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Abstract. Managing uncertainty and/or vagueness is starting to play an impor-
tant role in Semantic Web representation languages. Our aim is to overview basic
concepts on representing uncertain and vague knowledge in current Semantic
Web ontology and rule languages (and their combination).

1 Introduction

The management of uncertainty and/or vagueness is an important issue whenever the
real world information to be represented is of imperfect nature, which likely occurs
in Semantic Web tasks. In this work we overview the relevant work in the context of
Description Logics [6], Logic Programs [141] and their combination. This work should
act as a reference/citation guide to the relevant literature, and, thus, we keep the formal
level to a minimum.

2 Uncertainty and Vagueness Basics

There has been a long-lasting misunderstanding in the literature of artificial intelli-
gence and uncertainty modelling, regarding the role of probability/possibility theory
and vague/fuzzy theory. A clarifying paper is [63]. We recall here salient notes, which
may clarify the role of these theories for the inexpert reader.

A standard example that points out the difference between degrees of uncertainty
and degrees of truth is that of a bottle [63]. In terms of binary truth values, a bottle is
viewed as full or empty. But if one accounts for the quantity of liquid in the bottle, one
may e.g. say that the bottle is “half-full”. Under this way of speaking, “full” becomes a
fuzzy predicate [287] and the degree of truth of “the bottle is full” reflects the amount
of liquid in the bottle. The situation is quite different when expressing our ignorance
about whether the bottle is either full or empty (given that we know that only one of the
two situations is the true one). Saying that the probability that the bottle is full is 0.5
does not mean that the bottle is half full.

We recall that under uncertainty theory fall all those approaches in which statements
rather than being either true or false, are true or false to some probability or possibility
(for example, “it will rain tomorrow”). That is, a statement is true or false in any world,
but we are “uncertain” about which world to consider as the right one, and thus we
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speak about e.g. a probability distribution or a possibility distribution over the worlds.
For example, we cannot exactly establish whether it will rain tomorrow or not, due to
our incomplete knowledge about our world, but we can estimate to which degree this is
probable, possible, and necessary.

As for the main differences between probability and possibility theory, the proba-
bility of an event is the sum of the probabilities of all worlds that satisfy this event,
whereas the possibility of an event is the maximum of the possibilities of all worlds
that satisfy the event. Intuitively, the probability of an event aggregates the probabilities
of all worlds that satisfy this event, whereas the possibility of an event is simply the
possibility of the “most optimistic” world that satisfies the event. Hence, although both
probability and possibility theory allow for quantifying degrees of uncertainty, they are
conceptually quite different from each other. That is, probability and possibility theory
represent different facets of uncertainty.

On the other hand, under vagueness/fuzziness theory fall all those approaches in
which statements (for example, “the tomato is ripe”) are true to some degree, which
is taken from a truth space. That is, an interpretation maps a statement to a truth degree,
since we are unable to establish whether a statement is completely true or false due
to the involvement of vague concepts, such as “ripe”, which only have an imprecise
definition. For example, we cannot exactly say whether a tomato is ripe or not, but
rather can only say that the tomato is ripe to some degree. Usually, such statements
involve so-called vague/fuzzy predicates [287].

Note that all vague/fuzzy statements are truth-functional, that is, the degree of truth
of every statement can be calculated from the degrees of truth of its constituents, while
uncertain statements cannot be a function of the uncertainties of their constituents [62].
More concretely, in probability theory, only negation is truth-functional (see Eq. 1),
while in possibility theory, only disjunction resp. conjunction is truth-functional in pos-
sibilities resp. necessities of events (see Eq. 4). Furthermore, mathematical fuzzy logics
are based on truly many-valued logical operators, while uncertainty logics are defined
on top of standard binary logical operators.

In the following, we illustrate a typical formalization of uncertain statements and
vague statements. In the former case, we consider a basic probabilistic/possibilistic
logic, while in the latter, we consider a basic many-valued logic.

2.1 Probabilistic Logic

Probabilistic logic has its origin in philosophy and logic. Its roots can be traced back to
Boole in 1854 [17]. There is a wide spectrum of formal languages that have been ex-
plored in probabilistic logic, ranging from constraints for unconditional and conditional
events to rich languages that specify linear inequalities over events (see especially the
work by Nilsson [207], Fagin et al. [74], Dubois and Prade et al. [5, 60, 64, 65], Frisch
and Haddawy [81], and the first author [154,157,161]; see also the survey on sentential
probability logic by Hailperin [94]). Recently, nonmonotonic generalizations of proba-
bilistic logic have been developed and explored; see especially [165] for an overview.
In this section, for illustrative purposes, we recall only the simple probabilistic logic
described in [207].
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We first define probabilistic formulas and probabilistic knowledge bases. We assume
a set of basic events Φ= {p1, . . . , pn} with n� 1. We use ⊥ and � to denote false
and true, respectively. We define events by induction as follows. Every element of
Φ∪{⊥,�} is an event. If φ and ψ are events, then also ¬φ, (φ ∧ ψ), (φ ∨ ψ), and
(φ → ψ) are events. We use (φ ↔ ψ) as a shortcut for (φ → ψ) ∧ (ψ → φ). We
adopt the usual conventions to eliminate parentheses. A probabilistic formula is an ex-
pression of the form φ� l, where φ is an event, and l is a real number from the unit
interval [0, 1]. Informally, φ� l says that φ is true with a probability of at least l. For
example, rain tomorrow � 0.7 may express that it will rain tomorrow with a probabil-
ity of at least 0.7. Notice also that ¬φ� 1− u encodes that φ is true with a probability
of at most u. Also, we use φ = l as a shortcut for having both φ� l and ¬φ� 1 − l.
A probabilistic knowledge base KB is a finite set of probabilistic formulas.

We next define worlds and probabilistic interpretations. A world I associates with
every basic event in Φ a binary truth value. We extend I by induction to all events as
usual. We denote by IΦ the (finite) set of all worlds forΦ. A world I satisfies an event φ,
or I is a model of φ, denoted I |=φ, iff I(φ)= true. A probabilistic interpretation Pr
is a probability function on IΦ (that is, a mapping Pr : IΦ → [0, 1] such that all Pr(I)
with I ∈IΦ sum up to 1). Intuitively, Pr(I) is the degree to which the world I ∈IΦ
is probable, that is, the probability function Pr encodes our “uncertainty” about which
world is the right one. The probability of an event φ in Pr , denoted Pr(φ), is the sum
of all Pr (I) such that I ∈IΦ and I |=φ. The following equations are an immediate
consequence of the above definitions: for all probabilistic interpretations Pr and events
φ and ψ, the following relationships hold:

Pr(φ ∧ ψ) = Pr (φ) + Pr(ψ)− Pr (φ ∨ ψ) ;
Pr(φ ∧ ψ) � min(Pr(φ),Pr (ψ)) ;
Pr(φ ∧ ψ) � max(0,Pr(φ) + Pr (ψ)− 1) ;
Pr(φ ∨ ψ) = Pr (φ) + Pr(ψ)− Pr (φ ∧ ψ) ;
Pr(φ ∨ ψ) � min(1,Pr(φ) + Pr(ψ)) ;
Pr(φ ∨ ψ) � max(Pr(φ),Pr (ψ)) ;
Pr(¬φ) = 1− Pr (φ) ;
Pr(⊥) = 0 ;
Pr(�) = 1 .

(1)

A probabilistic interpretation Pr satisfies a probabilistic formula φ� l, or Pr is a model
of φ� l, denoted Pr |=φ� l, iff Pr (φ)� l. We say Pr satisfies a probabilistic knowl-
edge base KB , or Pr is a model of KB , iff Pr satisfies all F ∈KB . We say KB is
satisfiable iff a model of KB exists. A probabilistic formula F is a logical consequence
of KB , denoted KB |=F , iff every model of KB satisfies F . We say φ� l is a tight log-
ical consequence of KB iff l is the infimum of Pr(φ) subject to all models Pr of KB .
Notice that the latter is equivalent to l= sup {r |KB |=φ� r}.

Note that often also conditional events of the form φ | ψ are allowed, which may
then be used in conditional probabilistic formulae of the form φ | ψ� l, where φ and
ψ are events. These statements intuitively encode that the conditional probability of φ
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given ψ is equal or greater than l. For instance, flies | bird� 0.8 dictates that at least
80% of birds fly. From a semantics point of view, we define

Pr(φ | ψ) =

{
Pr(φ∧ψ)
Pr(ψ) ifPr(ψ) 
= 0

1 otherwise
(2)

and, thus, Pr |=φ | ψ� l, iff Pr(φ | ψ)� l.
The main decision and optimization problems in probabilistic logic are deciding the

satisfiability of probabilistic knowledge bases and logical consequences from proba-
bilistic knowledge bases, as well as computing tight logical consequences from prob-
abilistic knowledge bases, which can be done by deciding the solvability of a system
of linear inequalities and by solving a linear optimization problem, respectively. In par-
ticular, column generation techniques from operations research have been successfully
used to solve large problem instances in probabilistic logic; see especially the work by
Jaumard et al. [114] and Hansen et al. [98].

Bayesian Network. We recall here also some basics of Bayesian Networks (BN), as
they play an important role in many probabilistic logic formalisms in the sense that BNs
can be expressed in these logics (see, e.g. [29, 125, 215, 285]).

A Bayesian network is a directed acyclic graph whose nodes represent random vari-
ables, and whose arcs encode conditional independencies between the variables. If
there is an arc from node b to another node a, b is called a parent of a, and a is a
child of b. The set of parent nodes of a node ai is denoted by parents(ai). If nodes
b1, . . . , bn are parents of a node a, then we have an associated conditional probability
table Pr (a | b1, . . . , bn). If node ai has no parents, its local probability distribution is
said to be unconditional, otherwise it is conditional. If the value of a node is observed,
then the node is said to be an evidence node. It is required that the joint distribution of
the node values can be written as the product of the local distributions of each node and
its parents: that is,

Pr(a1, . . . , an) = Πn
i=1Pr(ai | parents(ai)) .

Fig. 1. A Bayesian network
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We may also encode a BN in a probabilistic propositional logic using conditional events,
as shown in the following example.

Example 2.1. Suppose that there are two events, which could cause grass to be wet:
either the sprinkler is on or it’s raining. Also, suppose that the rain has a direct effect
on the use of the sprinkler (namely that when it rains, the sprinkler is usually not turned
on). Then the situation can be modelled with a Bayesian network, as shown in Fig. 1.
All three variables (Rain,Sprinkler and GrassWet ) have two possible values T (for
true) and F (for false). Rain has an unconditional probability distribution: Pr(Rain
= T ) = 0.2, while Pr(Rain = F ) = 0.8. The conditional probability table asso-
ciated to the node Sprinkler provides the conditional probabilities Pr(Sprinkler =
X | Rain = Y ) for any X,Y ∈ {T, F}, while the conditional probability table associ-
ated to the node GrassWet provides the conditional probabilities Pr(GrassWet = X |
Sprinkler = Y1,Rain = Y2) for anyX,Yi ∈ {T, F}. The joint probability function is:

Pr (GrassWet ,Sprinkler ,Rain) = Pr(GrassWet | Sprinkler ,Rain) (3)

·Pr(Sprinkler | Rain) · Pr(Rain) .

The model can answer questions like “What is the probability that it is raining, given
the grass is wet?” using Eq. 3:

Pr(Rain = T | GrassWet = T ) =
Pr(Rain = T,GrassWet = T )

Pr(GrassWet = T )

=

P
Y ∈{T,F} Pr(Rain = T,GrassWet = T, Sprinkler = Y )

P
Y1,Y2∈{T,F} Pr(GrassWet = T, (Rain = Y1,Sprinkler = Y2))

=
0.99 · 0.01 · 0.2 + 0.8 · 0.99 · 0.2

0.99 · 0.01 · 0.2 + 0.9 · 0.4 · 0.8 + 0.8 · 0.99 · 0.2 + 0 · 0.6 · 0.8
≈ 0.3577 .

We may encode the BN in a probabilistic propositional logic using conditional events.
Indeed, for every node a, we use a propositional letters a(T ), a(F ), where the former
encodes the event “a is true” and the latter encodes the event “a is false”. Of course,
we have to consider also (a(T ) ↔ ¬a(F )) = 1. If a node a has no parents then we
can easily encode its associated probability table with the formula a(T ) = p. Hence,
we have the formula Rain(T ) = 0.2. If a node has parents, we encode its associated
conditional probability table using conditional probability formulae. In particular, we
will have the conditional probabilistic formulae

(Sprinkler(T ) | Rain(F )) = 0.4

(Sprinkler(T ) | Rain(T )) = 0.01

(GrassWet(T ) | Sprinkler(F ) ∧ Rain(F )) = 0.0

(GrassWet(T ) | Sprinkler(F ) ∧ Rain(T )) = 0.8

(GrassWet(T ) | Sprinkler(T ) ∧ Rain(F )) = 0.9

(GrassWet(T ) | Sprinkler(T ) ∧ Rain(T )) = 0.0 .

