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Sources of Uncertainty and Vagueness on the Web

(Multimedia) Information Retrieval:
To which degree is a Web site, a Web page, a text passage,
an image region, a video segment, . . . relevant to my
information need?

Matchmaking
To which degree does an object match my requirements?

if I’m looking for a car and my budget is about 20.000e, to
which degree does a car’s price of 20.500e match my
budget?
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Semantic annotation / classification
To which degree does e.g., an image object represent or is
about a dog?

Information extraction
To which degree am I’m sure that e.g., SW is an acronym of
“Semantic Web”?

Ontology alignment (schema mapping)
To which degree do two concepts of two ontologies
represent the same, or are disjoint, or are overlapping?

To which degree are are SUVs and Sports Cars
overlapping?

Representation of background knowledge
To some degree birds fly.
To some degree Jim is a blond and young.
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Example (Matchmaking)

A car seller sells an Audi TT for 31500e, as from the catalog price.
A buyer is looking for a sports-car, but wants to to pay not more than around
30000e
Classical DLs: the problem relies on the crisp conditions on price.

More fine grained approach: to consider prices as vague constraints (fuzzy sets)
(as usual in negotiation)

Seller would sell above 31500e, but can go down to 30500e
The buyer prefers to spend less than 30000e, but can go up to 32000e
Highest degree of matching is 0.75 . The car may be sold at 31250e.
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Example (Multimedia information retrieval)

IsAbout
ImageRegion Object ID degree
o1 snoopy 0.8
o2 woodstock 0.7
.
.
.

.

.

.

“Find top-k image regions about animals”
Query(x)← ImageRegion(x) ∧ isAbout(x , y) ∧ Animal(y)
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Example (Distributed Information Retrieval)

Then the agent has to perform automatically the following steps:

1 The agent has to select a subset of relevant resources S ′ ⊆ S , as it is
not reasonable to assume to access to and query all resources
(resource selection/resource discovery);

2 For every selected source Si ∈ S ′ the agent has to reformulate its
information need QA into the query language Li provided by the
resource (schema mapping/ontology alignment);

3 The results from the selected resources have to be merged together
(data fusion/rank aggregation)
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Example (Database query)

HotelID hasLoc
h1 hl1
h2 hl2
.
.
.

.

.

.

ConferenceID hasLoc
c1 cl1
c2 cl2
.
.
.

.

.

.

hasLoc hasLoc distance
hl1 cl1 300
hl1 cl2 500
hl2 cl1 750
hl2 cl2 800
.
.
.

.

.

.

hasLoc hasLoc close cheap
hl1 cl1 0.7 0.3
hl1 cl2 0.5 0.5
hl2 cl1 0.25 0.8
hl2 cl2 0.2 0.9
.
.
.

.

.

.
.
.
.

“Find top-k cheapest hotels close to the train station”

q(h)←hasLocation(h, hl) ∧ hasLocation(train, cl) ∧ close(hl, cl) ∧ cheap(h)
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Example (Health-care: diagnosis of pneumonia)

E.g., Temp = 37.5, Pulse = 98, RespiratoryRate = 18 are in the “danger zone”
already
Temperature, Pulse and Respiratory rate, . . . : these constraints are rather
imprecise than crisp
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Uncertainty vs. Vagueness: a clarification

What does the value (usually in [0,1]) of the degree mean?
There is often a misunderstanding between interpreting a
degree as a measure of uncertainty or as a measure of
vagueness !
The value 0.83 has a different interpretation in “Birds fly to
degree 0.83” from that in “Hotel Verdi is close to the train
station to degree 0.83”
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Uncertainty

Uncertainty: statements are true or false
But, due to lack of knowledge we can only estimate to which
probability/possibility/necessity degree they are true or false

For instance, a bird flies or does not fly
we assume that we can clearly define the property “can fly”

The probability/possibility/necessity degree that it flies is
0.83
E.g., under probability theory this may mean that 83% of
the birds do fly, while 17% of the birds do not fly

Note: e.g., a chicken has to be classified as either flying or
non-flying thing
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Example
Sport Car:

∀x , hp, sp, ac SportCar(x) ⇐⇒ HP(x , hp) ∧ Speed(x , sp) ∧ Acceleration(x , ac)

∧hp ≥ 210 ∧ sp ≥ 220 ∧ ac ≤ 7.0

audi_tt mg ferrari_enzo

Ferrari Enzo is a Sport Car: HP = 651,Speed ≥ 350,Acc. = 3.14
MG is not a Sport Car: HP = 59,Speed = 170,Acc. = 14.3
Is Audi TT 2.0 a Sport Car ? HP = unknown,Speed = 243,Acc. = 6.9

We can estimate from a training set (Naive Bayes Classification)

