m yj ̸= yk

(C13) (≤ m S.C) ∀y1 . . . ∀ym+1.
∧m

i=1(S(x, yi ) ∧ C(yi ))→
∨

1≤j<k≤m yj = yk
(C14) (≥ m T .d) ∃v1 . . . ∃vm.

∧m
i=1(T (x, vi ) ∧ d(vi )) ∧

∧
1≤j<k≤m vj ̸= vk

(C15) (≤ m T .d) ∀v1 . . . ∀vm+1.
∧m

i=1(T (x, vi ) ∧ d(vi ))→
∨

1≤j<k≤m vj = vk
(C16) ∃S.Self S(x, x)
Roles Syntax (R) Semantics of R(x, y)
(R1) R R(x, y)
(R2) R− R(y, x)
(R3) U 1
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Axiom Syntax (E) Semantics (I satisfies E if . . . )
(A1) a:C C(a)
(A2) (a, b):R R(a, b)
(A3) (a, b):¬R ¬R(a, b)
(A4) (a, v):T T (a, v)
(A5) (a, v):¬T ¬T (a, v)
(A6) C ⊑ D ∀x.C(x)→ D(x)
(A7) R1 . . . Rn ⊑ R ∀x1∀xn+1∃x2 . . .

∃xn.(R1(x1, x2) ∧ . . . ∧ Rn(xn, xn+1))→ R(x1, xn+1)
(A8) T1 ⊑ T2 ∀x∀v.T1(x, v)→ T2(x, v)
(A9) trans(R) ∀x∀y∀z.R(x, z) ∧ R(z, y)→ R(x, y)
(A10) disj(S1, S2) ∀x∀y.S1(x, y) ∧ S2(x, y) = 0
(A11) disj(T1, T2) ∀x∀v.T1(x, v) ∧ T2(x, v) = 0
(A12) ref(R) ∀x.R(x, x)
(A13) irr(S) ∀x.¬S(x, x)
(A14) sym(R) ∀x∀y.R(x, y) = R(y, x)
(A15) asy(S) ∀x∀y , S(x, y)→ ¬S(y, x)
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OWL 2 as Description Logic (excerpt)

Concept/Class constructors:

Abstract Syntax DL Syntax Example
Descriptions (C)
A (URI reference) A Conference
owl:Thing ⊤
owl:Nothing ⊥
intersectionOf(C1 C2 . . .) C1 ⊓ C2 Reference ⊓ Journal
unionOf(C1 C2 . . .) C1 ⊔ C2 Organization ⊔ Institution
complementOf(C) ¬C ¬ MasterThesis
oneOf(o1 . . .) {o1, . . .} {"WISE","ISWC",...}
restriction(R someValuesFrom(C)) ∃R.C ∃parts.InCollection
restriction(R allValuesFrom(C)) ∀R.C ∀date.Date
restriction(R hasValue(o)) ∃R.{o} ∃date.{2005}
restriction(R minCardinality(n)) (≥ n R) (⩾ 1 location)
restriction(R maxCardinality(n)) (≤ n R) (⩽ 1 publisher)
restriction(U someValuesFrom(D)) ∃U.D ∃issue.integer
restriction(U allValuesFrom(D)) ∀U.D ∀name.string
restriction(U hasValue(v)) ∃U. =v} ∃series.=”LNCS”
restriction(U minCardinality(n)) (≥ n U) (⩾ 1 title)
restriction(U maxCardinality(n)) (≤ n U) (⩽ 1 author)

Note: R is an abstract role, while U is a concrete property of arity two.
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Axioms:
Abstract Syntax DL Syntax Example

Axioms

Class(A partial C1 . . . Cn) A ⊑ C1 ⊓ . . . ⊓ Cn Human ⊑ Animal ⊓ Biped
Class(A complete C1 . . . Cn) A = C1 ⊓ . . . ⊓ Cn Man = Human ⊓ Male
EnumeratedClass(A o1 . . . on) A = {o1} ⊔ . . . ⊔ {on} RGB = {r} ⊔ {g} ⊔ {b}
SubClassOf(C1C2) C1 ⊑ C2
EquivalentClasses(C1 . . . Cn) C1 = . . . = Cn
DisjointClasses(C1 . . . Cn) Ci ⊓ Cj =⊥, i ̸= j Male ⊓ Female ⊑⊥
ObjectProperty(R super (R1) . . . super (Rn) R ⊑ Ri HasDaughter ⊑ hasChild

domain(C1) . . .domain(Cn) (≥ 1 R) ⊑ Ci (≥ 1 hasChild) ⊑ Human
range(C1) . . .range(Cn) ⊤ ⊑ ∀R.Ci ⊤ ⊑ ∀hasChild.Human
[inverseof(P)] R = P− hasChild = hasParent−