�
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2.2 Possibilistic Logic

We next recall possibilistic logic; see especially [59]. The main syntactic and semantic
differences to probabilistic logic can be summarized as follows. Syntactically, rather
than using probabilistic formulas to constrain the probabilities of propositional events,
we now use possibilistic formulas to constrain the necessities and possibilities of propo-
sitional events. Semantically, rather than having probability distributions on worlds,
each of which associates with every event a unique probability, we now have possibility
distributions on worlds, each of which associates with every event a unique possibil-
ity and a unique necessity. Differently from the probability of an event, which is the
sum of the probabilities of all worlds that satisfy that event, the possibility of an event
is the maximum of the possibilities of all worlds that satisfy the event. As a conse-
quence, probabilities and possibilities of events behave quite differently from each other
(see Eqs. 1 and 4). These fundamental semantic differences between probabilities and
possibilities can also be used as the main criteria for using either probabilistic logic or
possibilistic logic in a given application involving uncertainty. In addition, possibilistic
logic may especially be used for encoding user preferences, since possibility measures
can actually be viewed as rankings (on worlds or also objects) along an ordinal scale.

The semantic differences between probabilities and possibilities are also reflected in
the computational properties of possibilistic and probabilistic logic, since reasoning in
probabilistic logic generally requires to solve linear optimization problems, while rea-
soning in possibilistic logic does not, and thus can generally be done with less compu-
tational effort. Note that although possibility measures can be viewed as sets of upper
probability measures [61], and possibility and probability measures can be translated
into each other [56], no translations are known between possibilistic and probabilistic
knowledge bases as described here.

We first define possibilistic formulas and knowledge bases. Possibilistic formulas
have the form Pφ� l or Nφ� l, where φ is an event, and l is a real number from [0, 1].
Informally, such formulas encode to what extent φ is possibly resp. necessarily true.
For example, P rain tomorrow � 0.7 encodes that it will rain tomorrow is possible to
degree 0.7, while N father→man � 1 says that a father is necessarily a man. A possi-
bilistic knowledge base KB is a finite set of possibilistic formulas.

A possibilistic interpretation is a mapping π : IΦ → [0, 1]. Intuitively, π(I) is the
degree to which the world I is possible. In particular, every world I such that π(I)= 0
is impossible, while every world I such that π(I)= 1 is totally possible. We say π is
normalized iff π(I)= 1 for some I ∈IΦ. Intuitively, this guarantees that there exists at
least one world, which could be considered as the real one.

The possibility of an event φ in a possibilistic interpretation π, denoted Poss(φ), is
then defined by Poss(φ)= max {π(I) | I ∈IΦ, I |=φ} (where max ∅=0). Intuitively,
the possibility of φ is evaluated in the most possible world where φ is true. The dual
notion to the possibility of an event φ is the necessity of φ, denoted Nec(φ), which is
defined by Nec(φ)= 1 − Poss(¬φ). It reflects the lack of possibility of ¬φ, that is,
Nec(φ) evaluates to what extent φ is certainly true. The following properties follows
immediately from the above definitions.
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For all possibilistic interpretations π and events φ and ψ, the following relationships
hold:

Poss(φ ∧ ψ) � min(Poss(φ), Poss(ψ)) ;
Poss(φ ∨ ψ) = max(Poss(φ), Poss(ψ)) ;
Poss(¬φ) = 1−Nec(φ) ;
Poss(⊥) = 0 ;
Poss(�) = 1 (in the normalized case);

Nec(φ ∧ ψ) = min(Nec(φ), Nec(ψ)) ;
Nec(φ ∨ ψ) � max(Nec(φ), Nec(ψ)) ;
Nec(¬φ) = 1− Poss(φ) ;
Nec(⊥) = 0 (in the normalized case);
Nec(�) = 1 .

(4)

A possibilistic interpretation π satisfies a possibilistic formula Pφ� l (resp., Nφ � l),
or π is a model of Pφ� l (resp., Nφ� l), denoted π |= Pφ� l (resp., π |= Nφ� l), iff
Poss(φ)� l (resp.,Nec(φ)� l). The notions of satisfiability, logical consequence, and
tight logical consequence for possibilistic knowledge bases are then defined as usual (in
the same way as in the probabilistic case). We refer the reader to [59,107] for algorithms
for possibilistic logic.

2.3 Many-Valued Logics

In the setting of many-valued logics, the convention prescribing that a proposition is
either true or false is changed. A more refined range is used for the function that rep-
resents the meaning of a proposition. This is usual in natural language when words are
modelled by fuzzy sets. For example, the compatibility of “tall” in the phrase “a tall
man” with some individual of a given height is often graded: The man can be judged
not quite tall, somewhat tall, rather tall, very tall, etc. Changing the usual true/false con-
vention leads to a new concept of proposition, whose compatibility with a given state of
facts is a matter of degree and can be measured on an ordered scale S that is no longer
{0, 1}, but e.g. the unit interval [0, 1]. This leads to identifying a “fuzzy proposition”
φ with a fuzzy set of possible states of affairs; the degree of membership of a state of
affairs to this fuzzy set evaluates the degree of fit between the proposition and the state
of facts it refers to. This degree of fit is called degree of truth of the proposition φ in the
interpretation I (state of affairs). Many-valued logics provide compositional calculi of
degrees of truth, including degrees between “true” and “false”. A sentence is now not
true or false only, but may have a truth degree taken from a truth space S, usually [0, 1]
(in that case we speak bout Mathematical Fuzzy Logic [95]) or { 0

n ,
1
n , . . . ,

n
n} for an

integer n� 1. Often S may be also a complete lattice or a bilattice [85, 79] (often used
in logic programming [80]). In the sequel, we assume S = [0, 1].

In the many-valued logic that we consider here, many-valued formulas have the form
φ� l or φ� u, where l, u∈ [0, 1] [93, 95], which encode that the degree of truth of φ
is at least l resp. at most u. For example, ripe tomato � 0.9 says that we have a rather
ripe tomato (the degree of truth of ripe tomato is at least 0.9).
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Semantically, a many-valued interpretation I maps each basic proposition pi into
[0, 1] and is then extended inductively to all propositions as follows:

I(φ ∧ ψ) = I(φ) ⊗ I(ψ) ;
I(φ ∨ ψ) = I(φ) ⊕ I(ψ) ;
I(φ→ ψ) = I(φ)⇒ I(ψ) ;
I(¬φ) = �I(φ) ,

(5)

where ⊗, ⊕,⇒, and � are so-called combination functions, namely, triangular norms
(or t-norms), triangular co-norms (or s-norms), implication functions, and negation
functions, respectively, which extend the classical Boolean conjunction, disjunction,
implication, and negation, respectively, to the many-valued case.

Several t-norms, s-norms, implication functions, and negation functions have been
given in the literature. An important aspect of such functions is that they satisfy some
properties that one expects to hold for the connectives; see Tables 1 and 2. Note that
in Table 1, the two properties Tautology and Contradiction follow from Identity, Com-
mutativity, and Monotonicity. Usually, the implication function ⇒ is defined as
r-implication, that is, a⇒ b = sup {c | a⊗ c � b}.

Some t-norms, s-norms, implication functions, and negation functions of various
fuzzy logics are shown in Table 3 [95]. In fuzzy logic, one usually distinguishes three
different logics, namely, Łukasiewicz, Gödel, and Product logic; the popular Zadeh
logic is a sublogic of Łukasiewicz logic. Some salient properties of these logics are
shown in Table 4. For more properties, see especially [95,209]. Note also, that a many-
valued logic having all properties shown in Table 4, collapses to boolean logic, that
is the truth-set can be {0, 1} only.

The implication x ⇒ y = max(1 − x, y) is called Kleene-Dienes implication in
the fuzzy logic literature. Note that we have the following inferences: Let a � n and
a ⇒ b � m. Then, under Kleene-Dienes implication, we infer that if n > 1 −m then
b � m. Under r-implication relative to a t-norm ⊗, we infer that b � n⊗m.

Note that implication functions and t-norms are also used to define the degree of
subsumption between fuzzy sets and the composition of two (binary) fuzzy relations.
A fuzzy set R over a countable crisp set X is a function R : X → [0, 1]. The de-
gree of subsumption between two fuzzy sets A and B, denoted A � B, is defined as
infx∈X A(x)⇒ B(x), where⇒ is an implication function. Note that if A(x) � B(x),
for all x∈ [0, 1], then A � B evaluates to 1. Of course, A � B may evaluate to a value
v ∈ (0, 1) as well. A (binary) fuzzy relation R over two countable crisp sets X and Y is
a function R : X × Y → [0, 1]. The inverse of R is the functionR−1 : Y ×X → [0, 1]
with membership function R−1(y, x) = R(x, y), for every x ∈ X and y ∈ Y . The
composition of two fuzzy relations R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1]
is defined as (R1 ◦ R2)(x, z) = supy∈Y R1(x, y) ⊗ R2(y, z). A fuzzy relation R is
transitive iff R(x, z)� (R ◦R)(x, z).

A many-valued interpretation I satisfies a many-valued formula φ� l (resp., φ� u)
or I is a model of φ� l (resp., φ� u), denoted I |=φ� l (resp., I |=φ� u), iff I(φ)� l
(resp., I(φ)� u). The notions of satisfiability, logical consequence, and tight logical
consequence for many-valued knowledge bases are then defined in the standard way (in
the same way as in the probabilistic case). We refer the reader to [92, 93, 95] for algo-
rithms for many-valued logics.
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Table 1. Properties for t-norms and s-norms

Axiom Name T-norm S-norm
Tautology / Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b � c, then a⊗ b � a⊗ c if b � c, then a⊕ b � a⊕ c

Table 2. Properties for implication and negation functions

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0⇒ b = 1, a⇒ 1 = 1, 1⇒ 0 = 0 � 0 = 1, � 1 = 0
Antitonicity if a � b, then a⇒ c � b⇒ c if a � b, then � a � � b
Monotonicity if b � c, then a⇒ b � a⇒ c

Table 3. Combination functions of various fuzzy logics

Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
a⊗ b max(a + b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b− a · b max(a, b)

a⇒ b min(1− a + b, 1)

(
1 if a � b

b otherwise
min(1, b/a) max(1− a, b)

� a 1− a

(
1 if a = 0

0 otherwise

(
1 if a = 0

0 otherwise
1− a

Table 4. Some additional properties of combination functions of various fuzzy logics

Property Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
x⊗� x = 0 + + + −
x⊕� x = 1 + − − −
x⊗ x = x − + − +
x⊕ x = x − + − +
�� x = x + − − +

x⇒ y = � x⊕ y + − − +
� (x⇒ y) = x⊗� y + − − +
� (x⊗ y) = �x⊕� y + + + +
� (x⊕ y) = �x⊗� y + + + +

3 Managing Imperfect Knowledge in Semantic Web Languages

3.1 The Case of Description Logics

Probabilistic Uncertainty and Description Logics. Although there are several pre-
vious approaches to probabilistic description logics without semantic web background,
P-SHOIN (D) [86, 167, 171] (see also [175]) is the most expressive probabilistic de-
scription logic, both in terms of the generalized classical description logic and in terms
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of the supported forms of terminological and assertional probabilistic knowledge. The
syntax of the probabilistic description logic P-SHOIN (D) uses the notion of a condi-
tional constraint from [157] to express probabilistic knowledge in addition to the axioms
of SHOIN (D). Its semantics is based on the notion of lexicographic entailment in
probabilistic default reasoning [159, 163], which is a probabilistic generalization of the
sophisticated notion of lexicographic entailment by Lehmann [132] in default reason-
ing from conditional knowledge bases. Due to this semantics, P-SHOIN (D) allows
for expressing both terminological probabilistic knowledge about concepts and roles,
and also assertional probabilistic knowledge about instances of concepts and roles. It
naturally interprets terminological and assertional probabilistic knowledge as statisti-
cal knowledge about concepts and roles and as degrees of belief about instances of
concepts and roles, respectively, and allows for deriving both statistical knowledge
and degrees of belief. As an important additional feature, it also allows for express-
ing default knowledge about concepts (as a special case of terminological probabilistic
knowledge), which is semantically interpreted as in Lehmann’s lexicographic default
entailment [132].

Roughly, every probabilistic knowledge base consists of (i) a PTBox, which is a
classical (description logic) knowledge base along with probabilistic terminological
knowledge, and (ii) a collection of PABoxes, which encode probabilistic assertional
knowledge about a certain set of individuals. To this end, we partition the set of indi-
viduals I into the set of classical individuals IC and the set of probabilistic individuals
IP , and we associate with every probabilistic individual a PABox. That is, probabilistic
individuals are those individuals in I for which we explicitly store some probabilistic
assertional knowledge in a PABox.

We first define conditional constraints as follows. We assume a finite nonempty set C
of basic classification concepts (or basic c-concepts for short), which are (not necessar-
ily atomic) concepts in SHOIN (D) that are free of individuals from IP . Informally,
they are the relevant description logic concepts for defining probabilistic relationships.
The set of classification concepts (or c-concepts) is inductively defined as follows. Ev-
ery basic c-concept φ∈C is a c-concept. If φ and ψ are c-concepts, then ¬φ and (φ�ψ)
are also c-concepts. We often write (φ�ψ) to abbreviate ¬(¬φ�¬ψ), as usual.

