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Sources of Uncertainty and Vagueness on the Web

Resource discovery:
To which degree is a Web site, a Web page, a text passage,
an image region, a video segment, . . . relevant to my
information need?

Matchmaking
To which degree does an object match my requirements?

if I’m looking for a car and my budget is about 20.000e, to
which degree does a car’s price of 20.500e match my
budget?
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Semantic annotation
To which degree does e.g., an image object represent a
dog?

Information extraction
To which degree am I’m sure that e.g., SW is an acronym of
“Semantic Web”?

Ontology alignment (schema mapping)
To which degree do two concepts of two ontologies
represent the same, or are disjoint, or are overlapping?

Representation of background knowledge
To some degree birds fly.
To some degree Jim is a blond and young.
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Example (Distributed Information Retrieval) [7]

Then the agent has to perform automatically the following steps:

1 The agent has to select a subset of relevant resources S ′ ⊆ S , as it is
not reasonable to assume to access to and query all resources
(resource selection/resource discovery);

2 For every selected source Si ∈ S ′ the agent has to reformulate its
information need QA into the query language Li provided by the
resource (schema mapping/ontology alignment);

3 The results from the selected resources have to be merged together
(data fusion/rank aggregation)
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Example (Negotiation) [2]

A car seller sells an Audi TT for 31500e, as from the catalog price.
A buyer is looking for a sports-car, but wants to to pay not more than around
30000e
Classical DLs: the problem relies on the crisp conditions on price.

More fine grained approach: to consider prices as vague constraints (fuzzy sets)
(as usual in negotiation)

Seller would sell above 31500e, but can go down to 30500e
The buyer prefers to spend less than 30000e, but can go up to 32000e
Highest degree of matching is 0.75 . The car may be sold at 31250e.
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Example (Logic-based information retrieval model)[1, 8]

IsAbout
ImageRegion Object ID degree
o1 snoopy 0.8
o2 woodstock 0.7
.
.
.

.

.

.

“Find top-k image regions about animals”
Query(x)← ImageRegion(x) ∧ isAbout(x , y) ∧ Animal(y)
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Example (Database query) [3, 4, 5, 6]

HotelID hasLoc
h1 hl1
h2 hl2
.
.
.

.

.

.

ConferenceID hasLoc
c1 cl1
c2 cl2
.
.
.

.

.

.

hasLoc hasLoc distance
hl1 cl1 300
hl1 cl2 500
hl2 cl1 750
hl2 cl2 800
.
.
.

.

.

.

hasLoc hasLoc close cheap
hl1 cl1 0.7 0.3
hl1 cl2 0.5 0.5
hl2 cl1 0.25 0.8
hl2 cl2 0.2 0.9
.
.
.

.

.

.
.
.
.

“Find top-k cheapest hotels close to the train station”

q(h)←hasLocation(h, hl) ∧ hasLocation(train, cl) ∧ close(hl, cl) ∧ cheap(h)
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Example (Health-care: diagnosis of pneumonia)

E.g., Temp = 37.5, Pulse = 98, RespiratoryRate = 18 are in the “danger zone”
already
Temperature, Pulse and Respiratory rate, . . . : these constraints are rather
imprecise than crisp

Uncertainty and Vagueness in the Semantic Web Tutorial at ESWC-2007 T. Lukasiewicz and U. Straccia



Uncertainty, Vagueness, and the Semantic Web
Basics on Semantic Web Languages

Uncertainty in Semantic Web Languages
Vagueness in Semantic Web Languages

Combining Uncertainty and Vagueness in SW Languages

Sources of Uncertainty and Vagueness on the Web
Uncertainty vs. Vagueness: a clarification

Uncertainty vs. Vagueness: a clarification

What does the degree mean?
There is often a misunderstanding between interpreting a
degree as a measure of uncertainty or as a measure of
vagueness
The value 0.83 has a different interpretation in “Birds fly to
degree 0.83” from that in “Hotel Verdi is close to the train
station to degree 0.83”
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Uncertainty

Uncertainty: statements are true or false. But, due to lack of knowledge
we can only estimate to which probability/possibility/necessity degree
they are true or false

For instance, a bird flies or does not fly. The
probability/possibility/necessity degree that it flies is 0.83

Usually we have a possible world semantics with a distribution over
possible worlds:

W ={I classical interpretation}, I(ϕ) ∈ {0, 1}
µ : W → [0, 1], µ(I) ∈ [0, 1]

Pr(φ) =
X
I|=φ

µ(I)

Poss(φ) = sup
I|=φ

µ(I)

Necc(φ) = inf
I 6|=φ

µ(I) = 1− Poss(¬φ)
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Vagueness

Vagueness: statements involve concepts for which there is no exact
definition, such as tall, small, close, far, cheap, expensive, isAbout,
similarTo. Statements are true to some degree which is taken from a
truth space.

E.g., “Hotel Verdi is close to the train station to degree 0.83”

Truth space: set of truth values L and an partial order ≤
Many-valued Interpretation: a function I mapping formulae into L,
i.e. I(ϕ) ∈ L

Fuzzy Logic: L = [0, 1]

Uncertainty and Vagueness: “It is possible/probable to degree 0.83 that
it will be hot tomorrow”

The notion of imperfect information covers concepts such as
uncertainty, vagueness, contradiction, incompleteness, imprecision.
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Web Ontology Languages

Wide variety of languages for “Explicit Specification”
Graphical notations

Semantic networks
UML
RDF/RDFS

Logic based
Description Logics (e.g., OIL, DAML+OIL, OWL, OWL-DL,
OWL-Lite)
Rules (e.g., RuleML, RIF, SWRL, LP/Prolog)
First Order Logic (e.g., KIF)

Degree of formality varies widely
Increased formality makes languages more amenable to
machine processing (e.g., automated reasoning)

RDF and OWL-DL are the major players (so far ...)
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RDF

Statements are of the form

〈subject , predicate, object〉

called triples: e.g.
〈umberto, plays, soccer〉

can be represented graphically as:

umberto
plays−→ soccer

Statements describe properties of resources

A resource is any object that can be pointed to by a URI:
a document, a picture, a paragraph on the Web;
http://www.cs.man.ac.uk/index.html
a book in the library, a real person (?)
isbn://5031-4444-3333
. . .
Properties themselves are also resources (URIs)
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RDF Schema (RDFS)

RDF Schema allows you to define vocabulary terms and the relations
between those terms

RDF Schema terms (just a few examples):
Class
Property
type
subClassOf
range
domain

These terms are the RDF Schema building blocks (constructors) used
to create vocabularies:

<Person,type, Class>
<hasColleague, type, Property>
<Professor, subClassOf,Person>
<Carole, type,Professor>
<hasColleague, range,Person>
<hasColleague, domain,Person>
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RDF/RDFS Semantics
RDF has “Non-standard” semantics in order to deal with this
Semantics given by RDF Model Theory (MT)

In RDF MT, an interpretation I of a vocabulary V consists of:
IR, a non-empty set of resources, called the domain of I.
IS, a mapping from URI references in V into IR

IP, a distinguished subset of IR (the set of properties of I)

A vocabulary element v ∈ V is a property iff IS(v) ∈ IP

IEXT , a mapping from IP into the powerset of IR × IR, IEXT (x) is called the extension of x
I.e., a set of elements 〈x, y〉, with x, y elements of IR
I.e., is a set of pairs which identify the arguments for which the property is true

This trick of distinguishing a relation as an object from its relational extension allows a

property to occur in its own extension
IL, a mapping from typed literals in V into IR

A distinguished subset LV of IR, called the set of literal values, which contains all the plain literals in

V

Class interpretation ICEXT simply induced by IEXT (IS(type))

ICEXT (C) = {x | 〈x,C〉 ∈ IEXT (IS(type))}

(http://www.w3.org/TR/rdf-mt/)
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Example RDF/RDFS Interpretation
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RDFS Interpretations

RDFS adds extra constraints on interpretations
E.g., interpretations of 〈C, subClassOf ,D〉 constrained to
those where ICEXT (IS(C)) ⊆ ICEXT (IS(D))

Can deal with triples such as
<Species,type,Class>
<Lion,type,Species>
<Leo,type,Lion>

<SelfInst,type,SelfInst>

And even with triples such as
<type,subPropertyOf,subClassOf>

But not clear if meaning matches intuition (if there is one)
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OWL [10]

Three species of OWL
OWL full is union of OWL syntax and RDF (Undecidable)
OWL DL restricted to FOL fragment (decidable in NEXPTIME)
OWL Lite is “easier to implement” subset of OWL DL (decidable in
EXPTIME)

Semantic layering

OWL DL within Description Logic (DL) fragment

OWL DL based on SHOIN (Dn) DL

OWL Lite based on SHIF(Dn) DL
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Description Logics (DLs)

The logics behind OWL-DL and OWL-Lite,
http://dl.kr.org/.
Concept/Class: names are equivalent to unary predicates

In general, concepts equiv to formulae with one free
variable

Role or attribute: names are equivalent to binary
predicates

In general, roles equiv to formulae with two free variables
Taxonomy: Concept and role hierarchies can be expressed
Individual: names are equivalent to constants
Operators: restricted so that:

Language is decidable and, if possible, of low complexity
No need for explicit use of variables

Restricted form of ∃ and ∀
Features such as counting can be succinctly expressed
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The DL Family

A given DL is defined by set of concept and role forming operators

Basic language: ALC(Attributive Language with Complement)

Syntax Semantics Example
C,D → > | >(x)

⊥ | ⊥(x)
A | A(x) Human

C u D | C(x) ∧ D(x) Human u Male
C t D | C(x) ∨ D(x) Nice t Rich
¬C | ¬C(x) ¬Meat
∃R.C | ∃y.R(x, y) ∧ C(y) ∃has_child.Blond
∀R.C ∀y.R(x, y)⇒ C(y) ∀has_child.Human

C v D ∀x.C(x)⇒ D(x) Happy_Father v Man u ∃has_child.Female
a:C C(a) John:Happy_Father
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Toy Example

Sex = Male t Female
Male u Female v ⊥

Person v Human u ∃hasSex .Sex
MalePerson v Person u ∃hasSex .Male

umberto:Person u ∃hasSex .¬Female

KB |= umberto:MalePerson
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Note on DL Naming
AL: C,D −→ > | ⊥ |A |C u D | ¬A | ∃R.> |∀R.C
C: Concept negation, ¬C. Thus, ALC = AL+ C
S: Used for ALC with transitive roles R+

U : Concept disjunction, C1 t C2
E : Existential quantification, ∃R.C
H: Role inclusion axioms, R1 v R2, e.g. is_component_of v is_part_of
N : Number restrictions, (≥ n R) and (≤ n R), e.g. (≥ 3 has_Child) (has

at least 3 children)
Q: Qualified number restrictions, (≥ n R.C) and (≤ n R.C),

e.g. (≤ 2 has_Child .Adult) (has at most 2 adult children)
O: Nominals (singleton class), {a}, e.g. ∃has_child .{mary}.

Note: a:C equiv to {a} v C and (a, b):R equiv to {a} v ∃R.{b}
I: Inverse role, R−, e.g. isPartOf = hasPart−

F : Functional role, f , e.g. functional(hasAge)
R+: transitive role, e.g. transitive(isPartOf )

For instance,

SHIF = S +H+ I + F = ALCR+HIF OWL-Lite (EXPTIME)
SHOIN = S +H+O + I +N = ALCR+HOIN OWL-DL (NEXPTIME)
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Semantics of Additional Constructs

H: Role inclusion axioms, I |= R1 v R2 iff R1
I ⊆ R1

I

N : Number restrictions,
(≥ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≥ n},
(≤ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≤ n}

Q: Qualified number restrictions,
(≥ n R.C)I = {x ∈ |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≥ n},
(≤ n R.C)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≤ n}

O: Nominals (singleton class), {a}I = {aI}

I: Inverse role, (R−)
I

= {〈x , y〉 | 〈y , x〉 ∈ RI}
F : Functional role, I |= fun(f ) iff ∀z∀y∀z if 〈x , y〉 ∈ fI and 〈x , z〉 ∈ fI

the y = z

R+: transitive role,
(R+)I = {〈x , y〉 | ∃z such that 〈x , z〉 ∈ RI ∧ 〈z, y〉 ∈ RI}
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Concrete Domains

Concrete domains: reals, integers, strings, . . .

(tim, 14):hasAge
(sf , “SoftComputing”):hasAcronym
(source1, “ComputerScience”):isAbout
(service2, “InformationRetrievalTool ′′):Matches
Minor = Person u ∃hasAge. ≤18

Semantics: a clean separation between “object” classes and concrete
domains

D = 〈∆D,ΦD〉
∆D is an interpretation domain
ΦD is the set of concrete domain predicates d with a
predefined arity n and fixed interpretation dD ⊆ ∆n

D
Concrete properties: RI ⊆ ∆I ×∆D

Notation: (D). E.g., ALC(D) is ALC + concrete domains
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OWL DL as Description Logic

Concept/Class constructors:
Abstract Syntax DL Syntax Example

Descriptions (C)
A (URI reference) A Conference
owl:Thing >
owl:Nothing ⊥
intersectionOf(C1 C2 . . .) C1 u C2 Reference u Journal
unionOf(C1 C2 . . .) C1 t C2 Organization t Institution
complementOf(C) ¬C ¬ MasterThesis
oneOf(o1 . . .) {o1, . . .} {"WISE","ISWC",...}
restriction(R someValuesFrom(C)) ∃R.C ∃parts.InCollection
restriction(R allValuesFrom(C)) ∀R.C ∀date.Date
restriction(R hasValue(o)) ∃R.{o} ∃date.{2005}
restriction(R minCardinality(n)) (≥ n R) (> 1 location)
restriction(R maxCardinality(n)) (≤ n R) (6 1 publisher)
restriction(U someValuesFrom(D)) ∃U.D ∃issue.integer
restriction(U allValuesFrom(D)) ∀U.D ∀name.string
restriction(U hasValue(v)) ∃U. =v} ∃series.=”LNCS”
restriction(U minCardinality(n)) (≥ n U) (> 1 title)
restriction(U maxCardinality(n)) (≤ n U) (6 1 author)

Note: R is an abstract role, while U is a concrete property of
arity two.
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Axioms:
Abstract Syntax DL Syntax Example

Axioms

Class(A partial C1 . . . Cn) A v C1 u . . . u Cn Human v Animal u Biped
Class(A complete C1 . . .Cn) A = C1 u . . . u Cn Man = Human u Male
EnumeratedClass(A o1 . . . on) A = {o1} t . . . t {on} RGB = {r} t {g} t {b}
SubClassOf(C1C2) C1 v C2
EquivalentClasses(C1 . . .Cn) C1 = . . . = Cn
DisjointClasses(C1 . . .Cn) Ci u Cj =⊥, i 6= j Male u Female v⊥
ObjectProperty(R super (R1) . . . super (Rn) R v Ri HasDaughter v hasChild

domain(C1) . . .domain(Cn) (≥ 1 R) v Ci (≥ 1 hasChild) v Human
range(C1) . . .range(Cn) > v ∀R.Ci > v ∀hasChild.Human
[inverseof(P)] R = P− hasChild = hasParent−