[symmetric] R ⊑ R− similar = similar−

[functional] ⊤ ⊑ (≤ 1 R) ⊤ ⊑ (≤ 1 hasMother)
[Inversefunctional] ⊤ ⊑ (≤ 1 R−)
[Transitive]) Tr(R) Tr(ancestor)

SubPropertyOf(R1R2) R1 ⊑ R2
EquivalentProperties(R1 . . . Rn) R1 = . . . = Rn cost = price
AnnotationProperty(S)
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Abstract Syntax DL Syntax Example
DatatypeProperty(U super (U1) . . . super (Un) U ⊑ Ui

domain(C1) . . .domain(Cn) (≥ 1 U) ⊑ Ci (≥ 1 hasAge) ⊑ Human
range(D1) . . .range(Dn) ⊤ ⊑ ∀U.Di ⊤ ⊑ ∀hasAge.posInteger
[functional]) ⊤ ⊑ (≤ 1 U) ⊤ ⊑ (≤ 1 hasAge)

SubPropertyOf(U1U2) U1 ⊑ U2 hasName ⊑ hasFirstName
EquivalentProperties(U1 . . . Un) U1 = . . . = Un

Individuals

Individual(o type (C1) . . . type (Cn)) o:Ci tim:Human
value(R1o1) . . .value(Rnon) (o, oi ):Ri (tim, mary):hasChild
value(U1v1) . . .value(Unvn) (o, v1):Ui (tim, 14):hasAge

SameIndividual(o1 . . . on) o1 = . . . = on president_Bush = G.W .Bush
DifferentIndividuals(o1 . . . on) oi ̸= oj , i ̸= j john ̸= peter

Symbols

Object Property R (URI reference) R hasChild
Datatype Property U (URI reference) U hasAge
Individual o (URI reference) U tim
Data Value v (RDF literal) U “International Conference on Semantic Web”
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DL Knowledge Base

A DL Knowledge Base is a pair K = ⟨T ,A⟩, where
▶ T is a TBox

⋆ containing general inclusion axioms of the form C ⊑ D,
⋆ concept definitions of the form A = C
⋆ primitive concept definitions of the form A ⊑ C
⋆ role inclusions of the form R ⊑ P
⋆ role equivalence of the form R = P

▶ A is a ABox
⋆ containing assertions of the form a:C
⋆ containing assertions of the form (a, b):R

An interpretation I is a model of K, written I |= K iff I |= T and I |= A, where
▶ I |= T (I is a model of T ) iff I is a model of each element in T
▶ I |= A (I is a model of A) iff I is a model of each element in A
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Basic Inference Problems (Formally)

Consistency: Check if knowledge is meaningful

Is K satisfiability? 7→ Is there some model I of K ?
Is C satisfiability? 7→ CI ̸= ∅ for some some model I of K ?

Subsumption: structure knowledge, compute taxonomy

K |= C ⊑ D ? 7→ Is it true that CI ⊆ DI for all models I of K ?

Equivalence: check if two classes denote same set of instances

K |= C = D ? 7→ Is it true that CI = DI for all models I of K ?

Instantiation: check if individual a instance of class C

K |= a:C ? 7→ Is it true that aI ∈ CI for all models I of K ?

Retrieval: retrieve set of individuals that instantiate C

Compute the set {a | K |= a:C}
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Reduction to Satisfiability

Problems are all reducible to KB satisfiability
Subsumption: K |= C ⊑ D iff ⟨T ,A ∪ {a:C ⊓ ¬D}⟩ not satisfiable,

where a is a new individual
Equivalence: K |= C = D iff K |= C ⊑ D and K |= D ⊑ C
Instantiation: K |= a:C iff ⟨T ,A ∪ {a:¬C}⟩ not satisfiable

Retrieval: The computation of the set {a | K |= a:C} is reducible to
the instance checking problem
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Exercise

Example (Latin lover)
Ontology: Consider the following conceptual UML like schema