A conditional constraint is an expression of the form (ψ|φ)[l, u], where φ and ψ are
c-concepts, and l and u are reals from [0, 1]. Informally, (ψ|φ)[l, u] encodes that the
probability of ψ given φ lies between l and u.

A PTBox, a PABox, and a probabilistic knowledge bases are defined as follows: (i)
A PTBox PT =(T, P ) consists of a classical (description logic) knowledge base T and
a finite set of conditional constraintsP ; (ii) A PABox P is a finite set of conditional con-
straints; and (iii) a probabilistic knowledge base KB = (T, P, (Po)o∈IP ) relative to IP
consists of a PTBox PT =(T, P ) and one PABox Po for every probabilistic individ-
ual o∈ IP . The meaning of a conditional constraint (ψ|φ)[l, u] depends on whether it
belongs to P or to Po for some probabilistic individual o∈ IP :

– Each (ψ|φ)[l, u] in P informally encodes that “generally, if an object belongs to
φ, then it belongs to ψ with a probability in [l, u]”. For example, (∃R.{o}|φ)[l, u]
in P , where o∈ IC and R∈RA, encodes that “generally, if an object belongs to φ,
then it is related to o by R with a probability in [l, u]”.
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– Each (ψ|φ)[l, u] in Po, where o∈ IP , informally encodes that “if o belongs to φ,
then o belongs to ψ with a probability in [l, u]”. For example, (∃R.{o′}|φ)[l, u] in
Po, where o∈ IP , o′ ∈ IC , and R∈RA, expresses that “if o belongs to φ, then o is
related to o′ by R with a probability in [l, u]”.

So, a probabilistic knowledge base KB =(T, P, (Po)o∈IP ) extends a classical knowl-
edge base T by probabilistic terminological knowledge P and probabilistic assertional
knowledge Po about every o∈ IP . That is, P represents our statistical knowledge about
concepts, while every Po represents our degrees of belief about o.

Observe that the axioms in T and the conditional constraints in every Po with o∈ IP
are strict (that is, they must always hold), while the conditional constraints in P are
defeasible (that is, they may have exceptions and thus do not always have to hold),
since T ∪P may not always be satisfiable as a whole in combination with our degrees
of belief (and then we ignore some elements of P ).

Consequently, a conditional constraint (ψ|φ)[1, 1] in P encodes “generally, if an
object belongs to φ, then it also belongs to ψ”, while (ψ|φ)[1, 1] in Po encodes “if o be-
longs to φ, then o also belongs to ψ”. The latter is equivalent to the implication o :φ⇒
o :ψ, while the former is in general not equivalent to φ�ψ.

Semantics. Now we define the semantics of P-SHOIN (D). After some preliminaries,
we introduce the notions of consistency and lexicographic entailment for probabilistic
knowledge bases, which are based on the notions of consistency and lexicographic en-
tailment, respectively, in probabilistic default reasoning [159, 163].

We now define (possible) objects and probabilistic interpretations, which are certain
sets of basic c-concepts resp. probability functions on the set of all (possible) objects.
We also define the satisfaction of classical knowledge bases and conditional constraints
in probabilistic interpretations.

A (possible) object o is a set of basic c-concepts φ∈C such that {i :φ |φ∈ o} ∪
{i :¬φ |φ ∈ C \ o} is satisfiable, where i is a new individual. Informally, every object o
represents an individual i that is fully specified on C in the sense that o belongs (resp.,
does not belong) to every c-concept φ∈ o (resp., φ∈C \ o). We denote by OC the set
of all objects relative to C. An object o satisfies a classical knowledge base T , or o is
a model of T , denoted o |=T , iff T ∪{i :φ |φ∈ o} ∪ {i :¬φ |φ∈C \ o} is satisfiable,
where i is a new individual. An object o satisfies a basic c-concept φ∈C, or o is a
model of φ, denoted o |=φ, iff φ∈ o. The satisfaction of c-concepts by objects is induc-
tively extended to all c-concepts, as usual, by (i) o |=¬φ iff o |=φ does not hold, and
(ii) o |=φ�ψ iff o |=φ and o |=ψ. It is not difficult to verify that a classical knowledge
base T is satisfiable iff an object o∈OC exists that satisfies T .

A probabilistic interpretation Pr is a probability function on OC (that is, a map-
ping Pr : OC → [0, 1] such that all Pr (o) with o∈OC sum up to 1). We say Pr
satisfies a classical knowledge base T , or Pr is a model of T , denoted Pr |=T , iff
o |=T for every o∈OC such that Pr(o)> 0. We define the probability of a c-concept
and the satisfaction of conditional constraints in probabilistic interpretations as follows.
The probability of a c-concept φ in a probabilistic interpretation Pr denoted Pr(φ), is
the sum of all Pr (o) such that o |=φ. For c-concepts φ and ψ such that Pr(φ)> 0,
we write Pr (ψ|φ) to abbreviate Pr(φ � ψ) /Pr(φ). We say Pr satisfies a condi-
tional constraint (φ|ψ)[l, u], or Pr is a model of (ψ|φ)[l, u], denoted Pr |= (ψ|φ)[l, u],
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iff Pr(φ)= 0 or Pr(ψ|φ)∈ [l, u]. We say Pr satisfies a set of conditional constraintsF ,
or Pr is a model of F , denoted Pr |=F , iff Pr |=F for all F ∈F . It is not difficult to
verify that a classical knowledge base T is satisfiable iff there exists a probabilistic
interpretation that satisfies T .

The notion of consistency for PTBoxes and probabilistic knowledge bases is based
on the notion of consistency in probabilistic default reasoning [159, 163]. We first give
some preparative definitions. A probabilistic interpretation Pr verifies a conditional
constraint (ψ|φ)[l, u] iff Pr (φ)= 1 and Pr(ψ)∈ [l, u], that is, iff Pr (φ)= 1 and Pr |=
(ψ|φ)[l, u]. We say Pr falsifies (ψ|φ)[l, u] iff Pr(φ)= 1 and Pr 
|= (ψ|φ)[l, u]. A set of
conditional constraints F tolerates a conditional constraint F under a classical knowl-
edge base T iff T ∪F has a model that verifies F .

A PTBox PT =(T, P ) is consistent iff (i) T is satisfiable and (ii) there exists an
ordered partition (P0, . . . , Pk) of P such that each Pi with i∈{0, . . . , k} is the set of
all F ∈P \ (P0 ∪ · · · ∪ Pi−1) that are tolerated under T by P \ (P0 ∪ · · · ∪ Pi−1). In-
formally, condition (ii) means that P has a natural ordered partition into collections of
conditional constraints of increasing specificities such that every collection is locally
consistent. That is, any inconsistencies can be naturally resolved by preferring more
specific pieces of knowledge to less specific ones. For example, the inconsistency be-
tween (¬∃HasColor.{red} |Car)[1, 1] and (∃HasColor.{red} | SportsCar)[1, 1] when
reasoning about sports cars is naturally resolved by preferring the latter to the former.
We call the above (unique) ordered partition (P0, . . . , Pk) of P the z-partition of PT . A
probabilistic knowledge base KB =(T, P, (Po)o∈IP ) is consistent iff (i) PT =(T, P )
is consistent and (ii) T ∪Po is satisfiable for every probabilistic individual o∈ IP . Infor-
mally, (ii) says that the strict knowledge in T must be compatible with the strict degrees
of belief in Po, for every probabilistic individual o. Observe that (i) involves T and P ,
while (ii) involves T and Po, for every probabilistic individual o. This separate treat-
ment of P and the Po’s is due to the fact that P represents probabilistic terminological
knowledge, while each Po represents probabilistic assertional knowledge (about o).

The notion of lexicographic entailment for probabilistic knowledge bases is based
on lexicographic entailment in probabilistic default reasoning [159,163]. In the sequel,
let KB =(T, P, (Po)o∈IP ) be a consistent probabilistic knowledge base. We first de-
fine a lexicographic preference relation on probabilistic interpretations, which is then
used to define the notion of lexicographic entailment for sets of conditional constraints
under PTBoxes. We finally define the notion of lexicographic entailment for deriving
statistical knowledge and degrees of belief about probabilistic objects from PTBoxes
and probabilistic knowledge bases, respectively.

We use the (unique) z-partition (P0, . . . , Pk) of (T, P ) to define a lexicographic
preference relation on probabilistic interpretations Pr and Pr ′: We say Pr is lexico-
graphically preferable (or lex-preferable) to Pr ′ iff some i∈{0, . . . , k} exists such that
|{F ∈Pi | Pr |=F}| > |{F ∈Pi | Pr ′ |=F}| and |{F ∈Pj | Pr |=F}| = |{F ∈Pj |
Pr ′ |=F}| for all i < j� k. Roughly speaking, this preference relation implements the
idea of preferring more specific pieces of knowledge to less specific ones in the case of
local inconsistencies. It can thus be used for ignoring the latter when drawing conclu-
sions in the case of local inconsistencies. A model Pr of a classical knowledge base T
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and a set of conditional constraints F is a lexicographically minimal (or lex-minimal)
model of T ∪F iff no model of T ∪F is lex-preferable to Pr .

We define the notion of lexicographic entailment of conditional constraints from
sets of conditional constraints under PTBoxes as follows. A conditional constraint
(ψ|φ)[l, u] is a lexicographic consequence (or lex-consequence) of a set of conditional
constraints F under a PTBox PT , denoted F ‖∼ lex (ψ|φ)[l, u] under PT , iff Pr(ψ)∈
[l, u] for every lex-minimal model Pr of T ∪ F ∪ {(φ|�)[1, 1]}. We say (ψ|φ)[l, u]
is a tight lexicographic consequence (or tight lex-consequence) of F under PT , de-
noted F ‖∼ lex

tight (ψ|φ)[l, u] under PT , iff l (resp., u) is the infimum (resp., supremum)
of Pr(ψ) subject to all lex-minimal models Pr of T ∪ F ∪ {(φ|�)[1, 1]}. Note that
[l, u] = [1, 0] (where [1, 0] represents the empty interval) when no such model Pr ex-
ists. Furthermore, for inconsistent PTBoxes PT , we define F ‖∼ lex (ψ|φ)[l, u] and
F ‖∼ lex

tight (ψ|φ)[1, 0] under PT for all sets of conditional constraints F and all
conditional constraints (ψ|φ)[l, u].

We now define which statistical knowledge and degrees of belief follow under lex-
icographic entailment from PTBoxes PT and probabilistic knowledge bases KB =
(T, P, (Po)o∈IP ), respectively. A conditional constraint F is a lex-consequence of PT ,
denoted PT ‖∼ lexF , iff ∅ ‖∼ lexF under PT . We say F is a tight lex-consequence
of PT , denoted PT ‖∼ lex

tight F , iff ∅ ‖∼ lex
tight F under PT . A conditional constraint F

for a probabilistic individual o∈ IP is a lex-consequence of KB , denoted KB ‖∼ lex
F ,

iff Po ‖∼ lex
F under PT =(T, P ). We say F is a tight lex-consequence of KB ,

denoted KB ‖∼ lex
tight F , iff Po ‖∼ lex

tight F under PT = (T, P ).
The main reasoning problems in P-SHOIN (D) are summarized by the following

decision and computation problems (where every lower and upper bound in the PTBox
PT = (T, P ), the probabilistic knowledge base KB =(T, P, (Po)o∈IP ), and the set of
conditional constraints F is rational):

PTBOX CONSISTENCY (PTCON): Given a PTBox PT = (T, P ), decide whether PT
is consistent.

PROBABILISTIC KNOWLEDGE BASE CONSISTENCY (PKBCON): Given a probabilis-
tic knowledge base KB =(T, P, (Po)o∈IP ), decide whether KB is consistent.

TIGHT LEXICOGRAPHIC ENTAILMENT (TLEXENT): Given a PTBox PT =(T, P ),
a finite set of conditional constraints F , and two c-concepts φ and ψ, compute the
rational numbers l, u ∈ [0, 1] such that F ‖∼ lex

tight (ψ|φ)[l, u] under PT .

Some important special cases of TLEXENT are given as follows: (PCSUB) given a
consistent PTBox PT and two c-concepts φ and ψ, compute the rational numbers l, u
∈ [0, 1] such that PT ‖∼ lex

tight (ψ|φ)[l, u]; (PCRSUB) given a consistent PTBox PT , a
c-concept φ, a classical individual o∈ IC , and an abstract role R∈RA, compute the
rational numbers l, u∈ [0, 1] such that PT ‖∼ lex

tight (∃R.{o}|φ)[l, u]; (PCMEM) given a
consistent probabilistic knowledge base KB , a probabilistic individual o∈ IP , and a c-
concept ψ, compute l, u∈ [0, 1] such that KB ‖∼ lex

tight (ψ|�)[l, u] for o; and (PRMEM)
given a consistent probabilistic knowledge base KB , a classical individual o′ ∈ IC , a
probabilistic individual o∈ IP , and an abstract role R∈RA, compute l, u∈ [0, 1] such
that KB ‖∼ lex

tight (∃R.{o′}|�)[l, u] for o.
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Another important decision problem in P-SHOIN (D) is PROBABILISTIC CON-
CEPT SATISFIABILITY (PCSAT): Given a consistent PTBox PT and a c-concept φ,
decide whether PT 
‖∼ lex (φ|�)[0, 0]. This problem is reducible to CSAT (classical,
non-probabilistic concept satisfiability), since (T, P ) 
‖∼ lex (φ|�)[0, 0] iff T 
|=φ�⊥.