[symmetric] R = R− similar = similar−

[functional] > v (≤ 1 R) > v (≤ 1 hasMother)
[Inversefunctional] > v (≤ 1 R−)
[Transitive]) Tr(R) Tr(ancestor)

SubPropertyOf(R1R2) R1 v R2
EquivalentProperties(R1 . . .Rn) R1 = . . . = Rn cost = price
AnnotationProperty(S)
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Abstract Syntax DL Syntax Example
DatatypeProperty(U super (U1) . . . super (Un) U v Ui

domain(C1) . . .domain(Cn) (≥ 1 U) v Ci (≥ 1 hasAge) v Human
range(D1) . . .range(Dn) > v ∀U.Di > v ∀hasAge.posInteger
[functional]) > v (≤ 1 U) > v (≤ 1 hasAge)

SubPropertyOf(U1U2) U1 v U2 hasName v hasFirstName
EquivalentProperties(U1 . . .Un) U1 = . . . = Un

Individuals

Individual(o type (C1) . . . type (Cn)) o:Ci tim:Human
value(R1o1) . . .value(Rnon) (o, oi ):Ri (tim,mary):hasChild
value(U1v1) . . .value(Unvn) (o, v1):Ui (tim, 14):hasAge

SameIndividual(o1 . . . on) o1 = . . . = on president_Bush = G.W .Bush
DifferentIndividuals(o1 . . . on) oi 6= oj , i 6= j john 6= peter

Symbols

Object Property R (URI reference) R hasChild
Datatype Property U (URI reference) U hasAge
Individual o (URI reference) U tim
Data Value v (RDF literal) U “ESWC07”
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LPs Basics (for ease, without default negation) [6]

Predicates are n-ary
Terms are variables or constants
Rules are of the form

P(x)← ϕ(x,y)

where ϕ(x,y) is a formula built from atoms of the form B(z)
and connectors ∧,∨
For instance,

has_father(x , y) ← has_parent(x , y) ∧Male(y)

Facts are rules with empty body
For instance,

has_parent(mary , jo)
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LPs Semantics: FOL semantics

P∗ is constructed as follows:
1 set P∗ to the set of all ground instantiations of rules in P;
2 if atom A is not head of any rule in P∗, then add A← 0 to P∗;
3 replace several rules in P∗ having same head

A← ϕ1
A← ϕ2

...
A← ϕn

9>>>=>>>; with A← ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn .

Note: in P∗ each atom A ∈ BP is head of exactly one rule
Herbrand Base of P is the set BP of ground atoms
Interpretation is a function I : BP → {0, 1}.
Model I |= P iff for all r ∈ P∗ I |= r , where I |= A← ϕ iff I(ϕ) ≤ I(A)

Least model exists and is least fixed-point of

TP (I)(A) = I(ϕ), for all A← ϕ ∈ P∗
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Toy Example

Q(x) ← B(x)

Q(x) ← C(x)

B(a) ←
C(b) ←

KB |= Q(a) KB |= Q(b) answers(KB,Q) = {a,b}

where answers(KB,Q) = {c | KB |= Q(c)}
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DLPs Basics

Combine DLs with LPs:

DL atoms and roles may appear in rules

buy(x) ← Electronics(x),offer(x)
Camera v Electronics

Knowledge Base is a pair KB = 〈P,Σ〉, where

P is a logic program
Σ is a DL knowledge base (set of assertions and inclusion
axioms)

Many different approaches exists with different semantics: we
present the basics of two of them
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Loosely Coupled DL-Programs [3, 4, 5]

A dl-query Q(t) is of the form:
C(t), with a concept C and a term t ;
R(t1, t2), with a role R and terms t1, t2.

A dl-rule r is of form

a← b1, . . . ,bk

where any b∈Body(r) may be a dl-atom DL[Q](t)

buy(x) ← DL[Electronics](x),offer(x)
Camera v Electronics

Note: [3, 4, 5] considers more expressive dl-queries,
non-monotone negation and disjunctive LPs
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Semantics

DL atoms and roles are “procedural attachments” (calls to a DL theorem
prover)

I is a model of KB = 〈L, P〉 iff IL |= P
IL is a model of a ground non-DL atom A ∈ BP iff I(A) = 1
IL is a model of a ground DL atom DL[C](a) iff L |= a:C
IL is a model of a ground DL role DL[R](a, b) iff L |= (a, b):R

Minimal model exists and fixed-point characterization:

TP(I)(A) = IL(ϕ), for all A← ϕ ∈ P∗

Example: buy(x) ← DL[Camera](x)
buy(x) ← DL[DVDPlayer ](x)

a:Camera b:Camera t DVDPlayer

KB |= buy(a) KB 6|= buy(b)
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Tightly Coupled DL-Programs [7]

A dl-atom may appear anywhere in the rule (rule head and/or rule body)
I |= P is defined as usual.
I |= L iff L∪{a | I(a) = 1}∪ {¬a | I(a) = 0} is satisfiable.
I |= KB iff I |= L and I |= P.
Many minimal models may exists.
KB |=cautious a iff for all minimal models I of KB, I |= a
KB |=brave a iff for some minimal models I of KB, I |= a
Clearly, |=cautious ⊆ |=brave

Example: buy(x) ← DL[Camera](x)
buy(x) ← DL[DVDPlayer ](x)

a:Camera b:Camera t DVDPlayer

KB |=cautious buy(a) KB |=cautious buy(b)

Note: [7] considers non-monotone negation and disjunctive LPs
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Probabilistic Logic

Integration of (propositional) logic- and probability-based
representation and reasoning formalisms.

Reasoning from logical constraints and interval restrictions for
conditional probabilities (also called conditional constraints).

Reasoning from convex sets of probability distributions.

Model-theoretic notion of logical entailment.
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Syntax of Probabilistic Knowledge Bases

Finite nonempty set of basic events Φ = {p1, . . . ,pn}.

Event φ: Boolean combination of basic events

Logical constraint ψ⇐φ: events ψ and φ: “φ implies ψ”.

Conditional constraint (ψ|φ)[l ,u]: events ψ and φ, and
l ,u ∈ [0,1]: “conditional probability of ψ given φ is in [l ,u]”.

Probabilistic knowledge base KB =(L,P):

finite set of logical constraints L,
finite set of conditional constraints P.
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Example

Probabilistic knowledge base KB = (L,P):

L = {bird⇐eagle}:

“All eagles are birds”.

P = {(have_legs |bird)[1,1], (fly |bird)[0.95,1]}:

“All birds have legs”.
“Birds fly with a probability of at least 0.95”.
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Semantics of Probabilistic Knowledge Bases

World I: truth assignment to all basic events in Φ.

IΦ: all worlds for Φ.

Probabilistic interpretation Pr : probability function on IΦ.

Pr(φ): sum of all Pr(I) such that I ∈ IΦ and I |=φ.

Pr(ψ|φ): if Pr(φ)>0, then Pr(ψ|φ) = Pr(ψ ∧ φ) /Pr(φ).

Truth under Pr :
Pr |= ψ⇐φ iff Pr(ψ ∧φ) = Pr(φ)

(iff Pr(ψ⇐φ) = 1).
Pr |= (ψ|φ)[l ,u] iff Pr(ψ ∧ φ)∈ [l ,u] ·Pr(φ)

(iff either Pr(φ) = 0 or Pr(ψ|φ)∈ [l ,u]).

Uncertainty and Vagueness in the Semantic Web Tutorial at ESWC-2007 T. Lukasiewicz and U. Straccia



Uncertainty, Vagueness, and the Semantic Web
Basics on Semantic Web Languages

Uncertainty in Semantic Web Languages
Vagueness in Semantic Web Languages

Combining Uncertainty and Vagueness in SW Languages

Uncertainty
Uncertainty and RDF/DLs/OWL
Uncertainty and LPs/DLPs

Example

Set of basic propositions Φ = {bird, fly}.
IΦ contains exactly the worlds I1, I2, I3, and I4 over Φ:

fly ¬fly
bird I1 I2
¬bird I3 I4

Some probabilistic interpretations:
Pr1 fly ¬fly
bird 19/40 1/40
¬bird 10/40 10/40

Pr2 fly ¬fly
bird 0 1/3
¬bird 1/3 1/3

Pr1(fly ∧ bird) = 19/40 and Pr1(bird) = 20/40 .
Pr2(fly ∧ bird) = 0 and Pr2(bird) = 1/3 .
¬fly⇐bird is false in Pr1, but true in Pr2 .
(fly |bird)[.95,1] is true in Pr1, but false in Pr2 .
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Satisfiability and Logical Entailment

Pr is a model of KB = (L,P) iff Pr |= F for all F ∈L ∪ P.

KB is satisfiable iff a model of KB exists.

KB ||=(ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a logical consequence of KB
iff every model of KB is also a model of (ψ|φ)[l ,u].

KB ||=tight (ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a tight logical
consequence of KB iff l (resp., u) is the infimum
(resp., supremum) of Pr(ψ|φ) subject to
all models Pr of KB with Pr(φ)>0.
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Example

Probabilistic knowledge base:

KB = ({bird⇐eagle} ,
{(have_legs |bird)[1,1], (fly |bird)[0.95,1]}) .

KB is satisfiable, since

Pr with Pr(bird ∧ eagle ∧ have_legs ∧ fly) = 1 is a model.

Some conclusions under logical entailment:

KB ||=(have_legs |bird)[0.3,1], KB ||=(fly |bird)[0.6,1].

Tight conclusions under logical entailment:

KB ||=tight (have_legs |bird)[1,1], KB ||=tight (fly |bird)[0.95,1],

KB ||=tight (have_legs |eagle)[1,1], KB ||=tight (fly |eagle)[0,1].
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Deciding Model Existence / Satisfiability

Theorem: The probabilistic knowledge base KB =(L,P)
has a model Pr with Pr(α)>0 iff the following system of
linear constraints over the variables yr (r ∈R), where
R = {I ∈IΦ | I |= L}, is solvable:∑

r∈R, r |=¬ψ∧φ
−l yr +

∑
r∈R, r |=ψ∧φ

(1− l) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P)

∑
r∈R, r |=¬ψ∧φ

u yr +
∑

r∈R, r |=ψ∧φ
(u − 1) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P)∑

r∈R, r |=α
yr = 1

yr ≥ 0 (for all r ∈R)
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Computing Tight Logical Consequences

Theorem: Suppose KB =(L,P) has a model Pr such that
Pr(α)>0. Then, l (resp., u) such that KB ||=tight (β|α)[l ,u]
is given by the optimal value of the following linear program
over the variables yr (r ∈R), where R = {I ∈IΦ | I |= L}:

minimize (resp., maximize)
∑

r∈R, r |= β∧α
yr subject to∑

r∈R, r |=¬ψ∧φ
−l yr +

∑
r∈R, r |=ψ∧φ

(1− l) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P)

∑
r∈R, r |=¬ψ∧φ

u yr +
∑

r∈R, r |=ψ∧φ
(u − 1) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P)∑

r∈R, r |=α
yr = 1

yr ≥ 0 (for all r ∈R)
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constraints over basic events. JAIR, 10:199–241, 1999.
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Towards Stronger Notions of Entailment

Problem: Inferential weakness of logical entailment.

Solutions:
Probability selection techniques: Perform inference from a
representative distribution of the encoded convex set of
distributions rather than the whole set, e.g.,

distribution of maximum entropy,
distribution in the center of mass.

Probabilistic default reasoning: Perform constraining rather
than conditioning and apply techniques from default
reasoning to resolve local inconsistencies.

Probabilistic independencies: Further constrain the convex
set of distributions by probabilistic independencies.
(⇒ adds nonlinear equations to linear constraints)
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Entailment under Maximum Entropy

Entropy of a probabilistic interpretation Pr , denoted H(Pr):

H(Pr) = −
∑

I∈IΦ

Pr(I) · log Pr(I) .

The ME model of a satisfiable probabilistic knowledge base KB
is the unique probabilistic interpretation Pr that is a model of KB
and that has the greatest entropy among all the models of KB.

KB ||=me (ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a ME consequence of KB iff the
ME model of KB is also a model of (ψ|φ)[l ,u].

KB ||=me
tight (ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a tight ME consequence of KB

iff for the ME model Pr of KB, it holds either (a) Pr(φ) = 0, l = 1,
and u = 0, or (b) Pr(φ) > 0 and Pr(ψ|φ) = l = u.
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Logical vs. Maximum Entropy Entailment

Probabilistic knowledge base:
KB = ({bird⇐eagle} ,

{(have_legs |bird)[1,1], (fly |bird)[0.95,1]}) .

Tight conclusions under logical entailment:
KB ||=tight (have_legs |bird)[1,1], KB ||=tight (fly |bird)[0.95,1],

KB ||=tight (have_legs |eagle)[1,1], KB ||=tight (fly |eagle)[0,1].

Tight conclusions under maximum entropy entailment:
KB ‖∼me

tight (have_legs |bird)[1,1], KB ‖∼me
tight (fly |bird)[0.95,0.95],

KB ‖∼me
tight (have_legs |eagle)[1,1], KB ‖∼me

tight (fly |eagle)[0.95,0.95].
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Lexicographic Entailment

Pr verifies (ψ|φ)[l ,u] iff Pr(φ) = 1 and Pr |=(ψ|φ)[l ,u].

P tolerates (ψ|φ)[l ,u] under L iff L ∪ P has a model
that verifies (ψ|φ)[l ,u].

KB =(L,P) is consistent iff there exists an ordered
partition (P0, . . . ,Pk ) of P such that each Pi is the
set of all C ∈ P \

⋃i−1
j=0 Pj tolerated under L by P \

⋃i−1
j=0 Pj .

This (unique) partition is called the z-partition of KB.
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Let KB =(L,P) be consistent, and (P0, . . . ,Pk ) be its z-partition.

Pr is lex-preferable to Pr ′ iff some i ∈{0, . . . , k} exists such that

|{C∈Pi |Pr |= C}|> |{C∈Pi |Pr ′ |= C}| and
|{C∈Pj |Pr |= C}|= |{C∈Pj |Pr ′ |= C}| for all i<j≤k .

A model Pr of F is a lex-minimal model of F iff
no model of F is lex-preferable to Pr .

KB ‖∼ lex(ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a lex-consequence of KB iff
every lex-minimal model Pr of L with Pr(φ)=1 satisfies (ψ|φ)[l ,u].

KB ‖∼ lex
tight(ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a tight lex-consequence of KB

iff l (resp., u) is the infimum (resp., supremum) of Pr(ψ) subject
to all lex-minimal models Pr of L with Pr(φ) = 1.
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Logical vs. Lexicographic Entailment

Probabilistic knowledge base:
KB = ({bird⇐eagle} ,

{(have_legs |bird)[1,1], (fly |bird)[0.95,1]}) .