Lazy ⊑ Italian , Mafioso ⊑ Italian , LatinLover ⊑ Italian
Italian ⊑ (Lazy ⊔ Mafioso ⊔ LatinLover)
ItalianProf ⊑ Italian , Lazy ⊑ ¬Mafioso
Lazy ⊑ ¬LatinLover , Mafioso ⊑ ¬LatinLover
Mafioso ⊑ ¬ItalianProf , Lazy ⊑ ¬ItalianProf

Consequence: K |= ItalianProf ⊑ LatinLover
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Reasoning in DLs

OWL 2: tableaux based algorithms
OWL 2 EL: structural based algorithms
OWL 2 QL: query rewriting based algorithms
OWL 2 RL: query rewriting based algorithms
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CQ Answering over OWL QL or OWL RL Global
Schemas

OWL 2 QL is related to the DL-Lite DL family [Artale et al., 2009]
DL-Litecore , the core language for the whole family (A atomic concept, P atomic role, and P− is its inverse):

B −→ A | ∃R
C −→ B | ¬B

R −→ P | P−

E −→ R | ¬R .

Inclusion axioms that are of the form B ⊑ C
DL-LiteR from DL-Litecore allowing R ⊑ E
DL-Lite⊓ is obtained from DL-Litecore allowing B1 ⊓ . . . ⊓ Bn ⊑ C
DL-LiteF is obtained by extending DL-Litecore with global functional roles

DL-Lite

DLR-Lite

DL-Lite DL-Lite

DLR-Lite

DLR-Lite

core

core

Figure: Excerpt of the DL-Lite family.
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OWL 2 RL is related to the Horn-DL family [Grosof et al., 2003, ter Horst, 2005] (A atomic concept, m ∈ {0, 1}, l is a
value of the concrete domain, R is an object property, a individual, T is a datatype property):

B −→ A | {a} | B1 ⊓ B2 | B1 ⊔ B2 | ∃R.B | ∃T .d
C −→ A | C1 ⊓ C2 | ¬B | ∀R.C | ∃R.{a} | ∀T .d |

(≤ m R.B) | (≤ m R) | (≤ m T .d)
D −→ ∃R.{a} | ∃T . =l | D1 ⊓ D2
R −→ P | P−

Inclusion axioms have the form
B ⊑ C
A = D

R1 ⊑ R2
R1 = R2

There are others, such as disj(B1, B2), dom(R, C), ran(R, C), dom(T , C), fun(R), irr(R),
sym(R), asy(R), trans(()R), disj(R1, R2)
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CQ Answering over OWL QL or OWL RL Global
Schemas

An OWL QL Global Schema is a set of OWL QL inclusion axioms
An OWL RL Global Schema is a set of OWL RL inclusion axioms
Mapping rules are of the form

⟨A(x), s⟩ ← ⟨S(x), s⟩
⟨R(x, y), s⟩ ← ⟨S′(x, y), s⟩

where S(x) and S′(x, y) are relations over a LIR , and s is the score assigned to A(x) and R(x, y), respecively. If s
omitted, then 1.0 is assumed
A conjunctive query is a rule-like expression of the form (see also complex queries)

q(x, s)← ∃y.φ(x, y), s = f (z)

where
▶ the rule body φ(x, y) is a conjunction of ⟨Pi (zi ), si ⟩
▶ Pi is either an atomic concept A or an atomic role R
▶ zi is a tuple of literals, or variables in x, y
▶ z is a tuple of literals, or variables in x, y or scores si
▶ si is the score assigned to Pi (zi )
▶ if Pi is an atomic concept (resp., a role) then zi is unary (resp., binary) tuple

▶ the scoring variables s and si are distinct from those in x and y and s is distinct from each si

The answer set of a CQ q is

ans(q,D,G,M) = {⟨t, s⟩ | D ∪ G ∪M∪ {q} |= q(t, s)} ,

where each tuple has an unique score
As for LIRs, ans(q,D,G,M) is an ordered set

ansk (q,D,G,M) are the top-k retrieved tuples in ans(q,D,G,M)
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OWL QL or OQL RL CQ Answering over Distributed
LIRs

How do we answer queries over a Global Schema?