There exists an algorithm for deciding whether a PTBox (resp., probabilistic knowl-
edge base) in P-SHOIN (D) is consistent, which is based on a reduction to deciding
whether a classical knowledge base inSHOIN(D) is satisfiable and to deciding whether
a system of linear constraints is solvable. More specifically, one has to solve a sequence
of solvability problems of systems of linear constraints, whose variables are computed
by deciding classical knowledge base satisfiability in SHOIN (D) (see [167] for fur-
ther details). This shows that the two consistency problems in P-SHOIN (D) are both
decidable. Furthermore, there is a similar algorithm for computing tight intervals under
lexicographic entailment in P-SHOIN (D), which is based on a reduction to deciding
classical knowledge base satisfiability inSHOIN(D) and to solving linear optimization
problems (see [167]). Thus, also lexicographic entailment in P-SHOIN (D) is com-
putable. As for the computational complexity, deciding the two consistency problems
in P-SHOIN (D) is complete for the complexity class NEXP, while computing tight
intervals under lexicographic entailment in P-SHOIN (D) belongs to FPNEXP [167].

Note that if the chosen classical description logic allows for decidable knowledge
base satisfiability, then also the main reasoning tasks in the probabilistic extension are
all decidable. (see [167, 171] for further details).

There are already implementations of its predecessor P-SHOQ(D) (see [200]) and of
a probabilistic description logic based on probabilistic default reasoning as in [159,163].
Recently, the Pronto system 1, claims to have implemented P-SHOIN (D).

Example 3.1. Suppose we have the following KB, KB , where T contains Eagle �
Bird and Penguin � Bird, while P contains (Fly | Bird)[0.95, 1] and (Fly |
Penguin)[0, 0.05]. Then we can infer the tightest boundsKB |= (Fly | Eagle)[0.95, 1]
and KB |= (Fly | Penguin)[0, 0.05]. �

Other approaches. Other approaches to probabilistic description logics can be classified
according to the generalized classical description logics, the supported forms of proba-
bilistic knowledge, the underlying probabilistic semantics, and the reasoning techniques.

One of the earliest approaches to probabilistic description logics is due to Hein-
sohn [99], who presents a probabilistic extension of the description logic ALC, which
allows to represent terminological probabilistic knowledge about concepts and roles,
and which is based on the notion of logical entailment in probabilistic logics, similar
to [5, 81, 157, 207]. Heinsohn [99], however, does not allow for assertional (classical or
probabilistic) knowledge about concept and role instances. The main reasoning prob-
lems are deciding the consistency of probabilistic terminological knowledge bases and
computing logically entailed tight probability intervals. Heinsohn proposes a sound and
complete global reasoning technique based on classical reasoning in ALC and linear
programming, as well as a sound but incomplete local reasoning technique based on the
iterative application of local inference rules.

1 http://clarkparsia.com/weblog/2007/09/27/introducing-pronto/

http://clarkparsia.com/weblog/2007/09/27/introducing-pronto/
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Another early approach to probabilistic description logics is due to Jaeger [112],
who also proposes a probabilistic extension of the description logicALC, which allows
for terminological probabilistic knowledge about concepts and roles, and assertional
probabilistic knowledge about concept instances, but does not support assertional prob-
abilistic knowledge about role instances (but he mentions a possible extension in this
direction). The entailment of terminological probabilistic knowledge from terminologi-
cal probabilistic knowledge is based on the notion of logical entailment in probabilistic
logic, while the entailment of assertional probabilistic knowledge from terminologi-
cal and assertional probabilistic knowledge is based on a cross-entropy minimization
relative to terminological probabilistic knowledge. The main reasoning problems are
terminological probabilistic consistency and inference, which are solved by linear pro-
gramming, and assertional probabilistic consistency and inference, which are solved by
an approximation algorithm.

The recent work by Dürig and Studer [66] presents a further probabilistic extension
of ALC, which is based on a model-theoretic semantics as in probabilistic logics, but
which only allows for assertional probabilistic knowledge about concept and role in-
stances, and not for terminological probabilistic knowledge. The paper also explores
independence assumptions for assertional probabilistic knowledge. The main reasoning
problem is deciding the consistency of assertional probabilistic knowledge, but neither
an algorithm nor a decidability result is given.

Jaeger’s recent work [113] focuses on interpreting probabilistic concept subsump-
tion and probabilistic role quantification through statistical sampling distributions, and
develops a probabilistic version of the guarded fragment of first-order logic. The se-
mantics is different from the semantics of all the other probabilistic description logics
in this paper, since it is based on probability distributions over the domain, and not on
the more commonly used probability distributions over a set of possible worlds. The pa-
per proposes a sound Gentzen-style sequent calculus for the logic, but it neither proves
the completeness of this calculus nor decidability in general.

Koller et al.’s work [125] presents the probabilistic description logic P-CLASSIC,
which is a probabilistic generalization (of a variant) of the description logic CLASSIC.
Similar to Heinsohn’s work [99], it allows for encoding terminological probabilistic
knowledge about concepts, roles, and attributes (via so-called p-classes), but it does not
support assertional (classical or probabilistic) knowledge about instances of concepts
and roles. However, in contrast to [99], its probabilistic semantics is based on a reduc-
tion to Bayesian networks. The main reasoning problem is to determine the exact prob-
abilities for conditionals between concept expressions in canonical form. This problem
is solved by a reduction to inference in Bayesian networks. As an important feature of
P-CLASSIC, the above problem can be solved in polynomial time, when the underlying
Bayesian network is a polytree. Note that a recent implementation of P-CLASSIC is
described in [115].

Closely related work by Yelland [285] proposes a probabilistic extension of a de-
scription logic close to FL, whose probabilistic semantics is also based on a reduction
to Bayesian networks, and it applies this approach to market analysis. The approach
allows for encoding terminological probabilistic knowledge about concepts and roles,
but it does not support assertional (classical or probabilistic) knowledge about instances
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of concepts and roles. Like in Koller et al.’s work [125], the main reasoning problem is
to determine the exact probabilities for conditionals between concepts, which is solved
by a reduction to inference in Bayesian networks.

Probabilistic Web Ontology Languages. The literature contains several probabilistic
generalizations of web ontology languages. Many of these approaches focus especially
on combining the web ontology language OWL with probabilistic formalisms based on
Bayesian networks.

In particular, da Costa [28], da Costa and Laskey [29], and da Costa et al. [30] suggest
a probabilistic generalization of OWL, called PR-OWL, whose probabilistic semantics
is based on multi-entity Bayesian networks (MEBNs). The latter are a Bayesian logic
that combines first-order logic with Bayesian networks. Roughly speaking, PR-OWL
represents knowledge as parameterized fragments of Bayesian networks. Hence, it can
encode probability distributions on the interpretations of an associated first-order theory
as well as repeated structure.

In [54, 55], Ding et al. propose a probabilistic generalization of OWL, called Bayes-
OWL, which is based on standard Bayesian networks. BayesOWL provides a set of
rules and procedures for the direct translation of an OWL ontology into a Bayesian net-
work, and it also provides a method for incorporating available probability constraints
when constructing the Bayesian network. The generated Bayesian network, which pre-
serves the semantics of the original ontology and which is consistent with all the given
probability constraints, supports ontology reasoning, both within and across ontolo-
gies, as Bayesian inferences. In [55,212], Ding et al. also describe an application of the
BayesOWL approach in ontology mapping.

In closely related work, Mitra et al. [194] describe an implemented technique, called
OMEN, to enhancing existing ontology mappings by using a Bayesian network to rep-
resent the influences between potential concept mappings across ontologies. More con-
cretely, OMEN is based on a simple ontology model similar to RDF Schema. It uses a
set of meta-rules that capture the influence of the ontology structure and the semantics
of ontology relations, and matches nodes that are neighbours of already matched nodes
in the two ontologies.

Yang and Calmet [282] present an integration of the web ontology language OWL
with Bayesian networks, called OntoBayes. The approach makes use of probability and
dependency-annotated OWL to represent uncertain information in Bayesian networks.
The work also describes an application in risk analysis for insurance and natural disaster
management. Pool and Aikin [214] also provide a method for representing uncertainty
in OWL ontologies, while Fukushige [83] proposes a basic framework for representing
probabilistic relationships in RDF. Nottelmann and Fuhr [208] present two probabilistic
extensions of variants of OWL Lite, along with a mapping to locally stratified proba-
bilistic Datalog.

Another important work is due to Udrea et al. [272], who present a probabilistic
generalization of RDF, which allows for representing terminological probabilistic
knowledge about classes and assertional probabilistic knowledge about properties
of individuals. They provide a technique for assertional probabilistic inference in acyclic
probabilistic RDF theories, which is based on the notion of logical entailment in
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probabilistic logic, coupled with a local probabilistic semantics. They also provide a
prototype implementation of their algorithms.

An important application for probabilistic ontologies (and thus probabilistic descrip-
tion logics and ontology languages) is especially information retrieval. In particular,
Subrahmanian’s group [109, 271] explores the use of probabilistic ontologies in rela-
tional databases. They propose to extend relations by associating with every attribute a
constrained probabilistic ontology, which describes relationships between terms occur-
ring in the domain of that attribute. An extension of the relational algebra then allows
for an increased recall (which is the proportion of documents relevant to a search query
in the collection of all returned documents) in information retrieval. In closely related
work, Mantay et al. [182] propose a probabilistic least common subsumer operation,
which is based on a probabilistic extension of the description logic ALN . They show
that applying this approach in information retrieval allows for reducing the amount of
retrieved data and thus for avoiding information flood. Another closely related work
by Holi and Hyvönen [101, 102] shows how degrees of overlap between concepts can
be modelled and computed efficiently using Bayesian networks based on RDF(S) on-
tologies. Such degrees of overlap indicate how well an individual data item matches
the query concept, and can thus be used for measuring the relevance in information re-
trieval tasks. Finally, Weikum et al. [280] and Thomas and Sheth [268] describe the use
of probabilistic ontologies in information retrieval from a more general perspective.

Possibilistic Uncertainty and Description Logics. Similar to probabilistic extensions
of description logics, possibilistic extensions of description logics have been developed
by Hollunder [107]; Dubois et al. [58] and more recently in [217].

A possibilistic axiom is of the form Pα� l or Nα� l, where α is a classical descrip-
tion logic axiom, and l is a real number from [0, 1]. A possibilistic RBox (resp., TBox,
ABox) is a finite set of possibilistic axioms Pα� l or Nα� l, where α is an RBox
(resp., TBox, ABox) axiom. A possibilistic knowledge base KB = (R, T ,A) consists
of a possibilistic RBox R, a possibilistic TBox T , and a possibilistic ABox A. The
semantics is a straightforward extension from the propositional case to the FOL case.

The main reasoning problems related to possibilistic description logics are deciding
whether a possibilistic knowledge base is satisfiable, deciding whether a possibilistic
axiom is a logical consequence of a possibilistic knowledge base, and computing the
tight lower and upper bounds entailed by a possibilistic knowledge base for the neces-
sity and the possibility of a classical description logic axiom. As shown by Hollun-
der [107], deciding logical consequences, and thus also deciding satisfiability and com-
puting tight lower and upper bounds can be reduced to deciding logical consequences
in classical description logics.

Example 3.2. Suppose that the KB, KB , contains

N(∃owns.Porsche � CarFanatic �RichPerson)� 0.8
P(RichPerson � Golfer)� 0.7

N((tom, 911): owns) � 1
N(911: Porsche) � 1

N(tom : ¬CarFanatic) � 0.7 .
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We are interested to the question whether or not that Tom is a golfer. It can be shown
that

KB |= P(tom : Golfer)� 0.7 . ��

A recent implementation of reasoning in possibilistic description logics using KAON22

is reported in [218, 219].
We recall that Liau and Yao [139] report on an application of possibilistic description

logics in information retrieval. More concretely, they define a possibilistic generaliza-
tion of the description logic ALC and show that it can be used in typical information
retrieval problems, such as query relaxation, query restriction, and exemplar-based re-
trieval. Possibilistic description logics can also be used for handling inconsistencies in
ontologies [218, 219]. Another important application of possibilistic description logics
is the representation of user preferences in the Semantic Web. For example, the recent
work by Hadjali et al. [90] shows that possibilistic logic can be nicely used for encoding
user preferences in the context of databases.

Vagueness and Description Logics. There are several extensions of description logics
and ontology languages using the theory of fuzzy logic. They can be classified ac-
cording to (a) the description logic resp. ontology language that they generalize, (b)
the allowed fuzzy constructs, (c) the underlying fuzzy logics, and (d) their reasoning
algorithms.