Tight conclusions under logical entailment:
KB ||=tight (have_legs |bird)[1,1], KB ||=tight (fly |bird)[0.95,1],

KB ||=tight (have_legs |eagle)[1,1], KB ||=tight (fly |eagle)[0,1].

Tight conclusions under probabilistic lexicographic entailment:

KB ‖∼ lex
tight (have_legs |bird)[1,1], KB ‖∼ lex

tight (fly |bird)[0.95,1],

KB ‖∼ lex
tight (have_legs |eagle)[1,1], KB ‖∼ lex

tight (fly |eagle)[0.95,1].
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Probabilistic knowledge base:
KB = ({bird⇐penguin}, {(have_legs |bird)[1,1],

(fly |bird)[1,1], (fly |penguin)[0,0.05]}) .

Tight conclusions under logical entailment:
KB ||=tight (have_legs |bird)[1,1], KB ||=tight (fly |bird)[1,1],

KB ||=tight (have_legs |penguin)[1,0], KB ||=tight (fly |penguin)[1,0] .

Tight conclusions under probabilistic lexicographic entailment:

KB ‖∼ lex
tight (have_legs |bird)[1,1], KB ‖∼ lex

tight (fly |bird)[1,1],

KB ‖∼ lex
tight (have_legs |penguin)[1,1], KB ‖∼ lex

tight (fly |penguin)[0,0.05].
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Probabilistic knowledge base:
KB = ({bird⇐penguin}, {(have_legs |bird)[0.99,1],

(fly |bird)[0.95,1], (fly |penguin)[0,0.05]}).

Tight conclusions under logical entailment:
KB ||=tight (have_legs |bird)[0.99,1], KB ||=tight (fly |bird)[0.95,1],

KB ||=tight (have_legs |penguin)[0,1], KB ||=tight (fly |penguin)[0,0.05].

Tight conclusions under probabilistic lexicographic entailment:

KB ‖∼ lex
tight (have_legs |bird)[0.99,1], KB ‖∼ lex

tight (fly |bird)[0.95,1],

KB ‖∼ lex
tight (have_legs |penguin)[0.99,1], KB ‖∼ lex

tight (fly |penguin)[0,0.05].
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Bayesian Networks

Well-structured, exact conditional constraints plus conditional
independencies specify exactly one joint probability distribution.

Joint probability distributions can answer any queries, but can be
very large and are often hard to specify.

Bayesian network (BN): compact specification of a joint distribution,
based on a graphical notation for conditional independencies:

a set of nodes; each node represents a random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:
P(Xi |Parents(Xi))

Any joint distribution can be represented as a BN.
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it’s set off by minor
earthquakes. Is there a burglar?

Variables: Burglary , Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

a burglar can set the alarm off
an earthquake can set the alarm off
the alarm can cause Mary to call
the alarm can cause John to call

John sometimes confuses the telephone ringing with the alarm.
Mary likes rather loud music and sometimes misses the alarm.
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Global Semantics

“Global” semantics defines the full joint distribution as the product of
the local conditional distributions:

P(X1, . . . ,Xn) =Π
n

i = 1P(Xi |Parents(Xi))

e.g.,

J

A

E

M

B

P(j ∧m ∧ a ∧ ¬b ∧ ¬e) = P(j |a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)
= 0.90× 0.70× 0.001× 0.999× 0.998
= 0.00062
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Inference Tasks

Simple queries: compute posterior marginal P(Xi |E = e), e.g.,
P(Burglary |Alarm = true, John = true, Mary = false).

Conjunctive queries:
P(Xi ,Xj |E = e) = P(Xi |E = e)P(Xj |Xi ,E = e).

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action,evidence).

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?
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Probabilistic Causal Models
Causal influences between the random variables expressed by
functions rather than conditional probabilities.

Probability distribution over the set of all contexts (= all variable
instantiations of the exogenous variables).

Sophisticated notions of causes and explanations.

Causal model M = (U,V ,F ):

U is a finite set of exogenous variables,
V is a finite set of endogenous variables with U ∩ V = ∅,
F = {FX |X ∈V} is a set of functions, where each FX assigns a
value to X for each value of its parents PAX ⊆ U ∪ V \ {X}.

M is recursive: total ordering ≺ on V such that Y ∈PAX implies Y ≺X .

A probabilistic causal model (M,P) consists of a causal model
M =(U,V ,F ) and a probability function P on the values of U.
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Example
Two arsonists lit matches (Ai = 1), i ∈{1,2}, in different parts of a dry
forest, and both cause trees to start burning. Either match by itself
suffices to burn down the whole forest (B = 1):

A1U1

U2 A2

B

Probabilistic causal model ((U,V ,F ),P):

U: binary background variables U1 and U2.
V : binary observable variables A1, A2, and B.
F : functions to express causal dependencies between variables:
FA1 = U1, FA2 = U2, and FB = 1 iff A1 = 1 or A2 = 1.
P: probability distribution over the values of U:
P : (0,0), (0,1), (1,0), (1,1) 7→ 0.3, 0.3, 0.2, 0.2 .
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Probabilities about Generic and Concrete Objects

Combining generic and concrete probability distributions:

Conditioning: Generic distributions are conditioned on the
(classical) information about concrete distributions.

Probabilistic default reasoning: Generic distributions are
constrained by the (not necessarily classical) information
about the concrete distributions, and techniques from
default reasoning resolve local inconsistencies.

Minimum cross entropy: Generic and concrete distributions
are combined via cross entropy minimization.
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Probabilistic Ontologies
Main types of encoded probabilistic knowledge:

Terminological probabilistic knowledge about concepts
and roles: “Birds fly with a probability of at least 0.95”.

Assertional probabilistic knowledge about instances of concepts
and roles: “Tweety is a bird with a probability
of at least 0.9”.

Main types of reasoning problems:

Satisfiability of the terminological probabilistic knowledge.

Tight conclusions about generic objects (from the terminological
probabilistic knowledge).

Satisfiability of the assertional probabilistic knowledge.

Tight conclusions about concrete objects (from both the
terminological and the assertional probabilistic knowledge).
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Use of Probabilistic Ontologies

Representation of terminological and assertional
probabilistic knowledge (e.g., in the medical domain
or at the stock exchange market).

Information retrieval, for an increased recall (e.g., Udrea
et al.: Probabilistic ontologies and relational databases.
In Proc. CoopIS/DOA/ODBASE-2005).

Ontology matching (e.g., Mitra et al.: OMEN: A proba-
bilistic ontology mapping tool. In Proc. ISWC-2005).

Probabilistic data integration, especially for handling
ambiguous and controversial pieces of information.
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Probabilistic RDF

O. Udrea, V. S. Subrahmanian, and Z. Majkic. Probabilistic RDF.
In Proceedings IRI-2006.

probabilistic generalization of RDF
terminological probabilistic knowledge about classes
assertional probabilistic knowledge about properties of
individuals
assertional probabilistic inference for acyclic probabilistic RDF
theories, which is based on logical entailment in probabilistic
logic, coupled with a local probabilistic semantics
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Probabilistic DLs
R. Giugno, T. Lukasiewicz. P-SHOQ(D): A probabilistic extension of
SHOQ(D) for probabilistic ontologies in the SW. In Proc. JELIA-2002.

probabilistic generalization of the description logic SHOQ(D)
(recently also extended to SHIF(D) and SHOIN (D))
terminological probabilistic knowledge about concepts and roles
assertional probabilistic knowledge about instances of concepts
and roles
terminological probabilistic inference based on lexicographic
entailment in probabilistic logic (stronger than logical entailment)
assertional probabilistic inference based on lexicographic
entailment in probabilistic logic (for combining assertional
and terminological probabilistic knowledge)
terminological and assertional probabilistic inference problems
reduced to sequences of linear optimization problems
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M. Jaeger. Probabilistic reasoning in terminological logics.
In Proceedings KR-1994.

probabilistic generalization of the description logic ALC
terminological probabilistic knowledge about concepts and roles
assertional probabilistic knowledge about concept instances, but
no assertional probabilistic knowledge about role instances
terminological probabilistic inference based on logical entailment
in probabilistic logic (by solving linear optimization problems)
assertional probabilistic inference based on cross entropy mini-
mization relative to terminological probabilistic knowledge (by an
approximation algorithm; no exact algorithm known so far)
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D. Koller, A. Levy, and A. Pfeffer. P-CLASSIC: A tractable probabilistic
description logic. In Proceedings AAAI-1997.

probabilistic generalization (of a variant) of the description
logic CLASSIC

so-called p-classes express terminological probabilistic
knowledge about concepts, roles, and attributes
but assertional classical and probabilistic knowledge about
instances of concepts and roles is not supported
probabilistic semantics based on Bayesian networks
determines exact probabilities for conditionals between
concept expressions in canonical form
probabilistic inference can be done in polynomial time,
when the underlying Bayesian network is a polytree
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Possibilistic DLs
Generalization of DLs by possibilistic uncertainty, which is based on
possibilistic interpretations rather than probabilistic interpretations.
Possibilistic interpretation: mapping π : IΦ → [0,1].
“π(I) is the degree to which the world I is possible.”

Poss(φ): possibility of φ in π: Poss(φ) = max {π(I) | I ∈IΦ, I |=φ}

B. Hollunder. An alternative proof method for possibilistic logic
and its application to terminological logics. Int. J. Approx.
Reasoning, 12(2):85–109, 1995.
D. Dubois, J. Mengin, and H. Prade. Possibilistic uncertainty and
fuzzy features in description logic: A preliminary discussion. In
E. Sanchez, editor, Capturing Intelligence: Fuzzy Logic and the
Semantic Web, 2006.
C.-J. Liau and Y. Y. Yao. Information retrieval by possibilistic
reasoning. In Proc. DEXA-2001.
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Probabilistic OWL

P. C. G. da Costa. Bayesian Semantics for the Semantic Web.
PhD thesis, George Mason University, Fairfax, VA, USA, 2005.

P. C. G. da Costa and K. B. Laskey. PR-OWL: A framework for
probabilistic ontologies. In Proceedings FOIS-2006.

probabilistic extension of OWL
probabilistic semantics based on multi-entity Bayesian networks
(MEBNs), which are a Bayesian logic that combines first-order
logic with Bayesian probabilities:

represents knowledge as parameterized fragments of
Bayesian networks
expresses repeated structure
represents probability distribution on interpretations of
associated first-order theory
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Other Works

Z. Ding and Y. Peng. A probabilistic extension to ontology
language OWL. In Proceedings HICSS-2004.

Y. Yang and J. Calmet. OntoBayes: An ontology-driven
uncertainty model. In Proceedings IAWTIC-2005.

Z. Ding, Y. Peng, and R. Pan. BayesOWL: Uncertainty modeling
in Semantic Web ontologies. In Z. Ma, editor, Soft Computing in
Ontologies and Semantic Web. Springer, 2006.

H. Nottelmann and N. Fuhr. Adding probabilities and rules
to OWL Lite subsets based on probabilistic Datalog.
IJUFKS, 14(1):17–42, 2006.
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Probabilistic Logic Programs

Probabilistic generalizations of logic programs / rule-based systems /
deductive databases / Datalog:

(1) Probabilistic generalizations of (annotated) logic programs based
on probabilistic logic (no uncertainty degrees associated with rules):

R. T. Ng and V. S. Subrahmanian. Probabilistic logic
programming. Inf. Comput., 101(2):150–201, 1992.
R. T. Ng and V. S. Subrahmanian. A semantical framework for
supporting subjective and conditional probabilities in deductive
databases. J. Autom. Reasoning, 10(2):191–235, 1993.
A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic
programs. J. Log. Program. 43(3):187–250, 2000.
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(2) Probabilistic generalizations of logic programs based on Bayesian
networks / causal models:

D. Poole. Probabilistic Horn abduction and Bayesian networks.
Artif. Intell., 64:81–129, 1993.

D. Poole. The independent choice logic for modeling multiple
agents under uncertainty. Artif. Intell., 94:7–56, 1997.

K. Kersting and L. De Raedt. Bayesian logic programs. CoRR,
cs.AI/0111058, 2001.

C. Baral, M. Gelfond, and J. N. Rushton. Probabilistic reasoning
with answer sets. In Proceedings LPNMR-2004.
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(3) Relational Bayesian networks:

M. Jaeger. Relational Bayesian networks. In Proc. UAI-1997.

D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In
Proceedings UAI-1997.

H. Pasula and S. J. Russell. Approximate inference for first-order
probabilistic languages. In Proceedings IJCAI-2001.

D. Poole. First-order probabilistic inference. In Proc. IJCAI-2003.
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(4) First-order generalization of probabilistic knowledge bases in
probabilistic logic (based on logical entailment, lexicographic
entailment, and maximum entropy entailment):

T. Lukasiewicz. Probabilistic logic programming.
In Proceedings ECAI-1998.
T. Lukasiewicz. Probabilistic logic programming with
conditional constraints. ACM TOCL 2(3):289–339, 2001.
T. Lukasiewicz. Probabilistic logic programming under
inheritance with overriding. In Proceedings UAI-2001.
G. Kern-Isberner and T. Lukasiewicz. Combining probabilistic
logic programming with the power of maximum entropy. Artif.
Intell., 157(1–2):139–202, 2004.
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Poole’s Independent Choice Logic (ICL)

Acyclic logic programs P under different “choices”.

Each choice along with P produces a first-order model.

By placing a probability distribution over the different choices,
one then obtains a distribution over the set of first-order models.

ICL generalizes Pearl’s structural causal models.

ICL also generalizes Bayesian networks, influence diagrams,
Markov decision processes, and normal form games.
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Example

Sequence of three not-gates:

in(i1) out(i3)
1 1 1

i2i1 i3

val(out(G),on,T )← ok(G) ∧ val(in(G),off ,T ).
val(out(G),off ,T )← ok(G) ∧ val(in(G),on,T ).
val(out(G),V ,T )← shorted(G) ∧ val(in(G),V ,T ).
val(out(G),off ,T )← blown(G).
val(in(G),V ,T )← conn(G1,G) ∧ val(out(G1),V ,T ).
conn(i1, i2)← .
conn(i2, i3)← .

disjoint([ok(G):0.95, shorted(G):0.03, blown(G):0.02]).

disjoint([val(in(i1),on,T ):0.5, val(in(i1),off ,T ):0.5]).
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Possible queries: Which is the probability that gate i2 is ok given that
both the input of i1 and the output of i3 are off at the time point t1?

P(ok(i2)|val(in(i1),off , t1) ∧ val(out(i3),off , t1)) = 0.76 .

Which is the probability that the output of i3 is off given that the input
of i1 is on at the time point t1?

P(val(out(i3),off , t1)|val(in(i1),on, t1)) = 0.899 .