As for RDFS, we apply Query Refomulation Algorithm
[Madrid and Straccia, 2013, Straccia and Madrid, 2012, Straccia, 2012, Straccia, 2014]

Ad-hoc solution exits [Straccia, 2012, Straccia, 2014]

But, again, it suffices to provide a translation to Logic Prgramming (LP) and use a top-down algorithm for
LPs [Madrid and Straccia, 2013, Straccia and Madrid, 2012, Straccia, 2014]

For ease of presentation, we provide a translation for a simple, but useful, Horn-DL fragment only:

▶ Note: transformation can be extended to whole OWL RL and OWL QL

B −→ A | B1 ⊓ B2 | ∃R.B
C −→ A
R −→ P | P−

where inclusion axioms have the form

B ⊑ C
R1 ⊑ R2
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OWL QL or OWL RL CQ Answering over Distributed
LIRs (cont.)

Consider glabal schema G, mapping rulesM and CQ query q

We first extend the arity of predicates to accomodate scores

⟨A(x), s⟩ 7→ A(x, s)

⟨R(x, y), s⟩ 7→ R(x, s)

where s is the score

Now, Mapping rules

⟨A(x), s⟩ ← ⟨S(x), s⟩
⟨R(x, y), s⟩ ← ⟨S′(x, y), s⟩

are transformed into

A(x, s) ← S(x, s)

R(x, y, s) ← S′(x, y, s)

Query-answering from linked data IA2 2023 Umberto Straccia 88 / 301



OWL QL or OQL RL CQ Answering over Distributed
LIRs (cont.)

Next, we transform the inclusion axioms in the global schema G

To do so, we define a recursive mapping function σ which takes inclusions axioms and maps them into the following rules
(s, si are scores and again⊗ is a suitable t-norm to interpret conjunction):

σ(R1 ⊑ R2, s) 7→ σrole(R2, x, y, s)← σrole(R1, x, y, s)

σ(B ⊑ C, s) 7→ σh(C, x, s)← σb(B, x, s)

σb(B1 ⊓ B2, x, s) 7→ σb(B1, x, s1), σb(B2, x, s2), s = s1⊗ s2

σb(∃R.B, x, s) 7→ σrole(R, x, y, s1), σb(B, y, s2), s = s1⊗ s2

σh(A, x, s) 7→ A(x, s)

σb(A, x, s) 7→ A(x, s)

σrole(R, x, y, s) 7→ R(x, y, s)

σrole(R
−
, x, y, s) 7→ R(y, x, s)

where x, y new variables
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Example (Multimedia Information Retrieval)
Global Schema G: {Dog ⊑ Animal, Bird ⊑ Animal, SmallDog ⊑ Dog, SmallBird ⊑ Bird}

Mapping RulesM: ⟨Dog(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘dog′)(o, s)
⟨Bird(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘bird′)(o, s)
⟨SmallDog(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘sd′)(o, s)
⟨SmallBird(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘sb′)(o, s)
⟨isAbout(r, o), s⟩ ← (SELECT region, obj, degr FROM imageClass)(r, o, s)

LIRs:

imageClass
region obj degr

o1 snoopy 0.8
o2 woodstock 0.9
o3 pluto 0.6

instances
obj class val

snoopy sd 0.4
woodstock sb 0.7

pluto dog 1.0

Query: q(x, y, s)← ⟨isAbout(x, y), s1⟩, ⟨Animal(y), s2⟩, s = s1 · s2
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Example (Multimedia Information Retrieval)
Global Schema G: {Animal(x)← Dog(x), Animal(x)← Bird(x), Dog(x)← SmallDog(x), Bird(x)← SmallBird(x)}

Mapping RulesM: ⟨Dog(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘dog′)(o, s)
⟨Bird(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘bird′)(o, s)
⟨SmallDog(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘sd′)(o, s)
⟨SmallBird(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘sb′)(o, s)
⟨isAbout(r, o), s⟩ ← (SELECT region, obj, degr FROM imageClass)(r, o, s)

LIRs:

imageClass
region obj degr

o1 snoopy 0.8
o2 woodstock 0.9
o3 pluto 0.6

instances
obj class val

snoopy sd 0.4
woodstock sb 0.7

pluto dog 1.0

Query: q(x, y, s)← ⟨isAbout(x, y), s1⟩, ⟨Animal(y), s2⟩, s = s1 · s2

r(q,G):

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨Animal(y), s2⟩, s = s1 · s2