In general, fuzzy DLs allow expressions of the form (a : C, n), stating that a is an
instance of concept C with degree at least n, that is the FOL formula C(a) is true
to degree at least n (it is straightforward to map DL expressions into FOL formulae).
Similarly, (C1 � C2, n) and (R1 � R2, n) state vague subsumption relationships. In-
formally, (C1 � C2, n) dictates that the FOL formula ∀x.C1(x) → C2(x) is always
true to degree at least n (note that in mathematical fuzzy logic, the universal quantifi-
cation ∀x is interpreted as infx, and similarly, ∃x is interpreted as supx and, that not
always ¬∀ is the same as ∃¬, –this is true only for Zadeh logic and Łukasiewicz logic).

Specifically, fuzzy DLs supports concrete data types such as reals, integers, strings
and allows the definition of concepts with explicit representation of fuzzy membership
functions. This is implemented by relying on so-called fuzzy data type theory. A fuzzy
data type theory D= (ΔD, ·D) is such that ·D assigns to every n-ary data type pred-
icate d an n-ary fuzzy relation over ΔD [176]. For instance, the predicate �18 may be
a unary crisp predicate over the natural numbers denoting the set of integers smaller
or equal to 18. Concerning non-crisp fuzzy domain predicates, we recall that in fuzzy
set theory and practice, there are many functions for specifying fuzzy set membership
degrees. However, the trapezoidal (Fig. 2 (a)), the triangular (Fig. 2 (b)), the L-function
(left-shoulder function, Fig. 2 (c)), and the R-function (right-shoulder function, Fig. 2
(d)) are simple, but most frequently used to specify membership degrees. These func-
tions are defined over the set of non-negative rationals Q+ ∪ {0} For instance, we may
define Y oung : N → [0, 1]D to be a fuzzy concrete predicate over the natural numbers
denoting the degree of youngness of a person’s age, as Y oung(x) = ls(10, 30).

2 http://kaon2.semanticweb.org/
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Trapezoidal function trz (a, b, c, d); (b) Triangular function tri(a, b, c); (c) L-function
ls(a, b); (d) R-function rs(a, b); (e) Crisp interval cr(a, b); (f) Linear function ln(a, b)

Fuzzy DLs allow fuzzy modifiers, such as very, more or less and slightly, which
apply to fuzzy sets to change their membership function. Formally, a modifier is a func-
tion fm : [0, 1]→ [0, 1]. We will allow modifiers defined in terms of linear hedges (Fig-
ure 2 (f)) and triangular functions (Figure 2 (d)). Modifiers have also been considered
in [105, 269].

Furthermore, fuzzy DLs extend crisp DLs with some specific constructs, which we
define next (see, e.g. [14]). Let A, RA, RD, I, Ic and M be non-empty finite and pair-
wise disjoint sets of concepts names (denoted A), abstract roles names (denoted R),
concrete roles names (denoted T ), abstract individual names (denoted x, y), concrete
individual names (denoted v) and modifiers (denoted m). Concepts may be seen as
unary predicates, while roles may be seen as binary predicates. RA also contains a non-
empty subset Fa of abstract feature names (denoted r), while RD contains a non-empty
subset Fc of concrete feature names (denoted t). Features are functional roles. Besides
the usual concept forming constructs, a fuzzy DL supports also constructs dealing with
concrete data types, that is it has the additional concept constructs:

C,D := ∀T.d | ∃T.d | DR
d := cr(a, b) | ls(a, b) | rs(a, b) |

tri(a, b, c) | trz(a, b, c, d)
DR := � t val | � t val | = t val

where val is an integer, a real or a string depending on the range of the concrete feature
t. For instance, the expression Human � (� hasAge 18) will denote the set of hu-
mans, which have an age less or equal than 18, while Human � ∃hasAge.ln(10, 30)
will denote the set of young humans (their age is L(10, 30)).

Finally, additional useful concept constructs are:

C,D := C �G D | C �Ł D | C �G D | C �Ł D |
C → D | C →G D | C →Ł D |m(C) |
nC | w1C1 + · · ·+ wkCk | C[� n] | C[� n]

m := ln(a, b) | tri(a, b, c)
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where n ∈ [0, 1]D, wi ∈ [0, 1]D,
∑k

i=1 wi = 1. For instance, the conceptm(C) applies
the modifier m to the concept C and, thus, e.g. Human � ∃hasAge.ln(0.8, 0.3)
(ls(10, 30)) denotes the set of very young humans.

A fuzzy knowledge base (KB) KB = (A, T ,R) consists of a fuzzy ABoxA, a fuzzy
TBox T and a fuzzy RBox R.

A fuzzy ABox A consists of a finite set of fuzzy concept and fuzzy role assertion
axioms of the form 〈x : C,α〉 and 〈(x, y) : R,α〉, where α ∈ (0, 1]D. Informally, from
a semantical point of view, 〈τ, α〉 constrains the membership degree of τ to be at least
α. Hence, 〈jim : Y oungPerson, 0.2〉 says that jim is a Y oungPerson with degree
at least 0.2, while 〈(jim, tom) : hasFriend, 1〉, states that jim and tom are friends. If
the α is omitted, 1 is assumed.

A fuzzy TBox T is a finite set of fuzzy General Concept Inclusion axioms (GCIs)
〈C � D,α〉, where α ∈ (0, 1]D and C,D are concepts. Informally, 〈C � D,α〉 states
that all instances of concept C are instances of concept D to degree α, that is, the sub-
sumption degree betweenC andD is at leastα. For instance, 〈Elephant � Animal, 1〉
states that the class of elephants is a subclass of the class of animals. We write C = D
as a shorthand of the two axioms 〈C � D, 1〉 and 〈D � C, 1〉. For instance, Minor =
Person � (� hasAge 18) defines a person, whose age is less or equal to 18 (hasAge
is a concrete feature), that is a minor. If the truth value α is omitted then the value 1 is
assumed.

Fuzzy DLs also allow to write �⇒ in order to specify the particular implication
function to be used in the semantics of the GCI (General Concept Inclusion Axiom),
e.g., Łukasiewicz or Gödel.

A fuzzy RBoxR is a finite set of role axioms of the form:

– (fun R), stating that a role R is functional, that is R is a feature.
– (trans R), stating that a role R is transitive.
– R1 � R2, meaning that role R2 subsumes role R1.
– (inv R1 R2), stating that role R2 is the inverse of R1 (and vice versa).

A simple role is a role which is neither transitive nor has a transitive subroles. An
important restriction is that functional needs to be simple.

Semantics. The main idea is that concepts and roles are interpreted as fuzzy subsets of
an interpretation’s domain. Therefore, axioms, rather than being “classical” evaluated
(being either true or false), they are “many-valued” evaluated in [0, 1]D.

A fuzzy interpretationI = (ΔI , ·I) relative to a fuzzy data type theoryD=(ΔD, · )D
consists of a nonempty set ΔI (the domain), disjoint from ΔD, and of a fuzzy interpre-
tation function ·I that coincides with ·D on every data value, data type, and fuzzy data
type predicate, and it assigns:

– to each abstract concept C a function CI : ΔI → [0, 1];
– to each abstract role R a function RI : ΔI ×ΔI → [0, 1];
– to each abstract feature r a partial function rI : ΔI ×ΔI → [0, 1] such that for all
x ∈ ΔI there is an unique y ∈ ΔI on which rI(x, y) is defined;

– to each concrete role T a function RI : ΔI ×ΔD → [0, 1];
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Table 5. Semantics of the complex fuzzy concepts

⊥I(x) = 0 (m(C))I(x) = fm(CI(x))

�I(x) = 1 (∀R.C)I(x) = infy∈ΔI RI(x, y) ⇒ CI(y)

(¬C)I(x) = 
CI(x) (∃R.C)I(x) = supy∈ΔI RI(x, y) ⊗ CI(y)

(C 
D)I(x) = CI(x) ⊗DI(x) (∀T.d)I(x) = infy∈ΔD
TI(x, v) ⇒ dI(y)

(C 
G D)I(x) = CI(x) ⊗G DI(x) (∃T.d)I(x) = supy∈ΔD
TI(x, v) ⊗ dI(y)

(C 
Ł D)I(x) = CI(x) ⊗Ł D
I(x) (n C)I(x) = n CI(x)

(C �D)I(x) = CI(x) ⊕DI(x) (w1C1 + · · · + wkCk)I(x) = w1C1
I(x) + · · · + wkCk

I(x)

(C �G D)I(x) = CI(x) ⊕G DI(x) (C[� n])I(x) =

j
CI(x), if CI(x) � n
0, otherwise

(C �Ł D)I(x) = CI(x) ⊕Ł D
I(x) (C[� n])I(x) =

j
CI(x), if CI(x) � n
0, otherwise

(C → D)I(x) = CI(x) ⇒ DI(x) (� t val)I(x) = supc∈ΔD
t(x, v) ⊗ (v � val)

(C →G D)I(x) = CI(x) ⇒G DI(x) (� t val)I(x) = supc∈ΔD
t(x, v) ⊗ (v � val)

(= t val)I(x) = supc∈ΔD
t(x, v) ⊗ (v = val)

(C →Ł D)I(x) = CI(x) ⇒L DI(x)

Table 6. Semantics of other constructs

(x : C)I = CI(xI)

((x, y) : R)I = RI(xI , yI)

(C � D)I = inf
x∈ΔI CI(x) ⇒ DI(x)

(C �G D)I = infx∈ΔI CI(x) ⇒G DI(x)

(C �Ł D)I = infx∈ΔI CI(x) ⇒Ł DI(x)

– to each concrete feature t a partial function tI : ΔI ×ΔD → [0, 1] such that for all
x ∈ ΔI there is an unique v ∈ ΔD on which tI(x, v) is defined;

– to each modifier m the modifier function fm : [0, 1]→ [0, 1];
– to each abstract individual x an element in ΔI ;
– to each concrete individual v an element in ΔD.

The mapping ·I is extended to roles and complex concepts as specified in Table 5, while
the mapping ·I is extended to the other constructs as specified in Table 6.

The notion of satisfaction of a fuzzy axiom E by a fuzzy interpretation I, denoted
I |= E, is defined as follows:

– I |= (τ, α)� iff τI � α,
– I |= (trans R) iff ∀x,y∈ΔI , RI(x, y) � supz∈ΔI RI(x, z)⊗RI(z, y),
– I |= R1 � R2 iff ∀x, y ∈ ΔI .R1

I(x, y) � R2
I(x, y),

– I |= (inv R1 R2) iff ∀x, y ∈ ΔI .R1
I(x, y) = R2

I(y, x).

We say that concept C is satisfiable iff there is an interpretation I and an individual
x ∈ ΔI such that CI(x) > 0.

For a set of axioms E , we say that I satisfies E iff I satisfies each element in E . We
say that I is a model of E (resp. E) iff I |= E (resp. I |= E). I satisfies (is a model of)
a fuzzy KB KB = (A, T ,R), denoted I |= KB , iff I is a model of each component
A, T andR, respectively.

An axiom E is a logical consequence of a knowledge base KB , denoted KB |= E
iff every model of KB satisfies E.
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Given KB and a fuzzy axiom τ of the forms 〈x : C,α〉, 〈(x, y) : R,α〉 or 〈C � D,α〉,
it is of interest to compute τ ’s best lower degree value bound. The greatest lower bound
of τ w.r.t. KB (denoted glb(KB, τ)) is glb(KB , τ) = sup{n | KB |= (τ, n)�}, where
sup ∅ = 0. Determining the glb is called the Best Degree Bound (BDB) problem.

Finally, another similar problem is to compute the best satisfiability bound of a con-
cept C and amounts to determine glb(KB , C) = supI supx∈ΔI{CI(x) | I |= KB}.
Essentially, among all models I of the KB, we are determining the maximal degree of
truth that the concept C may have over all individuals x ∈ ΔI .

Example 3.3. Assume, that a car seller sells a sedan car. A buyer is looking for a second
hand passenger car. Both the buyer as well as the seller have preferences (restrictions).
Our aim is to find the best agreement. The preferences are as follows. Concerning the
buyer:

1. He does not want to pay more than 26000 euro (buyer reservation value).
2. If there is an alarm system in the car then he is completely satisfied with paying

no more than 22300 euro, but he can go up to 22750 euro to a lesser degree of
satisfaction.

3. He wants a driver insurance and either a theft insurance or a fire insurance.
4. He wants air conditioning and the external colour should be either black or grey.
5. Preferably the price is no more than 22000 euro, but he can go up to 24000 euro to

a lesser degree of satisfaction.
6. The kilometer warranty is preferrably at least 175000, but he may go down to

150000 to a lesser degree of satisfaction.
7. The weights of the preferences 2-6 are, (0.1, 0.2, 0.1, 0.2, 0.4). The higher the value

the more important is the preference.

Concerning the seller:

1. He wants to sell no less than 22000 euro (seller reservation value)
2. If there is an navigator pack system in the car then he is completely satisfied with

paying no less than 22750 euro, but he can go down to 22500 euro to a lesser degree
of satisfaction.

3. Preferably the buyer buys the Insurance Plus package.
4. The kilometer warranty is preferrably at most 100000, but he may go up to 125000

to a lesser degree of satisfaction.
5. The monthly warranty is preferrably at most 60, but he may go up to 72 to a lesser

degree of satisfaction.
6. If the colour is black then the car has air conditioning.
7. The weights of the preferences 2-6 are, (0.3, 0.1, 0.3, 0.1, 0.2). The higher the value

the more important is the preference.