Intuitively: Every closed formula is associated with a set of minimal
explanations. Every explanation is a set of hypotheses. The pro-
bability of an explanation is the product of the probabilities of the
hypotheses. The probability of a closed formula is the sum of the
probabilities of all associated minimal explanations.
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The formula F = val(in(i1),off , t1) ∧ val(out(i3),off , t1) is associated
with the following minimal explanations along with their probabilities:

E1 = {val(in(i1),off , t1),ok(i3),ok(i2), shorted(i1)}
P(E1) = 0.5× 0.95× 0.95× 0.03 = 0.01354

E2 = {val(in(i1),off , t1),ok(i3), shorted(i2),ok(i1)}
P(E2) = 0.5× 0.95× 0.03× 0.95 = 0.01354

...

The sum of the probabilities of all minimal explanations associated
with F is 0.05996. Hence, the formula F has the probability 0.05996.
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Probabilistic Description Logic Programs

T. Lukasiewicz. Probabilistic description logic programs. IJAR, 2007.

Probabilistic dl-programs generalize (loosely coupled)
dl-programs by probabilistic uncertainty as in Poole’s ICL.
They properly generalize Poole’s ICL.
They consist of a dl-program along with a probability
distribution µ over total choices B.
They specify a set of distributions over first-order models: Every
total choice B along with the dl-program specifies a set of first-
order models of which the probabilities should sum up to µ(B).
There are also tightly coupled probabilistic dl-programs.
Important applications are data integration and ontology
mapping under probabilistic uncertainty and inconsistency.
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Example
Description logic knowledge base L
of a probabilistic dl-program KB =(L,P,C, µ):

PC t Camera v Electronics; PC u Camera v ⊥;
Book t Electronics v Product ; Book u Electronics v ⊥;
Textbook v Book ;

Product v ≥1 related ;
≥1 related t ≥1 related− v Product ;

Textbook(tb_ai); Textbook(tb_lp);
PC(pc_ibm); PC(pc_hp);

related(tb_ai , tb_lp); related(pc_ibm,pc_hp);
provides(ibm,pc_ibm); provides(hp,pc_hp).
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Classical dl-rules in P
of a probabilistic dl-program KB =(L,P,C, µ):

pc(pc_1); pc(pc_2); pc(pc_3);

brand_new(pc_1); brand_new(pc_2);

vendor(dell ,pc_1); vendor(dell ,pc_2); vendor(dell ,pc_3);

provider(P)← vendor(P,X ),DL[PC ]pc; Product ](X );

provider(P)← DL[provides](P,X ),DL[PC ]pc; Product ](X );

similar(X ,Y )← DL[related ](X ,Y );

similar(X ,Z )← similar(X ,Y ), similar(Y ,Z ).
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Probabilistic dl-rules in P along with the probability µ on the choice
space C of a probabilistic dl-program KB =(L,P,C, µ):

avoid(X )← DL[Camera](X ), not offer(X ), avoid_pos;

offer(X )← DL[PC ] pc; Electronics](X ), not brand_new(X ), offer_pos;

buy(C, X )← needs(C, X ), view(X ), not avoid(X ), v_buy_pos;

buy(C, X )← needs(C, X ), buy(C, Y ), also_buy(Y , X ), a_buy_pos.

µ : avoid_pos, avoid_neg 7→ 0.9 , 0.1; offer_pos, offer_neg 7→ 0.9 , 0.1;
v_buy_pos, v_buy_neg 7→ 0.7 , 0.3; a_buy_pos, a_buy_neg 7→ 0.7 , 0.3.

{avoid_pos, offer_pos, v_buy_pos, a_buy_pos} : 0.9× 0.9× 0.7× 0.7, . . .

Probabilistic query: ∃ (buy(c, x) | needs(c, x)∧buy(c, y)∧
also_buy(y , x)∧view(x)∧¬avoid(x))[L, U]
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Example: Probabilistic Data Integration
Obtain a weather forecast by integrating the potentially different
weather forecasts of three weather forecast institutes A, B, and C.

Our trust in the institutes A, B, and C is expressed by the trust
probabilities 0.6, 0.3, and 0.1, respectively.

Probabilistic integration of the source schemas of A, B, and C to the
global schema G is specified by the following KBM =(∅,PM ,CM , µM):

PM = {forecast_rome(D,W ,T ,M)← forecast(rome,D,W ,T ,M), instA;
forecast_rome(D,W ,T ,M)← forecastRome(D,W ,T ,M), instB;
forecast_rome(D,W ,T ,M)← forecast_weather(rome,D,W ),

forecast_temperature(rome,D,T ),
forecast_wind(rome,D,M), instC} ;

CM = {{instA, instB, instC}} ;

µM : instA, instB, instC 7→ 0.6, 0.3, 0.1 .
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Example (Tightly Coupled): Ontology Mapping

The global schema contains the concept logic_programming, while
the source schemas contain only the concepts rule-based_systems
resp. deductive_databases in their ontologies.

A randomly chosen book from the area rule-based_systems (resp.,
deductive_databases) may belong to logic_programming with the
probability 0.7 (resp., 0.8).

Probabilistic mapping from the two source schemas to the global
schema expressed by the following KBM =(∅,PM ,CM , µM):

PM = {logic_programming(X )← rule-based_systems(X ), choice1 ;
logic_programming(X )← deductive_databases(X ), choice2} ;

CM = {{choice1,not_choice1}, {choice2,not_choice2}} ;

µM : choice1,not_choice1, choice2,not_choice2 7→ 0.7, 0.3, 0.8, 0.2 .
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Outline
1 Uncertainty, Vagueness, and the Semantic Web

Sources of Uncertainty and Vagueness on the Web
Uncertainty vs. Vagueness: a clarification

2 Basics on Semantic Web Languages
Web Ontology Languages
RDF/RDFS
Description Logics
Logic Programs
Description Logic Programs

3 Uncertainty in Semantic Web Languages
Uncertainty
Uncertainty and RDF/DLs/OWL
Uncertainty and LPs/DLPs

4 Vagueness in Semantic Web Languages
Vagueness basics
Vagueness and RDF/DLs
Vagueness and LPs/DLPs

5 Combining Uncertainty and Vagueness in SW Languages
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Vagueness
Vagueness: statements involve concepts for which there is no exact definition,
such as tall, close, cheap, IsAbout, simialarTo . . .
Statements are true to some degree which is taken from a truth space

E.g., “Hotel Verdi is close to the train station to degree 0.83”
“Find top-k cheapest hotels close to the train station”

q(h)← hasLocation(h, hl)∧hasLocation(train, cl)∧close(hl, cl)∧cheap(h)

Truth space: usually [0, 1]
Interpretation: a function I mapping atoms into [0, 1], i.e. I(A) ∈ [0, 1]
Problem: what is the interpretation of e.g. close(verdi, train) ∧ cheap(200)?

E.g., if I(close(verdi, train)) = 0.83 and I(cheap(200)) = 0.2, what is the
result of 0.83 ∧ 0.2?
E.g., In multimedia retrieval: if a image region is white to degree 0.8 and
the object is about a dog to degree 0.4, to which degree is the image
about a “white dog”? That is, what is 0.8 ∧ 0.4?

More generally, what is the result of n ∧m, for n,m ∈ [0, 1]?
The choice cannot be any arbitrary computable function, but has to reflect some
basic properties that one expects to hold for a “conjunction”
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Propositional Fuzzy Logics Basics [5]

Formulae: propositional formulae

Truth space is [0, 1]

Formulae have a a degree of truth in [0, 1]

Interpretation: is a mapping I : Atoms → [0, 1]

Interpretations are extended to formulae using norms to interpret connectives
∧,∨,¬,→

negation
n(0) = 1

a ≤ b implies n(b) ≤ n(a)

t-norm (conjunction)
t(a, 1) = a

b ≤ c implies t(a, b) ≤ t(a, c)
t(a, b) = t(b, a)

t(a, t(b, c)) = t(t(a, b), c)

s-norm (disjunction)
s(a, 0) = a

b ≤ c implies s(a, b) ≤ s(a, c)
s(a, b) = s(b, a)

s(a, s(b, c)) = s(s(a, b), c)

i-norm (implication)
a ≤ b implies i(a, c) ≥ i(b, c)
b ≤ c implies i(a, b) ≤ i(a, c)

i(0, b) = 1
i(a, 1) = 1

Usually,
i(a, b) = sup{c : t(a, c) ≤ b}

i(a, b) = sup{c : t(a, c) ≤ b} is called r-implication and depends on the t-norm only
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Typical norms
Lukasiewicz Logic Gödel Logic Product Logic Zadeh

¬x 1− x if x = 0 then 1
else 0

if x = 0 then 1
else 0 1− x

x ∧ y max(x + y − 1, 0) min(x, y) x · y min(x, y)
x ∨ y min(x + y, 1) max(x, y) x + y − x · y max(x, y)

x ⇒ y if x ≤ y then 1
else 1− x + y

if x ≤ y then 1
else y

if x ≤ y then 1
else y/x max(1− x, y)

Note: for Lukasiewicz Logic and Zadeh, x ⇒ y ≡ ¬x ∨ y

I(φ ∧ ψ) = I(φ) ∧ I(ψ)

I(φ ∨ ψ) = I(φ) ∨ I(ψ)

I(φ→ ψ) = I(φ)→ I(ψ)

I |= φ iff I(φ) = 1 iff φ satisfiable

I |= T iff I |= φ for all φ ∈ T
|= φ iff for all I .I |= φ

T |= φ iff for all I. if I |= T then I |= φ
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Note:

¬φ is φ→ 0
φ∧̄ψ defined as φ ∧ (φ→ ψ)

φ∨̄ψ defined as ((φ→ ψ)→ ψ)∧̄((ψ → φ)→ φ)

I(φ∧̄ψ) = min(I(φ), I(ψ))

I(φ∨̄ψ) = max(I(φ), I(ψ))

Zadeh semantics: not interesting for fuzzy logicians: its a
sub-logic of Łukasiewicz and, thus, rarely considered by fuzzy
logicians

¬Zφ = ¬Łφ
φ ∧Z ψ = φ ∧Ł (φ→Ł ψ)

φ→Z ψ = ¬Łφ ∨Ł ψ
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Some additional properties of t-norms, s-norms, implication
functions, and negation functions of various fuzzy logics.

Łukasiewicz logic Gödel logic Product logic Zadeh logic

x ∧ ¬x = 0 ∃x. x ∧ ¬x 6= 0 ∃x. x ∧ ¬x 6= 0 ∃x. x ∧ ¬x 6= 0
x ∨ ¬x = 1 ∃x. x ∨ ¬x 6= 1 ∃x. x ∨ ¬x 6= 1 ∃x. x ∨ ¬x 6= 1
∃x. x ∧ x 6= x x ∧ x = x ∃x. x ∧ x 6= x x ∧ x = x
∃x. x ∨ x 6= x x ∨ x = x ∃x. x ∨ x 6= x x ∨ x = x
¬¬x = x ∃x. ¬¬x 6= x ∃x. ¬¬x 6= x ¬¬x = x

x → y = ¬x ∨ y ∃x. x → y 6= ¬x ∨ y ∃x. x → y 6= ¬x ∨ y x → y = ¬x ∨ y
¬(x → y) = x ∧ ¬y ∃x. ¬(x→y) 6= x∧¬y ∃x. ¬(x→y) 6= x∧¬y ¬(x→y) = x∧¬y
¬(x ∧ y) = ¬x ∨ ¬y ¬(x ∧ y) = ¬x ∨ ¬y ¬(x ∧ y) = ¬x ∨ ¬y ¬(x∧y) = ¬x∨¬y
¬(x ∨ y) = ¬x ∧ ¬y ¬(x ∨ y) = ¬x ∧ ¬y ¬(x ∨ y) = ¬x ∧ ¬y ¬(x∨y) = ¬x∧¬y
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Axioms of logic BL (Basic Fuzzy Logic)
Fix arbitray t-norm and r-implication.

(A1) (φ→ ψ)→ ((ψ → χ)→ φ→ χ)
(A2) (φ ∧ ψ)→ φ
(A3) (φ ∧ ψ)→ (ψ ∧ φ)
(A4) (φ ∧ (φ→ ψ))→ (ψ ∧ (ψ → φ))

(A5a) (φ ∧ (ψ → χ))→ ((φ ∧ ψ)→ χ))
(A5b) ((φ ∧ ψ)→ χ))→ (φ ∧ (ψ → χ))

(A6) (φ ∧ (ψ → χ))→ (((ψ → φ)→ χ))→ χ)
(A7) 0→ φ

(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ

Proposition

T `BL φ iff T |=BL φ. Also, if T `BL φ then T |=BL2 φ, but not vice-versa
(e.g. |=BL2 φ ∨ ¬φ, but 6|=BL φ ∨ ¬φ).

|=BL φ ∧ ¬φ→ 0
|=BL φ→ ¬¬φ, but 6|=BL ¬¬φ→ φ, e.g. φ = p ∨ ¬p, t-norm is Gödel
|=BL (φ→ ψ)→ (¬ψ → ¬φ), but not vice-versa
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Axioms of Łukasiewicz logic Ł

Fix Łukasiewicz t-norm and r-implication.
(Axioms) Axioms of BL

(Ł) ¬¬φ→ φ

(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ

Proposition

T `Ł φ iff T |=Ł φ.

|=Ł φ→ ψ ≡ ¬ψ → ¬φ
|=Ł ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ
|=Ł φ→ ψ ≡ ¬(φ ∧ ¬ψ)

|=Ł φ→ ψ ≡ ¬φ ∨ ¬ψ
|=Ł ¬(φ→ ψ) ≡ φ ∧ ¬ψ
Recall that “Zadeh logic” is a sub-logic of Ł
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Axioms of Product logic Π

Fix product t-norm and r-implication.

(Axioms) Axioms of BL
(Π1) ¬¬χ→ ((φ ∧ χ→ ψ ∧ χ)→ (φ→ ψ))

(Π2) (φ∧̄¬φ)→ 0
(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ

Proposition

T `Π φ iff T |=Π φ.

|=Π ¬(φ ∧ ψ)→ ¬(φ∧̄ψ)

|=Π (φ→ ¬φ)→ ¬φ
|=Π ¬φ∨̄¬¬φ
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Axioms of Gödel logic G

Fix Gödel t-norm and r-implication.

(Axioms) Axioms of BL
(G) φ→ (φ ∧ φ)

(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ

Proposition

T `G φ iff T |=G φ.

|=G (φ ∧ ψ) ≡ (φ∧̄ψ)

Gödel logic proves all axioms of intuitionistic logic I,
vice-versa I + (A6) proves all axioms of Gödel logic
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Axioms of Boolean logic

Fix interpretations to be boolean.