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨Dog(y), s2⟩, s = s1 · s2

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨Bird(y), s2⟩, s = s1 · s2

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨SmallDog(y), s2⟩, s = s1 · s2

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨SmallBird(y), s2⟩, s = s1 · s2

answer(q,D,G,M): {⟨o2, woodstock, 0.63⟩, ⟨o3, pluto, 0.6⟩, ⟨o1, snoopy, 0.32⟩}
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The case of Logic Programs
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CQ Answering over LP Global
Schemas [Straccia and Madrid, 2012, Straccia, 2013]

So far, we have shown that CQ reformulation w.r.t. RDFS, OWL
QL, OWL RL global schema can be transformted into CQ
reformulation within LPs
We address now the case the global schema is expressed via LP
rules
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LPs Basics (for ease, Datalog)

Predicates are n-ary

Terms are variables or constants

Facts ground atoms
For instance,

has_parent(mary, jo)

Rules are of the form
P(x)← φ(x, y)

where
▶ φ(x, y) is a formula built from atoms of the form B(z) and connectors ∧,∨, 0, 1

▶ zi is a tuple of literals, or variables in x, y

For instance,
has_father(x, y) ← has_parent(x, y) ∧ Male(y)

Remark
Note that

has_father(x, y) ← has_parent(x, y), Male(y)

is the same as repplacing “,” with ∧
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Extensional database (EDB): set of facts
Intentional database (IDB): set of rules
Logic Program P:

▶ P = EDB ∪ IDB
▶ No predicate symbol in EDB occurs in the head of a rule in IDB

⋆ The principle is that we do not allow that IDB may redefine the
extension of predicates in EDB

EDB is usually, stored into a relational database
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LPs Semantics: FOL semantics

P∗ is constructed as follows:
1 set P∗ to the set of all ground instantiations of rules in P
2 replace a fact p(c) in P∗ with the rule p(c)← 1
3 if atom A is not head of any rule in P∗, then add A← 0 to P∗
4 replace several rules in P∗ having same head

A← φ1
A← φ2

...
A← φn

 with A← φ1 ∨ φ2 ∨ . . . ∨ φn

Note: in P∗ each atom A ∈ BP is head of exactly one rule

Herbrand Base of P is the set BP of ground atoms

Interpretation is a function I : BP → {0, 1}
Model I |= P iff for all r ∈ P∗ I |= r , where I |= A← φ iff I(φ) ≤ I(A)
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Entailment: for a ground atom p(c)

P |= p(c) iff all models of P satisfy p(c)

Least model MP of P exists and is least fixed-point of

TP(I)(A) = I(φ), for all A← φ ∈ P∗

M can be computed as the limit of

I0 = 0
Ii+1 = TP(Ii) .
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Example

P =


Q(x) ← B(x)
Q(x) ← C(x)
B(a)
C(b)

P∗ =


Q(a) ← B(a) ∨ C(a)
Q(b) ← B(b) ∨ C(b)
B(a) ← 1
C(b) ← 1

Ii Q(a) Q(b) B(a) B(b) C(a) C(b)
I0 0 0 0 0 0 0
I1 0 0 1 0 0 1
I2 1 1 1 0 0 1
I3 1 1 1 0 0 1

I2 = I3, i.e.TP (I2) = I3 = I2
I2 is least fixed-point and, thus, minimal model MP = {Q(a),Q(b),B(a),C(b)}
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CQ Answering over LP-based Global Schemas
An LP Global Schema is a set of LP rules of the form P(x)← φ(x, y)

Mapping rules are of the form

⟨R(x), s⟩ ← ⟨S(x), s⟩

where S(x)is a relation over a LIR , and s is the score assigned to R(x). If s omitted, then 1.0 is assumed

A conjunctive query is a rule-like expression of the form

q(x, s)← ∃y.φ(x, y), s = f (z)

where
▶ φ(x, y) is a conjunction of ⟨Pi (zi ), si ⟩
▶ zi is a tuple of literals, or variables in x, y
▶ z is a tuple of literals, or variables in x, y or scores si
▶ si is the score assigned to Pi (zi )
▶ the scoring variables s and si are distinct from those in x and y and s is distinct from each si

▶ f is scoring function into [0, 1]

The answer set of a CQ q is

ans(q,D,G,M) = {⟨t, s⟩ | D ∪ G ∪M∪ {q} |= q(t, s)} ,

where each tuple has an unique score. If not, take the maximum.