We have also some background theory about the domain:

1. A sedan is a passenger car.
2. A satellite alarm system is an alarm system.
3. The navigator pack is a satellite alarm system with a GPS system.
4. The Insurance Plus package is a driver insurance together with a theft insurance.
5. The car colours are black or grey.
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Now, the background theory can be encoded as:

Sedan � PassengerCar
SatelliteAlarm � AlarmSystem
NavigatorPack = SatelliteAlarm�GPS system
InsuranceP lus = DriverInsurance � TheftInsurance
	 � ExColorBlack 
ExColorGray
ExColorBlack � ExColorGray �⊥
(fun HasAlarmSystem)
(fun HasAirConditioning)
(fun HasExColor)
(fun HasNavigator)
(fun HasMWarranty)
(fun HasPrice)
(fun HasKMWarranty)

The buyer’s preferences can be encoded as follows:

1. B = (PassengerCar � (� HasPrice 26000))
2. B1 = ((∃HasAlarmSystem.AlarmSystem)→ (∃Has Price.ls(22300, 22750)))
3. B2 = ((∃HasInsurance.DriverInsurance)�((∃HasInsurance.TheftInsurance)

 (∃HasInsurance.F ireInsurance)))

4. B3 = ((∃HasAirConditioning.Airconditioning)�(∃HasExColor.(ExColorBlack

ExColorGray)))

5. B4 = (∃HasPrice.ls(22000, 24000))
6. B5 = (∃HasKMWarranty.R(15000, 175000))
7. Buy = (B � ((0.1B1) + (0.2B2) + (0.1B3) + (0.2B4) + (0.4B5)))

Please note that the concept Buy collects all the buyer’s preferences together in such a
way that the higher is the maximal degree of satisfiability ofBuy (that is glb(KB, Buy)),
the more the buyer is satisfied.

The seller’s preferences can be encoded as follows:

1. S = (Sedan � (� HasPrice 22000))
2. S1 = ((∃HasNavigator.NavigatorPack)→ (∃Has Price.rs(22500, 22750))))
3. S2 = (∃HasInsurance.InsuranceP lus)
4. S3 = (∃HasKMWarranty.rs(100000, 125000))
5. S4 = (∃HasMWarranty.rs(60,72))
6. S5 = ((∃HasExColor.ExColorBlack) → (∃Has AirConditioning.AirCondi −

tioning))
7. Sell = (S � ((0.3S1) + (0.1S2) + (0.3S3) + (0.1S4) + (0.2S5)))

Similarly to the buyer case, the concept Sell collects all the seller’s preferences to-
gether in such a way that the higher is the maximal degree of satisfiability of Sell (that
is glb(KB , Sell)), the more the seller is satisfied.

Now, it is clear that the best agreement among the buyer and the seller is determined
by the maximal degree of satisfiability of the conjunction Buy � Sell, that is we have
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to determine glb(KB , Buy � Sell). In particular, we rely on Łukasiewicz conjunction,
which guarantees that the solution is Pareto optimal [220]. In particular, we have that

glb(KB , Buy �Ł Sell) = 0.7
HasPrice = 22000.0

HasKMWarranty = 175000.0
HasMWarranty = 0.0 .

So an optimal match (the Pareto optimal degree is 0.7625) would be an agreement with
a price of 22500 euro, with 100000 kilometer warranty and a 60 month warranty. �

The first work about fuzzy DLs is due to Yen [286], who proposes a fuzzy extension of
a very restricted sublanguage of ALC , called FL− [18, 133]. The work includes fuzzy
terminological knowledge, but no fuzzy assertional knowledge, and it is based on Zadeh
logic. It already informally talks about the use of fuzzy modifiers and fuzzy concrete
domains. Though, the unique reasoning facility, the subsumption test, is a crisp yes/no
questioning. Tresp and Molitor [269] consider a more general extension of fuzzyALC.
Like Yen, they also allow for fuzzy terminological knowledge along with a special
form of fuzzy modifiers (which are a combination of two linear functions), but no fuzzy
assertional knowledge, and they assume Zadeh logic as underlying fuzzy logic. The
work also presents a sound and complete reasoning algorithm testing the subsumption
relationship using a linear programming oracle.

Another fuzzy extension of ALC is due to Straccia [243, 245, 251, 256, 265], who
allows for both fuzzy terminological and fuzzy assertional knowledge, but not for fuzzy
modifiers and fuzzy concrete domains, and again assumes Zadeh logic as underlying
fuzzy logic. Straccia [243, 245] also introduces the best truth value bound problem and
provides a sound and complete reasoning algorithm based on completion rules. In [244],
Straccia reports a four-valued variant of fuzzy ALC. In the same spirit, Hölldobler et
al. [103, 104] extend Straccia’s fuzzy ALC with concept modifiers of the form fm(x)
=xβ , where β > 0, and present a sound and complete reasoning algorithm (based on
completion rules) for the graded subsumption problem.

Straccia’s works [247, 255, 261] are essentially as [245], except that now the set
of possible truth values is a complete lattice rather than [0, 1].

Sanchez and Tettamanzi [227, 228, 229] consider a fuzzy extension of the descrip-
tion logic ALCQ (without assertional component) under Zadeh logic, and they start
addressing the issue of a fuzzy semantics of quantifiers. Essentially, fuzzy quantifiers
allow to state sentences such as FaithfulCustomer � (Most)buys .LowCalorie- Food
encoding “the set of all individuals that mostly buy low calorie food”. An algorithm is
presented, which calculates the satisfiability interval for a fuzzy concept.

Hájek [96, 97] considers a fuzzy extension of the description logic ALC under arbi-
trary t-norms. He provides in particular algorithms for deciding whether (C �D, 1)� is
a tautology and whether (C � D, 1)� is satisfiable, which are based on a reduction to
the propositional BL logic for which a Hilbert-style axiomatization exists [95] (but see
also [97] for the complexity of rational Pavelka logic, and see [16] for some complexity
results on reasoning in fuzzy description logics).

Straccia [246] provides a translation of fuzzy ALC (with general concept inclu-
sion axioms) into classical ALC . The translation is modular, and thus expected to be
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extendable to more expressive fuzzy description logics as well. The main idea is to
translate a fuzzy assertion of the form (a : C, n)� into a crisp assertion a : Cn, with
the intended meaning “a is an instance of C to degree at least n”. Then, concept in-
clusion axioms are used to correctly relate the Cn’s. For example, C0.7 � C0.6 is used
to encode that whenever an individual is an instance of C to degree at least 0.7, then
it is also an instance of C to degree at least 0.6. The translation is at most quadratic
in the size of the fuzzy knowledge base. Note that the translation does not yet work in
the presence of fuzzy modifiers and fuzzy concrete domains. Bobillo et al. [12] extend
the approach to a variant of fuzzy SHOIN . The idea has further been considered in
the works [137, 138], which essentially provide a crisp language in which expressions
of, e.g., the form a : ∀R0.8.C0.9 are allowed, with the intended meaning “if a has an
R-successor to degree at least 0.8, then this successor is also an instance of C to de-
gree at least 0.9”. The idea has further been extended to a distributed variant of fuzzy
description logics in [149]. A mapping to classical DLs under Łukasiewicz semantics
has been provided in [15] for the fuzzy DL ALCHOI.

An interesting extension is due to Kang et al. [43], who extends fuzzy description
logics by comparison operators, e.g., to state that “Tom is taller than Tim”. Another
interesting extension is proposed by Dubois et al. [58], who combine fuzzy description
logics with possibility theory. Essentially, since (a : C, n)� is Boolean (either an in-
terpretation satisfies it or not), we can build on top of it an uncertainty logic, which is
based on possibility theory in [58].

We recall that usually the semantics used for fuzzy description logics is based on
Zadeh logic, but where the concept inclusion is crisp, that is, C �D is viewed as
∀x.C(x)�D(x). In [106, 269], a calculus for fuzzy ALC [230] with fuzzy modifiers
and simple TBoxes under Zadeh logic is reported. No indication for the BTVB problem
is given. Straccia [243,245] reports a calculus for fuzzyALC and simple TBoxes under
Zadeh logic and addresses the BTVB problem. How the satisfiability problem and the
BTVB problem can be reduced to classical ALC, and thus can be solved by means of
tools like FaCT and RACER is shown in [246]. Results providing a tableaux calculus
for fuzzy SHIN under Zadeh logic (but only allowing for a restricted form of concept
inclusion axioms, which are called fuzzy inclusion introductions and fuzzy equivalence
introductions), by adapting similar techniques as for the classical counterpart, are shown
in [239, 240]. Fuzzy general concept inclusion axioms under Zadeh logic can be man-
aged as described in [242]. Also interesting is the work [283], which provides a tableau
for fuzzySHI with general concept inclusion axioms. Finally, the reasoning techniques
for classical SHOIN (D) [108] can be extended to [245], as [238, 239, 240, 241] al-
ready show.

On the other hand, fuzzy tableaux algorithms under Zadeh semantics do not seem
to be suitable to be adapted to other semantics, such as Łukasiewicz logic. Even more
problematic is the fact that they are yet unable to deal with fuzzy concrete domains
[248], that is the possibility to allow an explicit representation of fuzzy membership
functions. Despite these negative results, recently, [248,249] report a calculus for fuzzy
ALC(D) whenever the connectives, the modifiers, and the fuzzy datatype predicates
are representable as bounded mixed integer linear programs (MILPs). For example,
Łukasiewicz logic satisfies these conditions as well as the membership functions for
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fuzzy datatype predicates that we have presented in this paper. Additionally, modifiers
should be a combination of linear functions. In that case, the calculus consists of a set
of constraint propagation rules and an invocation to an oracle for MILP. The method
has been extended to fuzzy SHIF(D) [262] (the description logic behind OWL Lite)
and a reasoner, called fuzzyDL [14], has been implemented and is available at Strac-
cia’s web page. FuzzyDL supports more features, which we do not address here. The
use of MILP for reasoning in fuzzy description logics is not surprising as their use for
automated deduction in many-valued logics is well-known [92,93]. Bobillo and Strac-
cia [13] provide a calculus for fuzzy ALC(D) under product semantics.

A very recent problem for fuzzy description logics is the top-k retrieval problem.
While in classical semantics, a tuple satisfies or does not satisfy a query, in fuzzy de-
scription logics, a tuple may satisfy a query to a degree. Hence, for example, given a
conjunctive query over a fuzzy description logic knowledge base, it is of interest to
compute only the top-k answers. While in relational databases, this problem is a cur-
rent research area (see, e.g., [73,110,135]), very few is known for the case of first-order
knowledge bases in general (but see [259]) and description logics in particular. The
only works that we are aware of are [254, 260, 266], which deal with the problem of
finding the top-k result over knowledge bases in a fuzzy generalization of DL-Lite [23]
(note that [210, 211] is subsumed by [260], though in [210, 211] the storage systems is
no-longer a database, but a RDF storage system).

Fuzzy logic has numerous practical applications in general (see, e.g., [124]). Related
to fuzzy description logics, we point out that they have first been proposed for logic-
based information retrieval [192], which originated from the idea to annotate textual
documents with graded description logic sentences, which goes back to [193]. The idea
has been reconsidered in [240, 266, 288]. In particular, (i) Zhang et al. [288] describe
a semantic portal that is based on fuzzy description logics; (ii) Li et al. [136] present
an improved semantic search model by integrating inference and information retrieval
and an implementation in the security domain; (iii) Straccia and Visco [266] report on a
multimedia information retrieval system based on a fuzzy DLR-Lite description logic,
which is capable to deal with hundreds of thousands of images. D’Aquin et al. [42]
provide a use case in the medical domain, where fuzzy concrete domains are used to
identify tumor regions in x-ray images. Agarwal and Lamparter [1] use fuzzy descrip-
tion logics to improve searching and comparing products in electronic markets. They
provide a more expressive search mechanism that is closer to human reasoning and that
aggregates multiple search criteria to a single value (ranking of an offer relative to the
query), thus enabling a better selection of offers to be considered for the negotiation. Liu
et al. [140] use a fuzzy description logic to model the management part in project selec-
tion tasks. Finally, [14] shows also how to use fuzzyDLs for e-Commerce Matchmaking
and Semantic Fuzzy Control.

3.2 The Case of Logic Programs

In logic programming, the management of imperfect information has attracted the at-
tention of many researchers and numerous frameworks have been proposed. Addressing
all of them is almost impossible, due to both the large number of works published in
this field (early works date back to early 80-ties [236] ) and the different approaches
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proposed (see the appendix for a list of references). Like for the DL case, essentially
they differ in the underlying notion of uncertainty theory and vagueness theory (prob-
ability theory, possibilistic logic, fuzzy logic and multi-valued logic) and how uncer-
tainty/vagueness values, associated to rules and facts, are managed.