(Axioms) Axioms of BL
(BL2) φ∨̄¬φ

(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ

Proposition

T `BL2 φ iff T |=BL2 φ.

|=BL2 φ→ (φ ∧ φ) (BL2 extends G)
Ł + G is equivalent to BL2
Ł + Π is equivalent to BL2
G + Π is equivalent to BL2
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Axioms of Rational Pavelka Logic (RPL)

Fix Łukasiewicz t-norm and r-implication
Rational r ∈ [0, 1] may appear as atom in formula. I(r) = r
Note: I(r → φ) = 1 iff I(φ) ≥ r . Also, I(φ→ r) = 1 iff I(φ) ≤ r

(Axioms) Axioms of Ł
(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ

Proposition

T `RPL φ iff T |=RPL φ.

RPL proves the derived deduction rule (r, s ∈ [0, 1]): from r → φ and s → (φ→ ψ) infer (r ∧ s)→ ψ

From φ ≥ r and (φ→ ψ) ≥ s infer ψ ≥ r ∧ s

Let
||φ||T = inf{I(φ) | I |= T } (truth degree)
|φ|T = sup{r | T ` r → φ} (provability degree)

then ||φ||T = |φ|T
Also,

|¬φ|T = 1− |φ|T |
|φ|T | = sup{r | T ` r → φ} = inf{s | T ` φ→ s}
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Tableau for Rational Pavelka Logic using MILP

Proposition

|φ|T = min x. such that T ∪ {φ→ x} satisfiable.

We use MILP (Mixed Integer Linear Programming) to compute |φ|T

Let r ∈ [0, 1], variable or expresson 1− r ′ (r ′ variable), admitting solution in [0, 1], ¬r = 1− r , ¬¬r = r
r → p 7→ xp ≥ r, xp ∈ [0, 1]
p → r 7→ xp ≤ r, xp ∈ [0, 1]
r → ¬φ 7→ φ→ ¬r
¬φ→ r 7→ ¬r → φ
r → (φ ∧ ψ) 7→ x1 → φ, x2 → ψ, y ≤ 1− r, xi ≤ 1− y, x1 + x2 = r + 1− y,

xi ∈ [0, 1], y ∈ {0, 1}
(φ ∧ ψ)→ r 7→ x1 → ¬φ, x2 → ¬ψ, x1 + x2 = 1− r, xi ∈ [0, 1]
r → (φ→ ψ) 7→ φ→ x1, x2 → ψ, r + x1 − x2 = 1, xi ∈ [0, 1]
(φ→ ψ)→ r 7→ x1 → φ, ψ → x2, y − r ≤ 0, y + x1 ≤ 1, y ≤ x2, y + r + x1 − x2 = 1,

xi ∈ [0, 1], y ∈ {0, 1}

Now we have to solve a MILP problem of the form

min c · x s.t. Ax + By ≥ h

where aij , bij , cl , hk ∈ [0, 1], xi admits solutions in [0, 1], while yj admits solutions in {0, 1}
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Example

Consider T = {0.6→ p, 0.7→ (p → q)}

Let us show that |q|T = 0.6 ∧ 0.7 = max(1, 0.6 + 0.7− 1) = 0.3

Recall that |q|T = min x. such that T ∪ {q → x}

T ∪ {q → x} = {0.6→ p, 0.7→ (p → q), q → x, x ∈ [0, 1]}

7→ {xp ≥ 0.6, xq ≤ x, 0.7→ (p → q), {x, xp} ⊆ [0, 1]}

7→ {xp ≥ 0.6, xq ≤ x, p → x1, x2 → q, 0.7 + x1 − x2 = 1, {x, xp, xi} ⊆ [0, 1]}

7→ {xp ≥ 0.6, xq ≤ x, xp ≤ x1, xq ≥ x2, 0.7 + x1 − x2 = 1, {x, xp, xi} ⊆ [0, 1]} = S

It follows that 0.3 = min x. such that Sat(S)

Note: A similar technique can be used for logic G and Π, but mixed integer non-linear programming is
needed in place of MILP
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Predicate Fuzzy Logics Basics [5]

Formulae: First-Order Logic formulae, terms are either variables or constants

we may introduce functions symbols as well, with crisp semantics (but uninteresting), or we need to

discuss also fuzzy equality (which we leave out here)

Truth space is [0, 1]

Formulae have a a degree of truth in [0, 1]

Interpretation: is a mapping I : Atoms → [0, 1]

Interpretations are extended to formulae as follows:

I(¬φ) = I(φ)→ 0

I(φ ∧ ψ) = I(φ) ∧ I(ψ)

I(φ→ ψ) = I(φ)→ I(ψ)

I(∃xφ) = sup
c∈∆I

Ic
x (φ)

I(∀xφ) = inf
c∈∆I

Ic
x (φ)

where Ic
x is as I, except that variable x is mapped into individual c

Definitions of I |= φ, I |= T , |= φ, T |= φ, ||φ||T and |φ|T are as for the propositional case
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Axioms of logic C∀, where C ∈ {BL,Ł,Π,G}
(Axioms) Axioms of C

(∀1) ∀xφ(x)→ φ(t) (t substitutable for x in φ(x))
(∃1) φ(t)→ ∃xφ(x) (t substitutable for x in φ(x))
(∀2) ∀x(ψ → φ)→ (ψ → ∀xφ) (x not free in ψ)
(∃2) ∀x(φ→ ψ)→ (∃xφ→ ψ) (x not free in ψ)
(∀3) ∀x(φ∨̄ψ)→ (∀xφ)∨̄ψ (x not free in ψ)

(Modus ponens) from φ and φ→ ψ infer ψ
(Generalization) from φ infer ∀xφ

Proposition

T `C φ iff T |=C φ.

if→ is an r-implication then ||ψ||T ≥ ||φ||T ∧ ||φ→ ψ||T
|=BL∀ ∃xφ→ ¬∀x¬φ
|=BL∀ ¬∃xφ ≡ ∀x¬φ
|=Ł∀ ∃xφ ≡ ¬∀x¬φ
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(¬∀xp(x)) ∧ (¬∃x¬p(x)) has no classical model. In Gödel logic it has no finite model, but has an infinite
model: for integer n ≥ 1, let I such that pI (n) = 1/n

(∀xp(x))I = inf
n

1/n = 0

(∃x¬p(x))I = sup
n
¬1/n = sup 0 = 0

Note: If I |= ∃xφ(x) then not necessarily there is c ∈ ∆I such that I |= φ(c).

∆I = {n | integer n ≥ 1}

pI (n) = 1− 1/n < 1, for all n

(∃xp(x))I = sup
n

1− 1/n = 1

Witnessed formula: ∃xφ(x) is witnessed in I iff there is c ∈ ∆I such that (∃xφ(x))I = (φ(c))I

(similarly for ∀xφ(x))

Witnessed interpretation: I witnessed if all quantified formulae are witnessed in I

Proposition

In Ł, φ is satisfiable iff there is a witnessed model of φ.

The proposition does not hold for logic G and Π
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Predicate Rational Pavelka Logic (RPL∀)

Fix Łukasiewicz t-norm and r-implication
Formulae are as for Ł∀, where rationals r ∈ [0,1] may
appear as atoms

(Axioms and rules) As for Ł∀

Proposition

T `RPL∀ φ iff T |=RPL∀ φ.
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Fuzzy RDF (we generalize [15, 16, 34])

Statement (triples) may have attached a degree in [0,1]:
for n ∈ [0,1]

〈(subject ,predicate,object),n〉

Meaning: the degree of truth of the statement is at least n
For instance,

〈(o1, IsAbout , snoopy),0.8〉
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Fuzzy RDF Semantics

In Fuzzy RDF MT, an interpretation I of a vocabulary V consists of:
IR, a non-empty set of resources, called the domain of I.
A non empty set IDP, called the property domain of I
A mapping IP : IDP → [0, 1] (fuzzy the set of properties of I),
IEXT : IP → (2IR×IR → [0, 1]), given a property, given a subject and and object, returns a value
in [0, 1]
IS, a mapping from URI references in V into IR ∪ IDP
IL, a mapping from typed literals in V into IR

A distinguished subset LV of IR, set of literal values, which contains all the plain literals in V

Satisfiability:
I |= 〈(s, p, o), n〉 iff

IP(I(p)) ∧ IEXT (I(p))(I(s), I(o)) ≥ n

For instance, using Gödel t-norm x ∧ y = min(x, y), if

I(o1) = s
I(IsAbout) = p
I(snoopy) = o
IP(p) = 0.9
IEXT (p)(s, o) = 0.85

then
I |= 〈(o1, IsAbout, snoopy), 0.8〉 as

min(IP(p), IEXT (p)(s, o)) = min(0.9, 0.85) = 0.85 ≥ 0.8
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Fuzzy RDFS Interpretations

In fuzzy RDFS, class extensions are fuzzy sets of domainÕs elements.

Class interpretation ICEXT is induced by IEXT (I(type))

ICEXT (y)(x) = IEXT (I(type))(x, y)

If x is of type y then the degree of being x and instance of y is given by ICEXT (y)(x)

Fuzzy RDFS adds extra constraints on interpretations, such as
1 ICEXT (y)(u) = IEXT (I(domain))(x, y) ∧ ∃v.IEXT (x)(u, v))
2 ICEXT (y)(v) = IEXT (I(range))(x, y) ∧ ∃u.IEXT (x)(u, v))

3 IEXT (I(subPropertyOf )) is transitive and reflexive on IP
a binary relation R is reflexive iff R(x, y) = R(y, x)

a binary relation R is transitive iff R(x, y) ≥ supz R(x, z) ∧ R(z, y)

4 IEXT (subPropertyOf )(x, y) = IP(x) ∧ IP(y) ∧ ∀〈a, b〉.IP(x)(a, b)→ IP(y)(a, b)
5 IEXT (subClassOf )(x, y) = IC(x) ∧ IC(y) ∧ ∀a.IC(x)(a)→ IC(y)(a)
6 IEXT (I(subClassOf )) is transitive and reflexive on IC
7 IEXT (I(subClassOf ))(x, I(Resource)) = IC(x)
8 IEXT (I(subPropertyOf ))(x, I(member)) = ICEXT (I(ContainerMembershipProperty))(x)

9 ICEXT (I(Datatype))(x) = IEXT (I(subClassOf ))(x, I(Literal))
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Inferences in Fuzzy RDFS

Some inferences in fuzzy RDFS (set is not complete). Recall Rational Pavelka Logic (→ is r-implication)

〈(a, sp, b), n〉, 〈(b, sp, c),m〉
(〈(a, sp, c), n ∧ m〉

〈(a, sp, b), n〉, 〈(x, a, y),m〉
〈(x, b, y), n ∧ m〉

〈(a, sc, b), n〉, 〈(b, sc, c),m〉
〈(a, sc, c), n ∧ m〉

〈(a, sc, b), n〉, 〈(x, type, a),m〉
〈(x, type, b), n ∧ m〉

〈(a, dom, b), n〉, 〈(x, a, y),m〉
〈(x, type, b), n ∧ m〉

〈(a, range, b), n〉, 〈(x, a, y),m〉
〈(y, type, b), n ∧ m〉

〈(a, dom, b), n〉, 〈(c, sp, a),m〉, 〈(x, c, y), k〉
〈(x, type, b), n ∧ m ∧ k〉

〈(a, range, b), n〉, 〈(c, sp, a),m〉, 〈(x, c, y), k〉
〈(y, type, b), n ∧ m ∧ k〉

sp = “subPropertyOf”, sc = “subClassOf”
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Example

Fuzzy RDF representation

〈(o1, IsAbout , snoopy), 0.8〉
〈(snoopy , type, dog), 1.0〉
〈(woodstock , type, bird), 1.0〉
〈(dog, subClassOf ,Animal), 1.0〉
〈(bird , subClassOf ,Animal), 1.0〉

then
KB |= 〈∃x .(o1, IsAbout , x) ∧ (x , type,Animal), 0.8〉
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Fuzzy DLs Basics [26]

In classical DLs, a concept C is interpreted by an
interpretation I as a set of individuals
In fuzzy DLs, a concept C is interpreted by I as a fuzzy set
of individuals
Each individual is instance of a concept to a degree in [0,1]

Each pair of individuals is instance of a role to a degree in
[0,1]
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Fuzzy ALC
The semantics is an immediate consequence of the First-Order-Logic translation of DLs expressions

Interpretation:
I = ∆I

CI : ∆I → [0, 1]

RI : ∆I × ∆I → [0, 1]

∧ = t-norm
∨ = s-norm
¬ = negation
→ = implication

Concepts:

Syntax Semantics
C,D −→ > | >I (x) = 1

⊥ | ⊥I (x) = 0
A | AI (x) ∈ [0, 1]

C u D | (C1 u C2)I (x) = C1
I (x) ∧ C2

I (x)

C t D | (C1 t C2)I (x) = C1
I (x) ∨ C2

I (x)

¬C | (¬C)I (x) = ¬CI (x)

∃R.C | (∃R.C)I (x) = supy∈∆I RI (x, y) ∧ CI (y)

∀R.C (∀R.C)I (u) = infy∈∆I RI (x, y)→ CI (y)}

Assertions: 〈a:C, r〉, I |= 〈a:C, r〉 iff CI (aI ) ≥ r (similarly for roles)

individual a is instance of concept C at least to degree r , r ∈ [0, 1] ∩ Q
Inclusion axioms: C v D,

I |= C v D iff ∀x ∈ ∆I .CI (x) ≤ DI (x)

this is equivalent to, ∀x ∈ ∆I .(CI (x)→ DI (x)) = 1, if→ is an r-implication
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Basic Inference Problems

Consistency: Check if knowledge is meaningful
Is KB consistent, i.e. satisfiable?

Subsumption: structure knowledge, compute taxonomy
KB |= C v D ?

Equivalence: check if two fuzzy concepts are the same
KB |= C = D ?

Graded instantiation: Check if individual a instance of class C to degree at least r
KB |= 〈a:C, r〉 ?

BTVB: Best Truth Value Bound problem
|a:C|KB = sup{r | KB |= 〈a:C, r〉} ?

Top-k retrieval: Retrieve the top-k individuals that instantiate C w.r.t. best truth value
bound

anstop−k (KB,C) = Topk{〈a, v〉 | v = |a:C)|KB}
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Some Notes on . . .