As for LIRs, ans(q,D,G,M) is an ordered set

ansk (q,D,G,M) are the top-k retrieved tuples in ans(q,D,G,M)
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An example of CQ query is the following:

⟨GoodHotel(x), s⟩ ← Hotel(x, price), hasDistanceToVenue(x, d),

⟨Comfortable(x), s3⟩, s := 0.3 · cheap(price) + 0.5 · close(d) + 0.2 · s3

The intended meaning is to retrieve good hotels, where the degree of goodness is a function of the degree of being
cheap, close to the venue, and comfortable

Remark
We may also write an LP rule

p(x)← p1(z1), . . . , pn(zn)

as
⟨p(x), 1⟩ ← ⟨p1(z1), 1⟩, . . . , ⟨pn(zn), 1⟩

Furthermore, a CQ
⟨p(x), s⟩ ← ∃y.⟨p1(z1), s1⟩, . . . , ⟨pn(zn), sn⟩, s :=f (s)

may also be represented succinctly as
p(x)← f (p1(z1), . . . , pn(zn))

For instance, we may write

GoodHotel(x) ← min(Hotel(x, price), hasDistanceToVenue(x, d),

0.3 · cheap(price) + 0.5 · close(d) + 0.2 · Comfortable(x))

We may also write p(z, s) in place of ⟨p(z), s⟩
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Query Reformulation w.r.t. LP Global Schema

Consider an LP global schema G and a CQ q

We present now a query rewriting procedure that resembles a top-town SLD-Resolution based procedure and presented
in [Straccia, 2013], which is inspired to [Damásio et al., 2004, Kifer and Subrahmanian, 1992, Vojtás, 2001]

The basic principle is as follows

Assume we have propositional rules in which we assume that all scoring variables in the second rule have been renamed
in order not to share any variable with the first one

From ⟨A, s⟩ ← ⟨A1, s1⟩, . . . , ⟨Aj , sj ⟩, . . . , ⟨Ak , sk ⟩, s :=f (s)
and ⟨B, s′⟩ ← ⟨B1, s′1⟩, . . . , ⟨Bm, s′m⟩, s′ :=g(s′)
and B = Aj
infer ⟨A, s⟩ ← ⟨A1, s1⟩, . . . , ⟨Aj−1, sj−1⟩,

⟨B1, s′1⟩, . . . , ⟨Bm, s′m⟩,
⟨Aj+1, sj+1⟩ . . . , ⟨Ak , sk ⟩,
s :=f (s1, . . . , sj−1, g(s′), sj+1, . . . , sk )

The propositional atom B is called the selected atom

Essentially, we replace the fuzzy atom ⟨Aj , sj ⟩ with the fuzzy atoms ⟨B1, s′1⟩, . . . , ⟨Bm, s′m⟩ and accordingly replace
the scoring variable sj occurring in the scoring function f with g(s′).
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Query Reformulation w.r.t. LP Global Schema (cont.)

The general case is essentially the same as the propositional case, except that now we have to take unification into
account (as usual, we assume a variable renaming of the second input in the inference rules):

From ⟨A, s⟩ ← ⟨A1, s1⟩, . . . , ⟨Aj , sj ⟩, . . . , ⟨Ak , sk ⟩, s :=f (z, s)
and ⟨B, s′⟩ ← ⟨B1, s′1⟩, . . . , ⟨Bm, s′m⟩, s′ :=g(z′, s′)
and θ as a mgu of {B, Aj}
infer ⟨Aθ, s⟩ ← ⟨A1θ, s1⟩, . . . , ⟨Aj−1θ, sj−1⟩,

⟨B1θ, s′1⟩, . . . , ⟨Bmθ, s′m⟩,
⟨Aj+1θ, sj+1⟩ . . . , ⟨Akθ, sk ⟩,
s :=f (z, s1, . . . , sj−1, g(z′, s′), sj+1, . . . , sk )θ .