Basically [141], a logic program P is made out by a set of rules and a set of facts.
Facts are atoms of the form P (t1, . . . , tn), where ti is a term (usually, a constant or
a variable). In most cases, facts are ground. On the other hand rules are of the form
A ← B1, . . . , Bn, where each A and Bi is an atom. B1, . . . , Bn is called body, while
A is called head of the rule. The intended meaning of a rules is that “if all Bi are true,
then alsoA is true”. From a FOL perspective, a rule is just a FOL formula ∀x.B1∧. . .∧
Bn → A, where x are all the variables occurring in the rule. Such logic programs are
called positive as no literal occurs. In case a literal occurs in the body, then we speak
about normal logic programs. We may also have a disjunction of atoms in the head,
and then we talk about disjunctive logic programs ( [234]). In the most general setting,
literals are allowed in the head as well and from a semantics point of view, the stable
model semantics [84] is widely adopted.

Probabilistic Uncertainty and Logic Programs. The variety of proposals of logic
programming under probability theory is huge and an description of most of them is
out of the scope of this work. We describe here some groups of works.

In probabilistic generalizations of (annotated) logic programs (see [122]) based on
probabilistic logic fall works such as [44, 45, 46, 47, 48, 201, 202], where rules have the
form of annotated logic programming rules. Facts are expressions of the form A : μ,
where μ is an interval in [0, 1]. The intended meaning of an expression A : [m,n] is
“the probability of the event corresponding to A to occur (have occurred) lies in the
interval [m,n]”. Rules have the form A : μ ← B1 : μ1, . . . , Bn : μ2, where μ, μi are
intervals in [0, 1].

In probabilistic generalizations of logic programs based on Bayesian networks /
causal models fall works such as [11, 117, 118, 204, 215, 216]. Interesting is Poole’s In-
dependent Choice Logic (ICL) approach. It is based on acyclic logic programsP under
different “choices”. Each choice along with P produces a first-order model. By placing
a probability distribution over the different choices, one then obtains a distribution over
the set of first-order models. Roughly, rules and facts are as for classical logic programs.
Additionally, there is a set C of choices of the form {(A1 : α1), ..., (An : αn)}, where
Ai is an atom and the αi sum-up to 1. A total choice TC is a set of atoms such that
from each choice Cj ∈ C there is exactly one atom Aii ∈ Cj in TC . The probability
of a query q w.r.t. to P is the sum of the probabilities pC of total choices TC such that
P ∪ TC |= q, where pC is the product of the αji , for Cji ∈ TC . It is worth to note that
the ICL approach generalizes Bayesian networks, influence diagrams, Markov decision
processes, and normal form games.

In the third group fall first-order generalization of probabilistic knowledge bases in
probabilistic logic (based on logical entailment, lexicographic entailment, and maxi-
mum entropy entailment) and comprises works such as [153,160,162]. In these works,
similarly to P-SHOIN (D), expressions are of the form (ψ|φ)[l, u], but now ψ, φ are
formulae rather than concepts. The development of the semantics parallels to the case
of P-SHOIN (D).
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For the sake of a concrete example, let us here formally introduce Poole’s ICL-based
approach. Let us denote with HBΦ (resp., HUΦ) the Herbrand base (resp., universe)
over Φ, where Φ is a function-free first-order vocabulary Φ with finite nonempty sets of
constant symbols and predicate symbols.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ. Any
A∈C is an alternative of C and any a∈A an atomic choice of C. Intuitively, every
A∈C represents a random variable and every a∈A one of its possible values. A total
choice of C is a set B⊆HBΦ such that |B ∩ A|= 1 for all A∈C. Intuitively, every
total choice B of C represents an assignment of values to all the random variables.
A probability μ on a choice space C is a probability function on the set of all total
choices of C. Intuitively, every μ is a probability distribution over the set of all variable
assignments. SinceC and all its alternatives are finite, μ can be defined by (i) a mapping
μ :

⋃
C→ [0, 1] such that

∑
a∈A μ(a)= 1 for all A∈C, and (ii) μ(B)=Πb∈Bμ(b)

for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A probabilistic logic program KB = (P,C, μ) consists of a logic program P , and
a choice space C such that (i)

⋃
C ⊆HBΦ and (ii) no atomic choice in C coincides

with the head of any rule in ground(P ), and a probability μ on C. Intuitively, since
the total choices of C select subsets of P , and μ is a probability distribution on the
total choices of C, every probabilistic logic program compactly represents a probability
distribution on a finite set of logic programs. A probabilistic query to KB is defined
as follows. A formula is inductively defined as (i) and atom; (ii) if φ, ψ are formulae,
so are φ ∨ ψ, φ ∧ ψ,¬ψ, φ → ψ. If φ is a formula and l, u ∈ [0, 1] then ∃φ[l, u], is a
probabilistic query.

Semantics. A world I is an interpretation over HBΦ. We denote by IΦ the set of all
worlds over Φ. A variable assignment σ maps each variable x to some t∈HUΦ. It
is extended to all terms by σ(c)= c for all constant symbols c from Φ. A world I
under σ is a model of an atom A, denoted I |=σ A, iff Aσ ∈ I . The extension of I
under σ is a model of a formula φ is as usual. A world I under σ is a model of a rule
A← B1, . . . , Bn iff I |=σ B1 ∧ . . . ∧Bn → A.

A probabilistic interpretation Pr is a probability function on IΦ (that is, a mapping
Pr : IΦ→ [0, 1] such that (i) the set of all I ∈IΦ with Pr(I)> 0 is denumerable, and
(ii) all Pr (I) with I ∈IΦ sum up to 1). The probability of a formula φ in Pr under a
variable assignment σ, denoted Prσ(φ) (or Pr(φ) when φ is ground), is the sum of all
Pr(I) such that I ∈IΦ and I |=σ φ.

A probabilistic interpretation Pr is a model of a query ∃φ[l, u] iff Prσ(φ) ∈ [l, u] for
every variable assignment σ. We say Pr is the canonical model of a probabilistic logic
program KB =(P,C, μ) iff every world I ∈IΦ with Pr (I)> 0 is the minimal model
of P ∪ {p←| p∈B} for some total choice B of C with Pr(I) = μ(B). Notice that
every KB has a unique canonical model Pr . We say that a query ∃φ[l, u] is a conse-
quence of KB , denoted KB ‖∼∃φ[l, u], iff the canonical model of KB is also a model
of ∃φ[l, u]. A query ∃φ[l, u] is a tight consequence of KB , denoted KB ‖∼ tight∃φ[l, u],
iff l (resp., u) is the infimum (resp., supremum) of Prσ(φ) subject to the canonical
model Pr of KB and all σ. A correct answer to ∃φ[l, u] is a substitution σ such that
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∃φσ[l, u] is a consequence of KB . A tight answer to ∃φ[l, u] is a substitution σ such
that ∃φσ[l, u] is a tight consequence of KB .

As in Section 2.1, we introduce conditional formulae of the form φ | ψ, where φ
and ψ are formulae, and conditional probabilistic queries of the form ∃(φ | ψ)[l, u].
A probabilistic interpretation Pr is a model of a conditional probabilistic query ∃(φ |
ψ)[l, u] iff Prσ(φ | ψ) ∈ [l, u] for every variable assignment σ, where Prσ(φ | ψ) is
defined similarly as in Eq. 2:

Prσ(φ | ψ) =

{
Prσ(φ∧ψ)
Prσ(ψ) ifPrσ(ψ) 
= 0

1 otherwise .

Example 3.4. Let us show how we may encode the BN in Example 2.1 into probabilistic
logic programs. For each variable a we consider an unary predicate a(x), where the
variable x will take either the value T or F . If a node a has no parents then we can
encode its associated probability table as follows: we consider the rule

a(x)← ha(x)

and we consider the alternative Ca in the choice space C,

Ca = {ha(T ), ha(F )}
with μ(ha(T )) = Pr(a(T )), μ(ha(F )) = Pr(a(F )) = 1 − Pr(a(T )). For instance,
related to Fig. 1, we will have

Rain(x)← hRain(x)
CRain = {hRain(T ), hRain(F )}

μ(hRain(T )) = 0.2
μ(hRain(F )) = 0.8 .

If a node a has parents b1, . . . , bn, we encode its associated conditional probability table
using a rule and an alternative in the choice space:

a(x)← b1(x1), . . . , bn(xn), ha(x, x1, . . . , xn)

and we consider the alternative Ca in the choice space C,

Ca = {ha(v, v1, . . . , vn) | v, vi ∈ {T, F}} .
with

μ(ha(v, v1, . . . , vn)) = Pr (a = v | b1 = v1, . . . , bn = vn) .

For instance, related to Fig. 1, we will have

Sprinkler(x)← Rain(x1), hSprinkler (x, x1)
CSprinkler = {hSprinkler (T, F ), hSprinkler (T, T ),

hSprinkler (F, F ), hSprinkler (F, T )}
μ(hSprinkler (T, F )) = 0.4
μ(hSprinkler (T, T )) = 0.01
μ(hSprinkler (F, F )) = 0.6
μ(hSprinkler (F, T )) = 0.99 .
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The encoding for the node GrassWet is similar.
Then, we may infer that

KB ‖∼ tight GrassWet(T )[0.4484, 0.4484]
KB ‖∼ tight (Rain(T ) ∧GrassWet(T ))[0.1604, 0.1604]
KB ‖∼ tight (Rain(T ) | GrassWet(T ))[0.3577, 0.3577] ,

Note that 0.3577 = 0.1604/0.4484. �

Possibilistic Uncertainty and Logic Programs. In possibilistic logic programs [57],
facts are of the form (P (t1, . . . , tn),N l), while rules are of the form (A← B1, . . . , Bn,
N l). The meaning of them is given directly by the possibilistic FOL formulae, NP
(t1, . . . , tn), � l and N (∀x.B1 ∧ . . . ∧Bn → A)� l, respectively (the necessity of the
formula is greater or equal than l). This basic form has been extended in [206] (which
describes also an implementation) to the case of disjunctive logic programming under
the stable model semantics, while [2, 3, 4, 25] allow explicitly to deal with fuzzy sets in
the language.

Vagueness and Logic Programs. While there is a large literature related to the man-
agement of vagueness in logic programs, there are rule forms that are general enough to
cover a large amount of them (see e.g., [174,250,276]). Roughly, rules are of the form
A← f(B1, ..., Bn), whereA,Bi are atoms and f is a total function f : Sn → S over a
truth space S. Computationally, given an assignment/interpretation I of values to theBi,
the value of A is computed by stating that A is at least as true as f(I(B1), ..., I(Bn)).
The form of the rules is sufficiently expressive to encompass many approaches to many-
valued logic programming. [174] provides an even more general setting as the function
f may also depend on the variables occurring in the rule body. On the other hand there
are also some extensions to many-valued disjunctive logic programs [186,187,253]. In
some cases, e.g. [130] there is also a function g, which dictates how to aggregate the
truth values in case an atom is head of several rules.

Most works deal with logic programs without negation and some may provide some
technique to answer queries in a top-down manner, as e.g. [35, 122, 130, 252, 276]. On
the other hand, there are very few works dealing with normal logic programs [38,78,80,
142, 143, 144, 145, 146, 147, 148, 173, 186, 250, 253, 258, 263], and little is know about
top-down query answering procedures. The only exceptions are [250, 258, 263].

Another rising problem is the problem to compute the top-k ranked answers to a
query, without computing the score of all answers. This allows to answer queries such
as “find the top-k closest hotels to the conference location”. Solutions to this problem
can be found in [174, 259, 264].

For illustrative purposes, we formally present a quite general logic programming
formalism dealing with vagueness.

The truth space that we consider here is the finite set [0, 1]m = { 0
m ,

1
m , . . . ,

m−1
m , mm}

(for a natural number m > 0), which is pretty common in fuzzy logic. Throughout the
paper, we assume m = 100 in the examples with usual decimal rounding (e.g., 0.375
becomes 0.38, while 0.374 becomes 0.37).
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ID MODEL TYPE PRICE KM COLOR AIRBAG INTERIOR TYPE AIR COND ENGINE FUEL

455 MAZDA 3 Sedan 12500 10000 Red 0 VelvetSeats 1 Gasoline
34 ALFA 156 Sedan 12000 15000 Black 1 LeatherSeats 0 Diesel

1812 FORD FOCUS StationVagon 11000 16000 Gray 1 LeatherSeats 1 Gasoline

Fig. 3. The car table

A knowledge base KB consists of a facts component F and an LP component P ,
which are defined below.

Facts Component. F is a finite set of expressions of the form

〈R(c1, . . . , cn), s〉 ,

where R is an n-ary relation, every ci is a constant, and s is a degree of truth (or
simply score) in [0, 1]m. For each R, we may represent the facts 〈R(c1, . . . , cn), s〉 in
F by means of a relational n + 1-ary table TR, containing the records (c1, . . . , cn, s).
We assume that there cannot be two records (c1, . . . , cn, s1) and (c1, . . . , cn, s2) in TR
with s1 
= s2 (if there are, then we remove the one with the lower score). Each table is
sorted in descending order with respect to the scores. For ease, we may omit the score
component and in such cases the value 1 is assumed.