Value restrictions:
In classical DLs, ∀R.C ≡ ¬∃R.¬C
The same is not true, in general, in fuzzy DLs (depends on the operators’ semantics, true for
Łukasiewicz, but not true in Gödel logic)

Is it acceptable that ∀hasParent.Human 6≡ ¬∃hasParent.¬Human? Recall that in Ł and Zadeh,

∀x.φ ≡ ¬∃x ¬φ

Models:
In classical DLs> v ¬(∀R.A) u (¬∃R.¬A) has no classical model

In Gödel logic it has no finite model, but has an infinite model

The choice of the appropriate semantics of the logical connectives is important.
Should have reasonable logical properties

Certainly it must have efficient algorithms solving basic inference problems

Łukasiewicz Logic seems the best compromise, though Zadeh semantics has been considered historically
in DLs (we recall that Zadeh semantics is not considered by fuzzy logicians)

For disjointness it is better to use C u D v⊥ rather than C v ¬D

they are not the same, e.g. A v ¬A says that AI (x) ≤ 0.5 holds, for all I and for all x ∈ ∆I
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Towards fuzzy OWL Lite and OWL DL

Recall that OWL Lite and OWL DL relate to SHIF(D) and
SHOIN (D), respectively
We need to extend the semantics of fuzzy ALC to fuzzy
SHOIN (D) = ALCHOINR+(D)

Additionally, we add
modifiers (e.g., very )
concrete fuzzy concepts (e.g., Young)
both additions have explicit membership functions
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Number Restrictions, Inverse and Transitive roles

The semantics of the concept (≥ n R) is:

∃y1, . . . , yn.
n̂

i=1

R(x, yi ) ∧
^

1≤i<j≤n

yi 6= yj .

The semantics of the concept (≤ n R) is:

(≤ n R)I (x) = ∀y1, . . . , yn+1.
n+1̂

i=1

R(x, yi )→
_

1≤i<j≤n+1

yi = yj .

Note: (≥ 1 R) ≡ ∃R.>

For inverse roles we have for all x, y ∈ ∆I

RI (x, y) = RI (y, x)

For transitive roles R we impose: for all x, y ∈ ∆I

RI (x, y) ≥ sup
z∈∆I

min(RI (x, z),RI (z, y))
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Concrete fuzzy concepts

E.g., Small, Young,High, etc. with explicit membership function

Use the idea of concrete domains:
D = 〈∆D ,ΦD〉
∆D is an interpretation domain
ΦD is the set of concrete fuzzy domain predicates d with a predefined arity n = 1, 2 and fixed
interpretation dD : ∆n

D → [0, 1]

For instance,

Minor = Person u ∃hasAge. ≤18
YoungPerson = Person u ∃hasAge.Young

functional(hasAge)
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Modifiers

Very , moreOrLess, slightly , etc.

Apply to fuzzy sets to change their membership function

very(x) = x2

slightly(x) =
√

x

For instance,

SportsCar = Car u ∃speed.very(High)
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Fuzzy SHOIN (D)

Concepts:
Syntax Semantics

C,D −→ > | >(x)
⊥ | ⊥ (x)

A | A(x)
(C u D) | C1(x) ∧ C2(x)
(C t D) | C1(x) ∨ C2(x)

(¬C) | ¬C(x)
(∃R.C) | ∃x R(x, y) ∧ C(y)
(∀R.C) | ∀x R(x, y)→ C(y)
{a} | x = a

(≥ n R) | ∃y1, . . . , yn.
Vn

i=1 R(x, yi ) ∧
V

1≤i<j≤n yi 6= yj

(≤ n R) | ∀y1, . . . , yn+1.
Vn+1

i=1 R(x, yi )→
W

1≤i<j≤n+1 yi = yj
FCC | µFCC (x)

M(C) | µM (C(x))
R −→ P | P(x, y)

P− | P(y, x)

Assertions:
Syntax Semantics

α −→ 〈a:C, r〉 | r → C(a)
〈(a, b):R, r〉 r → R(a, b)

Axioms:

Syntax Semantics
τ −→ 〈C v D, r〉 | ∀x r → (C(x)→ D(x)), where→ is r-implication

fun(R) | ∀x∀y∀z R(x, y) ∧ R(x, z)→ y = z
trans(R) (∃z R(x, z) ∧ R(z, y))→ R(x, y)
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Example (Graded Entailment)

audi_tt mg ferrari_enzo

Car speed
audi_tt 243
mg ≤ 170
ferrari_enzo ≥ 350

SportsCar = Car u ∃hasSpeed.very(High)

KB |= 〈ferrari_enzo:SportsCar, 1〉
KB |= 〈audi_tt :SportsCar, 0.92〉
KB |= 〈mg:¬SportsCar, 0.72〉
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Example (Graded Subsumption)

Minor = Person u ∃hasAge. ≤18

YoungPerson = Person u ∃hasAge.Young

KB |= 〈Minor v YoungPerson, 0.2〉

Note: without an explicit membership function of Young, this inference cannot
be drawn
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Example (Simplified Negotiation)

a car seller sells an Audi TT for 31500e, as from the catalog price.

a buyer is looking for a sports-car, but wants to to pay not more than around 30000e

classical DLs: the problem relies on the crisp conditions on price

more fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)
seller may consider optimal to sell above 31500e, but can go down to 30500e
the buyer prefers to spend less than 30000e, but can go up to 32000e

AudiTT = SportsCar u ∃hasPrice.R(x ; 30500, 31500)
Query = SportsCar u ∃hasPrice.L(x ; 30000, 32000)

highest degree to which the concept
C = AudiTT u Query
is satisfiable is 0.75 (the possibility that the Audi TT and the query matches is 0.75)

the car may be sold at 31250e
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Reasoning [19, 17, 18]
Depends on the semantics and reasoning method (tableau-based or MILP-based)

Tableaux method: under Zadeh semantics
a tableau exists for fuzzy SHIN , solving the satisfiability problem
classical blocking methods apply similarly in the fuzzy variant
the management of General concept inclusions (GCI’s) is more complicated
compared to the crisp case
a translation of fuzzy SHOIN to crisp SHOIN also exists (not addressed here)
the tableaux method is not suitable to deal with fuzzy concrete concepts and
modifiers
the BTVB can be solved, but not efficiently

MILP based method: under Zadeh semantics, Łukasiewicz semantics, and classical semantics

exists for fuzzyALC + linear modifiers + fuzzy concrete concepts [20, 21, 2]
exists for fuzzy SHIF + linear modifiers + fuzzy concrete concepts (implemented
in fuzzyDL reasoner, but not published yet [1, 2])
solves the BTVB as primary problem

MIQP based method: using Mixed Integer Quadratically Constrained Programming optimization problem (MICQP)
for product T-norm

exists for fuzzy SHIF + linear modifiers + fuzzy concrete concepts (implemented
in fuzzyDL reasoner, but not published yet [1]). Important as it simulates
probabilistic reasoning under independent event assumption.
solves the BTVB as primary problem
the fuzzyDL solver also allows to mix all three semantics
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Fuzzy tableaux-based method

Tableau algorithm is similar to classical DL tableaux

Most problems can be reduced to satisfiability problem, e.g.

Assertions are extended to 〈a:C ≥ n〉, 〈a:C ≤ n〉, 〈a:C > n〉 and
〈a:C < n〉

KB |= 〈a:C, n〉 iff KB ∪ {〈a:C < n〉} not satisfiable

All models of KB do not satisfy 〈a:C < n〉, i.e. do satisfy
〈a:C ≥ n〉

Let’s see a tableaux algorithm for satisfiability checking, where

x ∧ y = min(x , y)

x ∨ y = max(x , y)

¬x = 1− x

x → y = max(1− x , y)
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Tableaux for ALC KB

Works on a tree forest (semantics through viewing tree as an ABox)

Nodes represent elements of ∆I , labelled with sub-concepts of C and their weights

Edges represent role-successorships between elements of ∆I and their weights

Works on concepts in negation normal form: push negation inside using de Morgan’ laws and

¬(∃R.C) 7→ ∀R.¬C
¬(∀R.C) 7→ ∃R.¬C

It is initialised with a tree forest consisting of root nodes a, for all individuals appearing in the KB:
If 〈a:C ./ n〉 ∈ KB then 〈C, ./, n〉 ∈ L(a)

If 〈(a, b):R ./ n〉 ∈ KB then 〈〈a, b〉, ./, n〉 ∈ E(R)

A tree forest T contains a clash if for a tree T in the forest there is a node x in T , containing a conjugated
pair {〈A, ., n〉, 〈C, /,m〉} ⊆ L(x), e.g. 〈A,≥, 0.6〉, 〈A, <, 0.3〉

Returns “KB is satisfiable" if rules can be applied s.t. they yield a clash-free, complete (no more rules apply)
tree forest

Uncertainty and Vagueness in the Semantic Web Tutorial at ESWC-2007 T. Lukasiewicz and U. Straccia



Uncertainty, Vagueness, and the Semantic Web
Basics on Semantic Web Languages

Uncertainty in Semantic Web Languages
Vagueness in Semantic Web Languages

Combining Uncertainty and Vagueness in SW Languages

Vagueness basics
Vagueness and RDF/DLs
Vagueness and LPs/DLPs

ALC Tableau rules (excerpt)

x • {〈C1 u C2,≥, n〉, . . .} −→u x • {〈C1 u C2,≥, n〉, 〈C1,≥, n〉, 〈C2,≥, n〉, . . .}
x • {〈C1 t C2,≥, n〉, . . .} −→t x • {〈C1 t C2,≥, n〉, 〈C,≥, n〉, . . .}

for C ∈ {C1,C2}
x • {〈∃R.C,≥, n〉, . . .} −→∃ x • {〈∃R.C,≥, n〉, . . .}

〈R,≥, n〉 ↓
y • {〈C,≥, n〉}

x • {〈∀R.C,≥, n〉, . . .}
〈R,≥,m〉 ↓ (m > 1− n)

y • {. . .}

−→∀ x • {〈∀R.C,≥, n〉, . . .}
〈R,≥,m〉 ↓

y • {. . . , 〈C,≥, n〉}
x • {C v D, . . .} −→v x • {C v D, E, . . .}

for E ∈ {〈C, <, n〉, 〈D,≥, n〉}, n ∈ NA

.

.

.
.
.
.

.

.

.

KB = 〈T ,A〉

XA = {0, 0.5, 1} ∪ {n | 〈α ./ n〉 ∈ A}

NA = XA ∪ {1− n | n ∈ XA}
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Theorem

Let KB be an ALC KB and F obtained by applying the tableau rules to KB. Then
1 The rule application terminates,
2 If F is clash-free and complete, then F defines a (canonical) (tree forest) model

for KB, and
3 If KB has a model I, then the rules can be applied such that they yield a

clash-free and complete forest F .

The tableau can be modified to a decision procedure for
SHIN (≡ ALCHINR+)

SHOIQ (≡ ALCHOIQR+) (expected)
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Problem with fuzzy tableau

Usual fuzzy tableaux calculus does not work anymore with

modifiers and concrete fuzzy concepts
Łukasiewicz Logic
Product T-norm

Usual fuzzy tableaux calculus does not solve the BTVB problem

New algorithm uses bounded Mixed Integer Programming oracle, as for
Many Valued Logics

Recall: the general MILP problem is to find

x̄ ∈ Qk , ȳ ∈ Zm

f (x̄, ȳ) = min{f (x, y) : Ax + By ≥ h}
A, B integer matrixes
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Requirements

Works for usual fuzzy DL semantics (Zadeh semantics) and Lukasiewicz logic

Modifiers are definable as linear in-equations over Q,Z (e.g., linear hedges), for
instance, linear hedges, lm(a, b), e.g. very = lm(0.7, 0.49)

Fuzzy concrete concepts are definable as linear in-equations over Q,Z (e.g.,
crisp, triangular, trapezoidal, left shoulder and right shoulder membership
functions)

lm(a,b) cr(a,b) tri(a,b,c)

trz(a,b,c,d) ls(a,b) rs(a,b,c)
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Example:

Minor = Person u ∃hasAge. ≤18

YoungPerson = Person u ∃hasAge.Young
Young = ls(10, 30)
≤18 = cr(0, 18)

Then

|a:C|KB = min{x | KB ∪ {〈a:C ≤ x〉 satisfiable}
|C v D|KB = min{x | KB ∪ {〈a:C u ¬D ≥ 1− x〉 satisfiable}

Apply (deterministic) tableaux calculus, then use bounded Mixed
Integer Programming oracle
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ALC MILP Tableau rules under Zadeh semantics
(excerpt)

x • {〈C1 u C2,≥, l〉, . . .} −→u x • {〈C1 u C2,≥, l〉, 〈C1,≥, l〉, 〈C2,≥, l〉, . . .}
x • {〈C1 t C2,≥, l〉, . . .} −→t x • {〈C1 t C2,≥, l〉, 〈C1,≥, x1〉, 〈C2,≥, x2〉,

x1 + x2 = l, x1 ≤ y, x2 ≤ 1− y,
xi ∈ [0, 1], y ∈ {0, 1}, . . .}

x • {〈∃R.C,≥, l〉, . . .} −→∃ x • {〈∃R.C,≥, l〉, . . .}
〈R,≥, l〉 ↓

y • {〈C,≥, l〉}
x • {〈∀R.C,≥, l1〉, . . .}

〈R,≥, l2〉 ↓
y • {. . .}

−→∀ x • {〈∀R.C,≥, l1〉, . . .}
〈R,≥, l2〉 ↓

y • {. . . , 〈C,≥, x〉
x + y ≥ l1, x ≤ y, l1 + l2 ≤ 2− y,
x ∈ [0, 1], y ∈ {0, 1}}

x • {A v C, 〈A,≥, l〉, . . .} −→v1
x • {A v C, 〈C,≥, l〉, . . .}

x • {C v A, 〈A,≤, l〉, . . .} −→v2
x • {C v A, 〈C,≤, l〉, . . .}

x • {C v D, . . .} −→v x • {C v D, 〈C,≤, x〉, 〈D,≥, x〉, x ∈ [0, 1], . . .}
x • {〈ls(k1, k2, a, b),≥, l〉, . . .} −→v x • {ls(k1, k2, a, b), y1 + y2 + y3 = 1, yi ∈ {0, 1},

x + (k2 − a) · y1 ≤ k2, x + (k1 − a) · y2 ≥ k1,
x + (k2 − b) · y2 ≥ k2,
x + (b − a) · l + (k2 − a) · y2 ≤ k2 − a + b,
x + (k1 − b) · y3 ≤ k1, l + y3 ≤ 1, . . .}
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Example

Suppose
KB =

8<: A u B v C
〈a:A ≥ 0.3〉
〈a:B ≥ 0.4〉

Query : = |a:C|KB = min{x | KB ∪ {〈a:C ≤ x〉 satisfiable}

Step Tree
1. a • {〈A,≥, 0.3〉, 〈B,≥, 0.4〉, 〈C,≤, x〉} (Hypothesis)
2. ∪{〈A u B,≤, x〉} (→v2

)

3. ∪{〈A,≤, x1〉, 〈B,≤, x2〉} (→u≤ )

∪{x = x1 + x2 − 1, 1− y ≤ x1, y ≤ x2}
∪{xi ∈ [0, 1], y ∈ {0, 1}}

4. find min{x | 〈a:A ≥ 0.3〉, 〈a:B ≥ 0.4〉, (MILP Oracle)
〈a:C ≤ x〉, 〈a:A ≤ x1〉, 〈a:B ≤ x2〉,
x = x1 + x2 − 1, 1− y ≤ x1, y ≤ x2,
xi ∈ [0, 1], y ∈ {0, 1}}