where the notion of mgu (most general unifier) is defined as follows:
▶ A substitution θ is of the form θ = {x1/t1, . . . , xn/tn}, where each xi is variable, each ti is either a variable or

constant distinct from xi , and the variables x1, . . . , xn are distinct
▶ Given atom A and substitution θ = {x1/t1, . . . , xn/tn}, Aθ denotes the atom obtained from A by replacing

simultaneously all variables xi with ti
▶ Given θ = {x1/t1, . . . , xn/tn} and σ = {y1/s1, . . . , ym/sm}, then the composition θσ of θ and σ is the

substitution obtained from the set {x1/t1σ, . . . , xn/tnσ, y1/s1, . . . , ym/sm} by deleting the bindings xi/tiσ
for which xi = tiσ and deleting any binding yj/sj for which yj ∈ {x1, . . . , xn}

▶ Let S = {A1, . . . , An} be a set of atoms Ai , we say that a substitution θ is an unifier for S iff
Sθ = {A1θ, . . . , Anθ} is a singleton set

▶ An unifier of S is called most general unifier (mgu) for S if, for each unifier σ of S there exists a non-empty
substitution γ such that σ = θγ.

Now, the set of rewritings of a query q w.r.t. G, is the set r(q,G) = {r1, . . . , rn}, where each of which has q as head, r1
is the query rule, and each rule ri+1 is inferred from ri via the reformulation step above

Termination guaranteed if G acyclic, i.e. non-recursive (no relation is defined directly or indirectly in terms of itself)
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Example (Multimedia Information Retrieval)
Global Schema G: {Animal(x)← Dog(x), Animal(x)← Bird(x), Dog(x)← SmallDog(x), Bird(x)← SmallBird(x)}

Mapping RulesM: ⟨Dog(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘dog′)(o, s)
⟨Bird(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘bird′)(o, s)
⟨SmallDog(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘sd′)(o, s)
⟨SmallBird(o), s⟩ ← (SELECT obj, val FROM instances WHERE class = ‘sb′)(o, s)
⟨isAbout(r, o), s⟩ ← (SELECT region, obj, degr FROM imageClass)(r, o, s)

LIRs:

imageClass
region obj degr

o1 snoopy 0.8
o2 woodstock 0.9
o3 pluto 0.6

instances
obj class val

snoopy sd 0.4
woodstock sb 0.7

pluto dog 1.0

Query: q(x, y, s)← ⟨isAbout(x, y), s1⟩, ⟨Animal(y), s2⟩, s = s1 · s2

r(q,G):

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨Animal(y), s2⟩, s = s1 · s2

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨Dog(y), s2⟩, s = s1 · s2

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨Bird(y), s2⟩, s = s1 · s2

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨SmallDog(y), s2⟩, s = s1 · s2

q(x, y, s) ← ⟨isAbout(x, y), s1⟩, ⟨SmallBird(y), s2⟩, s = s1 · s2

answer(q,D,G,M): {⟨o2, woodstock, 0.63⟩, ⟨o3, pluto, 0.6⟩, ⟨o1, snoopy, 0.32⟩}
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Not yet . . . one moment please . . .
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Recap
Scenario

Input: conjunctive query over a global mediator schema
Problem: query the N resources

▶ if N large, quering all N resources is unrealistic
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In case of Small size mediators
Given global schema G, which may be unstructured, based on
RDFS, OWL QL, OWL RL or LPs
Given a query q over G

1 Rewrite the query q into a set {qi} of queries over of the local
schemas S, using mapping rulesM

2 Submit the queries to the LIRs accessed through wrappers
3 Merge all the ranked lists, using score normalisation and the DTA,

and provide the result back to the user
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In case of Large size mediators
Given global schema G, which may be unstructured, based on
RDFS, OWL QL, OWL RL or LPs
Sample the LIRs before hand
For query q over global schema G

1 Rewrite the query q into a set {qi} of queries over of the local
schemas S

2 Use the samples to determine which of the qi are the top-s most
relevant queries

3 Submit the queries to the LIRs accessed through wrappers
4 Merge all the ranked lists, using score normalisation and the DTA,

and provide the result back to the user

Query-answering from linked data IA2 2023 Umberto Straccia 107 / 301



Some small size mediator implementations
Ontop

▶ https://ontop-vkg.org
▶ OWL-QL, SPARQL queries

OBDA solutions, Mastro, Monolith, Eddy
▶ https://obdm.obdasystems.com
▶ OWL-QL, SPARQL queries

SoftFacts
▶ https://www.umbertostraccia.it/cs/software/
SoftFacts/SoftFacts.html

▶ DLR-Lite (n-ary DL-Lite), CQ with scoring atoms, top-k retrieval
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Thanks
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