Example 3.5 ( [221]). Suppose we have a car selling site, and we would like to buy
a car. The cars belong to the relation CarTable shown in Fig. 3. Here, the score is
implicitly assumed to be 1 in each record. For instance, the first record corresponds to
the fact

〈CarTable(455 , MAZDA3 ,Sedan, 12500 , 10000 , Red , 0 , VelvetSeats, 1 ,Gasoline), 1〉 .

�

LP Component. P is a finite set of vague rules of the form (an example of a rule is
shown in Example 3.7 below.)

R(x)←∃y.f(R1(z1), . . . , Rl(zl), p1(z′1), . . . , ph(z
′
h)) ,

where

1. R is an n-ary relation, every Ri is an ni-ary relation,
2. x are the distinguished variables;
3. y are existentially quantified variables called the non-distinguished variables;
4. zi, z′j are tuples of constants or variables in x or y;
5. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple cj a score pj(cj) ∈

[0, 1]m. Such predicates are called expensive predicates in [26] as the score is not
pre-computed off-line, but is computed on query execution. We require that an n-
ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p′ such
that m < n and p = p′. Informally, all parameters are needed in the definition of p;

6. f is a scoring function f : ([0, 1]m)l+h → [0, 1]m, which combines the scores
of the l relations Ri(c′i) and the n fuzzy predicates pj(c′′j ) into an overall score
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Vehicles(x)← Cars(x)
Vehicles(x)← Trucks(x)
Vehicles(x)← Vans(x)
Cars(x)← LuxuryCars(x)
Cars(x)← PassengerCars(x)
Cars(x1)← CarTable(x1, . . . , x10)
Cars(x)← Sedan(x)
Cars(x)← StationWagon(x)
Seats(x8)← CarTable(x1, . . . , x10)

Seats(x)← LeatherSeats (x)
Seats(x)← VelvetSeats(x)
PassengerCars(x)← MidSizeCars(x)
PassengerCars(x)← SportyCars(x)
PassengerCars(x)← CompactCars(x)
hasPrice(x1, x4)← CarTable(x1, . . . , x10)
hasKm(x1, x5)← CarTable(x1, . . . , x10)
FuelType(x1, x10)← CarTable(x1, . . . , x10)

Fig. 4. Excerpt of a car selling ontology

to be assigned to the rule head R(c). We assume that f is monotone, that is, for
each v,v′ ∈ ([0, 1]m)l+h such that v � v′, it holds f(v) � f(v′), where
(v1, . . . , vl+h) � (v′1, . . . , v

′
l+h) iff vi � v′i for all i. We also assume that the

computational cost of f and all fuzzy predicates pi is bounded by a constant.

We call R(x) the head and ∃y.f(R1(z1), . . . , Rl(zl), p1(z′1), . . . , ph(z
′
h)) the body of

the rule. We assume that relations occurring in F do not occur in the head of rules
(so, we do not allow that the fact relations occurring in F can be redefined by P ). As
usual in deductive databases, the relations in F are called extensional relations, while
the others are intensional relations.

Example 3.6. Consider again Example 3.5. An excerpt of the domain ontology is de-
scribed in Fig. 4 and partially encodes the web directory behind the car selling site
www.autos.com. �

Semantically, the notion of Herbrand universe HUKB and Herbrand base HBKB are
defined as usual as the set of individual constants occurring in KB and the set of
ground atoms that can be formed using constants in HUKB and atoms occurring in
KB , respectively. An interpretation I maps every n-ary relation R to a partial function
RI : HU n

KB → [0, 1]m and every constant to an element of HUKB such that aI 
= bI

if a 
= b (unique name assumption). Note that, since RI may be a partial function, some
tuples may not have a score. Alternatively, we may assume RI to be a total function.
We use the former formulation to distinguish the case where a tuple c may be retrieved,
even though the score is 0, from the case where a tuple is not retrieved, since it does not
satisfy the query. In particular, if a tuple does not belong to an extensional relation, then
its score is assumed to be undefined, while if RI is total, then the score of this tuple
would be 0.

An interpretation I is a model of (or satisfies) a fact 〈R(c1, . . . , cn), s〉, denoted
I |= 〈R(c1, . . . , cn), s〉, iff RI(c1, . . . , cn) � s wheneverRI(c1, . . . , cn) is defined.

An interpretation I is a model of a rule r of the form R(x)←∃y.φ(x,y), where
φ(x,y)= ∃y.f(R1(z1), . . . , Rl(zl), p1(z′1), . . . , ph(z′h)), denoted I |= r, iff for all
c∈HU n

KB such thatRI(c) is defined, the following holds (where φI(c, c′) is obtained
from φ(c, c′) by replacing every Ri by RI

i and every constant c by cI):

RI(c) � sup
c′∈HUKB×···×HUKB , φI(c, c′) is defined

φI(c, c′) .

../../../../../Research/Articoli/Submitted/Accepted/ReasoningWeb08/www.autos.com
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Pref1 (x, p) ← min(Cars(x),hasPrice(x, p), ls(10000, 14000)(p)) ; (1)
Pref2 (x, k) ← min(Cars(x),hasKM (x, k), ls(13000, 17000)(k)) ; (2)
Buy(x, p, k) ← 0.7 · Pref1 (x, p) + 0.3 · Pref2 (x, k) . (3)

Fig. 5. The car buying rules

We say I is a model of a knowledge base KB , denoted I |=KB , iff I is a model
of each expression E ∈ F ∪ P . We say KB entails R(c) to degree s, denoted KB |=
〈R(c), s〉, iff for each model I of KB , it is true that RI(c)� s whenever RI(c) is
defined. The greatest lower bound of R(c) relative to KB is glb(KB , R(c)) = sup{s |
KB |= 〈R(c), s〉}.

Example 3.7. Consider again Example 3.6. Now, suppose that in buying a car, prefer-
ably we would like to pay around $12000 and the car should have less than 15000 km.
Of course, our constraints on price and kilometers are not crisp as we may still accept to
some degree, e.g., a car’s cost of $12200 and with 16000 km. Hence, these constraints
are rather vague. We model this by means of left-shoulder functions (see Fig. 2). We
may model the vague constraint on the cost with ls(10000, 14000)(x) dictating that we
are definitely satisfied if the price is less than $10000, but can pay up to $14000 to a
lesser degree of satisfaction. Similarly, we may model the vague constraint on the kilo-
meters with ls(13000, 17000)(x).3 We also set some preference (weights) on these two
vague constraints, say the weight 0.7 to the price constraint and 0.3 to the kilometers
constraint, indicating that we give more priority to the price rather than to the car’s kilo-
meters. The rules encoding the above conditions are represented in Fig. 5. Rule (1) in
Fig. 5 encodes the preference on the price. Here, ls(10000, 14000)(p) is the function
that given a price p returns the degree of truth provided by the left-shoulder function
ls(10000, 14000)(p) evaluated on the input p. Similarly, for rule (2). Rule (3) encodes
the combination of the preferences by taking into account the weight given to each
preference. The table below reports the instances of Buy(x, p, k) together with their
greatest lower bound.

ID PRICE KM s

455 12500 10000 0.56
34 12000 15000 0.50
1812 11000 16000 0.60 .

�

The basic inference problem that we are interested in here is the top-k retrieval problem,
which is formulated as follows.

Top-k Retrieval. Given a knowledge base KB , retrieve k tuples (c, s) that instantiate
the query relation R with maximal scores (if k such tuples exist), and rank them in
decreasing order relative to the score s, denoted

ansk(KB , R) = Topk{(c, s) | s = glb(KB , R(c))} .

3 Recall that in our setting, all fuzzy membership functions provide a truth value in [0, 1]m.
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Example 3.8. It can be verified that the answer to the top-2 problem for Example 3.7 is

ID PRICE KM s

1812 11000 16000 0.60
455 12500 10000 0.56 .

�

3.3 Description Logic Programs

Description Logic Programs [87, 134, 195, 225] are a combination of description logics
with logic programming. 4 There is a large body of work on integrating rules and ontolo-
gies, which is a key requirement of the layered architecture of the Semantic Web. Sig-
nificant research efforts focus on hybrid integrations of rules and ontologies, called de-
scription logic programs (or dl-programs), which are of the form KB =(L,P ), whereL
is a description logic knowledge base and P is a finite set of rules involving either
queries to L in a loose integration (see especially [71, 72, 68, 69, 70]) or concepts
and roles from L as unary resp. binary predicates in a tight integration (see espe-
cially [134, 223, 224, 168, 195, 196]). Roughly, in the loosely coupled approach, DL
atoms may appear in rule bodies and act as queries to an underlying DL system, while
in the tightly coupled approach the integration is more involved.

In parallel to these to approaches (loosely coupled vs. tightly coupled) there has been
some works on the extension of these approaches towards the management of imperfect
information: (i) under probability fall works such as [20, 21, 164, 169, 170]; (ii) under
vagueness fall the works [166, 173, 174, 178, 255, 257, 261, 274]; while a combination
of probability and vagueness in description logic programs can be found in the work
(unique so far) [172].
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93. Hähnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.) Hand-
book of Philosophical Logic, 2nd edn. Kluwer Academic Publishers, Dordrecht (2001)

94. Hailperin, T.: Sentential Probability Logic: Origins, Development, Current Status, and
Technical Applications. Associated University Presses, London, UK (1996)
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191. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint ap-
proach. Fuzzy sets and systems 1(146), 43–62 (2004)

192. Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. Jour-
nal of the ACM 48(5), 909–970 (2001)

193. Meghini, C., Sebastiani, F., Straccia, U., Thanos, C.: A model of information retrieval based
on a terminological logic. In: Proceedings of the 16th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (ACM SIGIR 1993),
Pittsburgh, USA, pp. 298–307 (1993)

194. Mitra, P., Noy, N.F., Jaiswal, A.: OMEN: A probabilistic ontology mapping tool. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp.
537–547. Springer, Heidelberg (2005)

195. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and Logic Programming Live
Together Happily Ever After? In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe,
D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 501–514.
Springer, Heidelberg (2006)

196. Motik, B., Rosati, R.: A Faithful Integration of Description Logics with Logic Program-
ming. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007). Morgan
Kaufmann Publishers, San Francisco (2007)

197. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Proceedings of the 5th
International Workshop on Inductive Logic Programming, p. 29. Department of Computer
Science, Katholieke Universiteit Leuven (1995)

ftp://al.cs.engr.uky.edu/cs/manuscripts/lp-costs.ps


98 U. Straccia

198. Mukaidono, M.: Foundations of fuzzy logic programming. In: Advances in Fuzzy Systems
– Application and Theory, vol. 1. World Scientific, Singapore (1996)

199. Mukaidono, M., Shen, Z., Ding, L.: Fundamentals of fuzzy prolog. Int. J. Approx. Reason-
ing 3(2), 179–193, (1989)

200. Naeth, T.H.: Analysis of the average-case behavior of an inference algorithm for probabilis-
tic description logics. Diplomarbeit, TU Hamburg-Harburg, Germany, (February 2007)

201. Ng, R., Subrahmanian, V.: Probabilistic logic programming. Information and Computa-
tion 101(2), 150–201, (1993)

202. Ng, R., Subrahmanian, V.: Stable model semantics for probabilistic deductive databases.
Information and Computation 110(1), 42–83, (1994)

203. Ngo, L.: Probabilistic disjunctive logic programming. In: Uncertainty in Artificial Intelli-
gence: Proceedings of the Twelfeth Conference (UAI 1996), pp. 397–404. Morgan Kauf-
mann, San Francisco (1996)

204. Ngo, L., Haddawy, P.: Probabilistic logic programming and bayesian networks. In: Kan-
chanasut, K., Levy, J.-J. (eds.) ACSC 1995. LNCS, vol. 1023, pp. 286–300. Springer, Hei-
delberg (1995)

205. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge
bases. Theoretical Computer Science 171(1-2), 147–177 (1997)
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International Protégé Conference (2004)
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A Some References Related to Logic Programming, Uncertainty
and Vagueness

Below a list of references and the underlying imprecision and uncertainty theory in
logic programming frameworks. The list of references is by no means intended to be
all-inclusive. The author apologizes both to the authors and with the readers for all the
relevant works, which are not cited here.

Probability theory:[11,7,8,40,46,48,44,45,47,82,117,118,116,129,131,152,153,155]
[156, 158, 162, 160, 184, 197, 201, 202, 203, 205, 215, 216, 275, 281]

Possibilistic logic: [3, 4, 2, 25, 57, 206]
Fuzzy set theory: [185, 9, 10, 19, 24, 27, 67, 100, 111, 123, 89, 88, 185, 199, 198, 213]

[222, 235, 236, 237, 177, 267, 273, 277, 276, 278, 279, 284]



Managing Uncertainty and Vagueness in Description Logics 103

Multi-valued logic: [22, 34, 35, 36, 31, 32, 37, 38, 39, 41, 33, 53, 49, 52, 50, 51]
[78, 80, 75, 76, 77, 91, 119, 120, 121, 122, 126, 127, 128, 130]
[142, 143, 144, 145, 146, 147, 148, 150, 151, 179, 181, 180, 183, 186, 187, 190, 190,
188, 189, 191]
[226, 231, 232, 233, 252, 250, 253, 258, 259, 264, 263, 270]
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