5. MILP oracle: x = 0.3
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Implementation issues

Several options exists:

Try to map fuzzy DLs to classical DLs

difficult to work with modifiers and concrete fuzzy concepts

Try to map fuzzy DLs to some fuzzy logic programming framework
A lot of work exists about mappings among classical DLs and LPs
But, needs a theorem prover for fuzzy LPs

Build an ad-hoc theorem prover for fuzzy DLs, using e.g., MILP

A theorem prover for fuzzy SHIF + linear hedges + concrete fuzzy concepts +
linear equational constraints, under classical, Zadeh, Lukasiewicz and Product
t-norm semantics has been implemented
(http://gaia.isti.cnr.it/~straccia)

FIRE: a fuzzy DL theorem prover for fuzzy SHIN under Zadeh semantics
(http://www.image.ece.ntua.gr/~nsimou/)
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Top-k retrieval in tractable DLs: the case of
DL-Lite/DLR-Lite [25, 30]

DL-Lite/DLR-Lite [3]: a simple, but interesting DLs

Captures important subset of UML/ER diagrams

Computationally tractable DL to query large databases

Sub-linear, i.e. LOGSpace in data complexity

(same cost as for SQL)

Good for very large database tables, with limited declarative
schema design
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Knowledge base: KB = 〈T ,A〉, where T andA are finite sets of axioms and assertions

Axiom: Cl v Cr (inclusion axiom)

Note for inclusion axioms: the language for left hand side is different from the one for right hand side

DL-Litecore :
Concepts: Cl → A | ∃R

Cr → A | ∃R | ¬A | ¬∃R
R → P | P−

Assertion: a:A, (a, b):P

DLR-Litecore : (n-ary roles)
Concepts: Cl → A | ∃P[i]

Cr → A | ∃P[i] | ¬A | ¬∃P[i]
∃P[i] is the projection on i-th column

Assertion: a:A, 〈a1, . . . , an〉:P

Assertions are stored in relational tables

Conjunctive query: q(x)← ∃y.conj(x, y)
conj is an aggregation of expressions of the form B(z) or P(z1, z2),
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Examples:
isa CatalogueBook v Book
disjointness Book v ¬Author
constraints CatalogueBook v ∃positioned_In
role − typing ∃positioned_In v Container
functional fun(positioned_In)
constraints Author v ∃written_By−

∃written_By v CatalogueBook

assertion Romeo_and_Juliet :CatalogueBook
(Romeo_and_Juliet , Shakespeare):written_By

query q(x , y)← CataloguedBook(x), Ordered_to(x , y)

Consistency check is linear time in the size of the KB

Query answering in linear in in the size of the number of assertions
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Top-k retrieval in DL-Lite/DLR-Lite

We extend the query formalism: conjunctive queries, where fuzzy predicates
may appear

conjunctive query

q(x, s)← ∃y.conj(x, y), s = f (p1(z1), . . . , pn(zn))

1 x are the distinguished variables;
2 s is the score variable, taking values in [0, 1];
3 y are existentially quantified variables, called non-distinguished variables;
4 conj(x, y) is a conjunction of DL-Lite/DLR-Lite atoms R(z) in KB;
5 z are tuples of constants in KB or variables in x or y;
6 zi are tuples of constants in KB or variables in x or y;
7 pi is an ni -ary fuzzy predicate assigning to each ni -ary tuple ci the score

pi (ci ) ∈ [0, 1];
8 f is a monotone scoring function f : [0, 1]n → [0, 1], which combines the

scores of the n fuzzy predicates pi (ci )

Uncertainty and Vagueness in the Semantic Web Tutorial at ESWC-2007 T. Lukasiewicz and U. Straccia



Uncertainty, Vagueness, and the Semantic Web
Basics on Semantic Web Languages

Uncertainty in Semantic Web Languages
Vagueness in Semantic Web Languages

Combining Uncertainty and Vagueness in SW Languages

Vagueness basics
Vagueness and RDF/DLs
Vagueness and LPs/DLPs

Example:
Hotel v ∃HasHLoc
Hotel v ∃HasHPrice

Conference v ∃HasCLoc
Hotel v ¬Conference

HasHLoc
HotelID HasLoc
h1 hl1
h2 hl2
.
.
.

.

.

.

HasCLoc
ConfID HasLoc
c1 cl1
c2 cl2
.
.
.

.

.

.

HasHPrice
HotelID Price
h1 150
h2 200
.
.
.

.

.

.

q(h, s)←HasHLoc(h, hl),HasHPrice(h, p),Distance(hl, cl, d)

HasCLoc(c1, cl), s = cheap(p) · close(d) .

where the fuzzy predicates cheap and close are defined as

close(d) = ls(0, 2km, d)
cheap(p) = ls(0, 300, p)
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Semantics informally:
a conjunctive query

q(x, s)← ∃y.conj(x, y), s = f (p1(z1), . . . , pn(zn))

is interpreted in an interpretation I as the set

qI = {〈c, v〉 ∈ ∆× . . .× ∆× [0, 1] | . . .

such that when we consider the substitution

θ = {x/c, s/v}

the formula
∃y.conj(x, y) ∧ s = f (p1(z1), . . . , pn(zn))

evaluates to true in I.

Model of a query: I |= q(c, v) iff 〈c, v〉 ∈ qI

Entailment: KB |= q(c, v) iff I |= KB implies I |= q(c, v)

Top-k retrieval: anstop−k (KB, q) = Topk{〈c, v〉 | KB |= q(c, v)}
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How to determine the top-k answers of a query?
Overall strategy: three steps

1 Check if KB is satisfiable, as querying a non-satisfiable KB is meaningless (checkable in linear time)

2 Query q is reformulated into a set of conjunctive queries r(q,T )

Basic idea: reformulation procedure closely resembles a top-down resolution procedure for
logic programming

q(x, s) ← B(x), A(x), s = f (x)

B1 v A

B2 v A

q(x, s) ← B(x), B1(x), s = f (x)

q(x, s) ← B(x), B2(x), s = f (x)

3 The reformulated queries in r(q,T ) are evaluated overA (seen as a database) using standard

top-k techniques for DBs
for all qi ∈ r(q,T ), anstop−k (qi ,A) = top-k SQL query overA database

anstop−k (KB, q) = Topk (
S

qi∈r(q,T ) ansk (qi ,A))
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Small Example:
P2

0 s
3 t
4 q
6 q

B
1
2
5
7

T = {∃P−2 v A, A v ∃P1, B v ∃P2}
q(x, s)← P2(x, y), P1(y, z), s = max(0, 1− x/10)
q(x, s)← P2(x, y), A(y), s = max(0, 1− x/10)
q(x, s)← P2(x, y), P2(z, y), s = max(0, 1− x/10)
q(x, s)← P2(x, y), s = max(0, 1− x/10)
q(x, s)← B(x), s = max(0, 1− x/10)
q1(x, s)← P2(x, y), s = max(0, 1− x/10)
q2(x, s)← B(x), s = max(0, 1− x/10)
anstop−3(A, q1) = [〈0, 1.0〉, 〈3, 0.7〉, 〈4, 0.6〉]
anstop−3(A, q2) = [〈1, 0.9〉, 〈2, 0.8〉, 〈5, 0.5〉]
anstop−k (KB, q) = [〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.8〉]

Proposition

Given a DL-Lite KB KB = 〈T ,A〉 and a query q then we can compute anstop−k (KB, q) in (sub) linear time
w.r.t. the size ofA. The same holds for the description logic DLR-Lite.

Tool exists and implemented in the DLMedia system
http://gaia.isti.cnr.it/~straccia
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DLMedia: a Multimedia Information Retrieval
System [33]

Based on fuzzy DLR-Lite with similarity predicates
Axioms: Rl1 u . . . u Rlm v Rr

Rr −→ A | ∃[i1, . . . , ik ]R
Rl −→ A | ∃[i1, . . . , ik ]R | ∃[i1, . . . , ik ]R.(Cond1 u . . . u Condl )
Cond −→ ([i] ≤ v) | ([i] < v) | ([i] ≥ v) | ([i] > v) | ([i] = v) | ([i] 6= v) |

([i] simTxt ′k1, . . . , k′n) | ([i] simImg URN)

∃[i1, . . . , ik ]R is the projection of the relation R on the columns i1, . . . , ik
∃[i1, . . . , ik ]R.(Cond1 u . . . u Condl ) further restricts the projection ∃[i1, . . . , ik ]R according to
the conditions specified in Condi
([i] simTxt ′k1 . . . k′n) evaluates the degree of being the text of the i-th column similar to the list of
keywords k1 . . . kn
([i] simImg URN) returns the system’s degree of being the image identified by the i-th column
similar to the image identified by the URN
Facts: 〈R(c1, . . . , cn), s〉

Uncertainty and Vagueness in the Semantic Web Tutorial at ESWC-2007 T. Lukasiewicz and U. Straccia



Uncertainty, Vagueness, and the Semantic Web
Basics on Semantic Web Languages

Uncertainty in Semantic Web Languages
Vagueness in Semantic Web Languages

Combining Uncertainty and Vagueness in SW Languages

Vagueness basics
Vagueness and RDF/DLs
Vagueness and LPs/DLPs

Example axioms

∃[1, 2]Person v ∃[1, 2]hasAge
// constrains relation hasAge(name, age)

∃[3, 1]Person v ∃[1, 2]hasChild
// constrains relation hasChild(father_name, name)

∃[4, 1]Person v ∃[1, 2]hasChild
// constrains relation hasChild(mother_name, name)

∃[3, 1]Person.(([2] ≥ 18) u ([5] =′ female′) v ∃[1, 2]hasAdultDaughter
// constrains relation hasAdultDaughter(father_name, name)

On the other hand examples axioms involving similarity predicates are,

∃[1]ImageDescr.([2] simImg urn1) v Child (1)

∃[1]Title.([2] simTxt ′ lion′) v Lion (2)

where urn1 identifies the image
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Example queries

q(x)←Child(x)
// find objects about a child (strictly speaking, find instances of Child)

q(x)←CreatorName(x, y) ∧ (y =′ paolo′), Title(x, z), (z simTxt ′tour ′)
// find images made by Paolo whose title is about ’tour’

q(x)← ImageDescr(x, y) ∧ (y simImg urn2)
// find images similar to a given image identified by urn2

q(x)← ImageObject(x) ∧ isAbout(x, y1) ∧ Car(y1) ∧ isAbout(x, y2) ∧ Racing(y2)
// find image objects about cars racing
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Interface:
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Run:
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Fuzzy LPs Basics [4, 6, 7, 22, 23, 29, 35]

Many Logic Programming (LP) frameworks have been proposed
to manage uncertain and imprecise information. They differ in:

The underlying notion of uncertainty and vagueness:
probability, possibility, many-valued, fuzzy logics
How values, associated to rules and facts, are managed

We consider fuzzy LPs, where
Truth space is [0,1]
Interpretation is a mapping I : BP → [0,1]
Generalized LP rules are of the form

R(x)←∃y.f (R1(z1), . . . ,Rl(zl),p1(z′1), . . . ,ph(z′h)) ,

Meaning of rules: “take the truth-values of all Ri(zi), pj(z′j ),
combine them using the truth combination function f , and
assign the result to R(x)”
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Same meaning as for fuzzy DLR-Lite queries

R(x, s)← ∃y.conj(x, y), s = f (p1(z1), . . . , pl+h(zl+h))

1 x are the distinguished variables;
2 s is the score variable, taking values in [0, 1];
3 y are existentially quantified variables, called non-distinguished variables;
4 conj(x, y) is a list of atoms Ri (z) in KB;
5 z are tuples of constants in KB or variables in x or y;
6 zi are tuples of constants in KB or variables in x or y;
7 pi is an ni -ary fuzzy predicate assigning to each ni -ary tuple ci the score

pi (ci ) ∈ [0, 1];
8 f is a monotone scoring function f : [0, 1]l+h → [0, 1], which combines the

scores of the n fuzzy predicates pi (ci )
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Example

ID HOTEL PRICE Single PRICE Double DISTANCE s
1 Verdi 100 120 5Min 0.75
2 Puccini 120 135 10Min 0.5
3 Rossini 80 90 15Min 0.25

R(x1, x2)← CloseHotel(x1, x2, x3, x4, x5) · cheap(x3) ,

where
cheap(p) = ls(0, 250, p) .
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Example

Car buying example:

Pref1(x ,p, s) ← hasPrice(x ,p),

LS(0,100000,11000,13000,p, s)

Pref2(x , s) ← Kilometers(x , k),

LS(0,400000,15000,20000, k , s)

Buyer(x ,p,u) ← Pref1(x ,p, s1),Pref2(x , s2),

u = 0.75 · s1 + 0.25 · s2
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Semantics of fuzzy LPs

Model of a LP:

I |= P iff I |= r , for all r ∈ P∗
I |= A← ϕ iff I(ϕ) ≤ I(A)

Least model exists and is least fixed-point of

TP(I)(A) = I(ϕ)

for all A← ϕ ∈ P∗

Fuzzy LPs may be tricky:

〈A,0〉
A ← (A + 1)/2

In the minimal model the truth of A is 1 (requires ω TP iterations)!
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General top-down query procedure for Many-valued
LPs

Idea: use theory of fixed-point computation of equational systems over truth
space (complete lattice or complete partial order)
Assign a variable xi to an atom Ai ∈ BP
Map a rule A← f (A1, . . . ,An) ∈ P∗ into the equation xA = f (xA1 , . . . , xAn )
A LP P is thus mapped into the equational system8>><>>:

x1 = f1(x11 , . . . , x1a1
)

...
xn = fn(xn1 , . . . , xnan )

fi is monotone and, thus, the system has least fixed-point, which is the limit of

y0 = 0
yi+1 = f(yi ) .

where f = 〈f1, . . . , fn〉 and f(x) = 〈f1(x1), . . . , fn(xn)〉
The least-fixed point is the least model of P
Consequence: If top-down procedure exists for equational systems then it works
for fuzzy LPs too!
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Following [22, 23] . . .

Procedure Solve(S,Q)
Input: monotonic system S = 〈L,V , f〉, where Q ⊆ V is the set of query variables;
Output: A set B ⊆ V , with Q ⊆ B such that the mapping v equals lfp(f ) on B.

1. A : = Q, dg : = Q, in : = ∅, for all x ∈ V do v(x) = 0, exp(x) = 0
2. while A 6= ∅ do
3. select xi ∈ A, A : = A \ {xi}, dg : = dg ∪ s(xi )
4. r : = fi (v(xi1 ), ..., v(xiai

))

5. if r � v(xi ) then v(xi ) : = r , A : = A ∪ (p(xi ) ∩ dg) fi
6. if not exp(xi ) then exp(xi ) = 1, A : = A ∪ (s(xi ) \ in), in : = in ∪ s(xi ) fi

od

For q(x)← φ ∈ P, with s(q) we denote the set of sons of q w.r.t. r , i.e. the
set of intentional predicate symbols occurring in φ. With p(q) we denote the
set of parents of q, i.e. the set p(q) = {pi : q ∈ s(pi , r)} (the set of predicate
symbols directly depending on q).
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Set of facts 〈Experience(john), 0.7〉, 〈Risk(john), 0.5〉, 〈Sport_car(john), 0.8〉

Set of rules, which after grounding are:

Good_driver(john) ← Experience(john) ∧ (0.5Risk(john))
Risk(john) ← 0.8 · Young(john)
Risk(john) ← 0.8 · Sport_car(john)
Risk(john) ← Experience(john) ∧ (0.5 · Good_driver(john))

1. A : = {xR(j)}, xi : = xR(j), A : = ∅, dg : = {xR(j), xY (j), xS(j), xE(j), xG(j)}, r : = 0.5, v(xR(j)) : = 0.5,
A : = {xG(j)}, exp(xR(j)) : = 1, A : = {xY (j), xS(j), xE(j), xG(j)}, in : = {xY (j), xS(j), xE(j), xG(j)}

2. xi : = xY (j), A : = {xS(j), xE(j), xG(j)}, r : = 0, exp(xY (j)) : = 1
3. xi : = xS(j), A : = {xE(j), xG(j)}, r : = 0.8, v(xS(j)) : = 0.8, A : = {xE(j), xG(j), xR(j)}, exp(xS(j)) : = 1
4. xi : = xE(j), A : = {xG(j), xR(j)}, r : = 0.7, v(xE(j)) : = 0.7, exp(xE(j)) : = 1
5. xi : = xG(j), A : = {xR(j)}, r : = 0.25, v(xG(j)) : = 0.25, exp(xG(j)) : = 1,

in : = {xY (j), xS(j), xE(j), xG(j), xR(j)}
6. xi : = xR(j), A : = ∅, r : = 0.64, v(xR(j)) : = 0.64, A : = {xG(j)}
7. xi : = xG(j), A : = ∅, r : = 0.32, v(xG(j)) : = 0.32, A : = {xR(j)}
8. xi : = xG(j), A : = ∅, r : = 0.64
10. stop. return v (in particular, v(xR(j)) = 0.64)
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The top-down procedure can be extended to
fuzzy Normal Logic Programs (Logic programs with
non-monotone negation) [22]
Many-valued Normal Logic Programs under Any-world
Assumption [9, 28]
Logic Programs, without requiring the grounding of the
program

Other approaches for top-down methods for monotone
fuzzy LPs: [6, 35, 7, 4]
Magics sets like methods: yet to investigate ...
There are also extensions to Fuzzy Disjunctive Logic
Programs [10, 11, 24, 13, 14] with or without default
negation
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Top-k retrieval in LPs

If the database contains a huge amount of facts, a brute
force approach fails:

one cannot anymore compute the score of all tuples, rank
all of them and only then return the top-k

Better solutions exists for restricted fuzzy LP languages:
Datalog + restriction on the score combination functions
appearing in the body [29, 32]
The procedure is an generalization of the Solve procedure,
integrating top-k database technology [8, 32]
We do not determine all answers, but collect answers
incrementally together and we can stop as soon as we
have gathered k answers above a computed threshold
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Procedure TopAnswers(K,Q, k)
Input: KBK, intensional query relation symbol Q, k ≥ 1;
Output: Mapping rankedList such that rankedList(Q) contains top-k answers of Q
Init: δ = 1, for all rules r : P(x)← φ in P do

if P intensional then rankedList(P) = ∅;
if P extensional then rankedList(P) = TP endfor

1. loop
2. Active := {Q}, dg := {Q}, in := ∅,

for all rules r : P(x)← φ do exp(P, r) = false;
3. while (Active 6= ∅) do
4. select P ∈ A where r : P(x)← φ, Active := Active \ {P}, dg := dg ∪ s(P, r);
5. 〈t, s〉 := getNextTuple(P, r)
6. if 〈t, s〉 6= NULL then insert 〈t, s〉 into rankedList(P),

Active := Active ∪ (p(P) ∩ dg);
7. if not exp(P, r) then exp(P, r) = true,

Active := Active ∪ (s(P, r) \ in), in := in ∪ s(p, r);
endwhile

8. Update threshold δ;
9. until (rankedList(Q) does contain k top-ranked tuples with score above δ)

or (rL′ = rankedList);
10. return top-k ranked tuples in rankedList(Q);
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Procedure getNextTuple(P, r)
Input: intensional relation symbol P and rule r : P(x)← ∃y.f (R1(z1), . . . ,Rn(zl )) ∈ P;
Output: Next tuple satisfying the body of the r together with the score
Init:

loop
1. Generate next new instance tuple 〈t, s〉 of P, using tuples in rankedList(Ri ) and RankSQL
2. if there is no 〈t, s′〉 ∈ rankedList(P, r) with s ≤ s′ then exit loop

until no new valid join tuple can be generated
3. return 〈t, s〉 if it exists else return NULL
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q(x)← min(r1(x, y), r2(y, z))

recId r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75
4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

TopAnswers
Iter p ∆r rankedList(p) δ

1. q 〈e, k, 0.75〉 〈e, k, 0.75〉 0.8
2. q 〈l, h, 0.7〉 〈e, k, 0.75〉, 〈l, h, 0.7〉 0.75
3. q 〈l, j, 0.7〉 〈e, k, 0.75〉, 〈l, h, 0.7〉, 〈l, j, 0.7〉 0.75

4. q 〈l, n, 0.65〉 〈e, k, 0.75〉, 〈l, h, 0.7〉,
〈l, j, 0.7〉, 〈l, n, 0.65〉 0.7

getNextTuple
Iter pi 〈ti , si 〉 Q(p, r)

1. r1 r1(1) −
r2 r2(1) −
r1 r1(2) −
r2 r2(2) −
r1 r1(3) −
r2 r2(3) 〈e, k, 0.75〉

2. r1 r1(4) 〈l, h, 0.7〉, 〈l, j, 0.7〉
3. − − 〈l, j, 0.7〉
4. r2 r2(4) 〈l, n, 0.65〉
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Fuzzy DLPs Basics [10, 11, 27, 31]

Combine fuzzy DLs with fuzzy LPs:
Like fuzzy LPs, but DL atoms and roles may appear in rules

LowCarPrice(z) ← min(made_by(x, y),DL[ChineseCarCompany ](y)
price(x, z)) · DL[Low ](z)

Low = LS(5.000, 15.000)
ChineseCarCompany v ∃has_location.China

Knowledge Base is a pair KB = 〈P,Σ〉, where
P is a fuzzy logic program

Σ is a fuzzy DL knowledge base (set of assertions and inclusion axioms)
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Fuzzy DLPs Semantics

Semantics: several approaches
In principle, for each classical semantics based integration
between DLs and LPs, there is be a fuzzy analogue

Pay attention, the fuzzy variant may add further technical
and computational complications

1 Axiomatic approach: fuzzy DL atoms and roles are
managed uniformely

2 Loosely Coupled approach: fuzzy DL atoms and roles are
like “procedural attachments” (procedural calls to a fuzzy
DL theorem prover)

3 Tightly coupled approach: The DL component restricts the
models to be considered for the LP component

Uncertainty and Vagueness in the Semantic Web Tutorial at ESWC-2007 T. Lukasiewicz and U. Straccia



Uncertainty, Vagueness, and the Semantic Web
Basics on Semantic Web Languages

Uncertainty in Semantic Web Languages
Vagueness in Semantic Web Languages

Combining Uncertainty and Vagueness in SW Languages

Vagueness basics
Vagueness and RDF/DLs
Vagueness and LPs/DLPs

Axiomatic approach

Formally easy

I is a model of KB = 〈P,Σ〉 iff I |= P and I |= Σ

To guarantee decidability, e.g.
DL-safe rules +
Fuzzy LP component has to be decidable

Decision algorithm: No algorithm exists yet. Though

A mapping from fuzzy OWL-DL to fuzzy disjunctive LPs is possible
Depends on the semantics and features of the fuzzy DL component
(t-norm, fuzzy concrete domains, . . . )
Depends on the semantics for the fuzzy disjunctive LP component
(e.g., [10, 13, 14, 24])
The fuzzy LP semantics has to support the fuzzy DL component
semantics

However, a tractable (data complexity) top-k algorithm exists for fuzzy
DLR-Lite + fuzzy LPs under the axiomatic approach (submitted)
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Loosely coupled approach [10, 24, 31, 27]

Fuzzy DL atoms and roles are procedural attachments
(calls to a fuzzy DL theorem prover)

I is a model of KB = 〈P,Σ〉 iff IΣ |= P
IΣ(A) = I(A) for all ground non-DL atoms A
IΣ(DL[A](a)) = glb(Σ,a:A) for all ground DL atoms DL[A](a)
IΣ(DL[R](a,b)) = glb(Σ, (a,b):R) for all ground DL roles
DL[R](a,b)

Minimal model property of fuzzy LPs and a fixed-point
characterization:

TP(I)(A) = IΣ(ϕ), for A← ϕ ∈ P∗

An approach using non-monotone negation is described
in [10]
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A top-down procedure (without non-monotonicity)

Combine Solve(S,Q) with a theorem prover for fuzzy DLs
Modify Step 1. of algorithm Solve(S,Q)

for all xij DL-atoms DL[A](a) (similarly for roles)
compute x̄ij = glb(KB, a:A)
set v(xij ) = x̄ij , instead of v(xij ) = 0

Essentially, for all DL-atoms DL[A](a) we compute off-line
glb(KB,a:A) and add then the rule A(a)← glb(KB,a:A) to P
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Tightly coupled approach [11]

DL atoms may appear anywhere in the rule

a1 ∨⊕1
· · · ∨⊕l−1

al ←⊗0
b1 ∧⊗1

b2 ∧⊗2
· · · ∧⊗k−1

bk ≥ v

For instance,

query(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower(x, y2)∧⊗
LeqAbout22000(y1) ∧⊗ Around150(y2) ≥ 1 .
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Semantics

Consider KB = 〈P, Σ〉
interpretation I : HBΦ→ [0, 1]

I |= r iff

I(a1)⊕1 · · · ⊕l I(al) ≥ I(b1)⊗1 · · · ⊗k−1 I(bk )⊗0 v .

I |= P iff I |= r for all r ∈ P∗

I |= Σ iff Σ∪{a = I(a) | a∈HBΦ} is satisfiable

I |= KB iff I |=P and I |= Σ

The extension to non-monotone negation and a decision procedure is
described in [11, 12]

Requires a decision procedure for the fuzzy DL component
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Description logic programs that allow for dealing with
probabilistic uncertainty and fuzzy vagueness.

Semantically, probabilistic uncertainty can be used for data
integration and ontology mapping, and fuzzy vagueness
can be used for expressing vague concepts.

Technically, allows for defining different rankings on ground
atoms using fuzzy vagueness, and then for a probabilistic
merging of these rankings using probabilistic uncertainty.

Query processing based on fixpoint iterations.
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Suppose a person would like to buy “a sports car that costs at
most about 22 000e and that has a power of around 150 HP”.

In todays Web, the buyer has to manually

search for car selling web sites, e.g., using Google;
select the most promising sites;
browse through them, query them to see the cars that
each site sells, and match the cars with the requirements;
select the offers in each web site that match the
requirements; and
eventually merge all the best offers from each site and
select the best ones.
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A shopping agent may support us, automatizing the whole process
once it receives the request/query q from the buyer:

The agent selects some sites/resources S that it considers as
relevant to q (represented by probabilistic rules).

For the top-k selected sites, the agent has to reformulate q using
the terminology/ontology of the specific car selling site (which is
done using probabilistic rules).

The query q may contain many vague/fuzzy concepts such as
“the price is around 22 000e or less”, and so a car may match q
to a degree. So, a resource returns a ranked list of cars, where
the ranks depend on the degrees to which the cars match q.

Eventually, the agent integrates the ranked lists (using
probabilities) and shows the top-n items to the buyer.
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Cars t Trucks t Vans t SUVs v Vehicles
PassengerCars t LuxuryCars v Cars
CompactCars tMidSizeCars t SportyCars v PassengerCars

Cars v (∃hasReview .Integer) u (∃hasInvoice.Integer)
u (∃hasResellValue.Integer) u (∃hasMaxSpeed .Integer)
u (∃hasHorsePower .Integer) u . . .

MazdaMX5Miata : SportyCar u (∃hasInvoice.18883)
u (∃hasHorsePower .166) u . . .

MitsubishiEclipseSpyder : SportyCar u (∃hasInvoice.24029)
u (∃hasHorsePower .162) u . . .
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We may now encode “costs at most about 22 000e” and
“has a power of around 150 HP” in the buyer’s request
through the following concepts C and D, respectively:

C =∃hasInvoice.LeqAbout22000 and
D =∃hasHorsePower .Around150HP,

where LeqAbout22000 = L(22000,25000) and
Around150HP = Tri(125,150,175).
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The following fuzzy dl-rule encodes the buyer’s request
“a sports car that costs at most about 22 000e and
that has a power of around 150 HP”.

query(x) ←⊗ SportyCar(x)∧⊗
hasInvoice(x , y1)∧⊗
DL[LeqAbout22000](y1)∧⊗
hasHorsePower(x , y2)∧⊗
DL[Around150HP](y2) ≥ 1 .

Here, ⊗ is the Gödel t-norm (that is, x ⊗ y = min(x , y)).
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The buyer’s request, but in a “different” terminology:

query(x) ←⊗ SportsCar(x) ∧⊗ hasPrice(x , y1) ∧⊗ hasPower(x , y2) ∧⊗
DL[LeqAbout22000](y1) ∧⊗ DL[Around150HP](y2) ≥ 1

Ontology alignment mapping rules:

SportsCar(x) ←⊗ DL[SportyCar ](x) ∧⊗ scpos ≥ 0.9
hasPrice(x) ←⊗ DL[hasInvoice](x) ∧⊗ hipos ≥ 0.8

hasPower(x) ←⊗ DL[hasHorsePower ](x) ∧⊗ hhppos ≥ 0.8 ,

Probability distribution µ:

µ(scpos) = 0.91 µ(scneg) = 0.09
µ(hipos) = 0.78 µ(hineg) = 0.22
µ(hhppos) = 0.83 µ(hhpneg) = 0.17 .
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The following are some tight consequences:

KB ‖∼ tight (E[query((MazdaMX5Miata)])[0.21,0.21]

KB ‖∼ tight (E[query((MitsubishiEclipseSpyder)])[0.19,0.19] .

Informally, the expected degree to which MazdaMX5Miata
matches the query q is 0.21, while the expected degree to
which MitsubishiEclipseSpyder matches the query q is 0.19,

Thus, the shopping agent ranks the retrieved items as follows:

rank item degree
1. MazdaMX5Miata 0.21
2. MitsubishiEclipseSpyder 0.19
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