Pr(SportCar|AudiTT ) = Pr(AudiTT |SportCar) · Pr(SportCar) · (1/Pr(AudiTT ))

≈
Pr(speed ≥ 243|SportCar) · Pr(accel ≤ 6.9|SportCar) · Pr(SportCar)

Pr(speed ≥ 243) · Pr(accel ≤ 6.9)
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Sport Car:

∀x , hp, sp, ac SportCar(x) ⇐⇒ HP(x , hp) ∧ Speed(x , sp) ∧ Acceleration(x , ac)

∧hp ≥ 210 ∧ sp ≥ 220 ∧ ac ≤ 7.0

audi_tt mg ferrari_enzo

Note: Audi TT 2.0 is not a Sport Car: HP = 200,Speed = 243,Acc. = 6.9
Explicit definition of Sport Car is too sharp

We can estimate from a training set (Naive Bayes Classification)
Pr(SportCar|MyCar) = Pr(MyCar|SportCar) · Pr(SportCar) · (1/Pr(MyCar))

≈
Pr(MyCar.hp≥|SportCar)·Pr(MyCar.speed≥|SportCar)·Pr(MyCar.accel≤|SportCar)·Pr(SportCar)

Pr(MyCar.hp≥)·Pr(MyCar.speed≥)·Pr(MyCar.accel≤)

Uncertainty and Vagueness in Semantic Web Languages Lecture at Reasoning Web 2008 U. Straccia



Concepts and Techniques for Reasoning about Vagueness and Uncertainty
Basics on Semantic Web Languages

Uncertainty and Vagueness Basics
Uncertainty and Vagueness in Semantic Web Languages

Systems

Sources of Uncertainty and Vagueness on the Web
Uncertainty vs. Vagueness: a clarification

Vagueness

Vagueness: statements involve concepts for which there is
no exact definition, such as

tall, small, close, far, cheap, expensive, “is about”, “similar
to”.

A statements is true to some degree, which is taken from a
truth space (usually [0,1]).
E.g., “Hotel Verdi is close to the train station to degree
0.83”

the degree depends on the distance
E.g., “The image is about a sun set to degree 0.75”

the degree depends on the extracted features and the
semantic annotations
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Example
Sport Car:

∀x , hp, sp, ac SportCar(x) ⇐⇒ 0.3HP(x , hp) + 0.2Speed(x , sp) + 0.5Accel(x , ac)

Each feature, gives a degree of truth depending on the value and the
membership function

HP(x , hp) = rs(180, 250)(hp)

Speed(x , sp) = rs(180, 240)(sp)

Accel(x , ac) = ls(6.0, 8.0)(ac)

ls(a,b) rs(a,b)

Degree of truth of SportCar(AudiTT ): 0.1 · 0.28 + 0.3 · 1.0 + 0.6 · 0.55 = 0.658
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The fuzzy membership functions can be learned from a training set (large
literature)

HP(x, hp) = rs(192, 242)(hp)

Speed(x, sp) = rs(193, 234)(sp)

Accel(x, ac) = ls(6.5, 7.5)(ac)

ls(a,b) rs(a,b)
Learned Training Sport Class:

∀x, hp, sp, ac TrainingSportCar(x) ⇐⇒ 0.3HP(x, hp) + 0.2Speed(x, sp) + 0.5Accel(x, ac)

Now, a classification method can be applied: e.g. kNN classifier

∀x, hp, sp, ac SportCar(x) ⇐⇒
P

y∈Topk (x) Similar(x, y) · TrainingSportCar(y)

∀x, hp, sp, ac Similar(x, y) ⇐⇒ 0.3 · HP(x, hpx) · HP(y, hpy) + 0.2 · Speed(x, spx) · Speed(y, spy) +
+ 0.5 · Accel(x, acx) · Accel(y, acy)

where Topk (x) is the set of top-k ranked most similar cars to car x
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Imperfect Information

Mixing uncertainty and vagueness:
“Probably it will be hot tomorrow”

Crisp quantifier (“probably”) over vague statement
“In most cases, a bird does fly”

Vague quantifier (“most”) over crisp statement

The notion of imperfect information covers concepts such
as

uncertainty “Nancy is likely John’s girlfriend”
vagueness “John’s girlfriend is blond”
incompleteness “John’s girlfriend is Nancy or Mary”
imprecision “The hight of John’s girlfriend is in between 165cm and 170cm”
contradiction “John’s girlfriend, Nancy, lives in Rome. Nancy is living in Florence.”
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Uncertainty vs. Vagueness

The distinction between uncertainty and vagueness is not
always clear: depends on the assumptions
(Multimedia) Information Retrieval:

Query: “I’m looking for a house”

System Answer: score/degree 0.83

What’s behind the computational model?
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Probabilistic model
Assumption: a multimedia object is either relevant or not relevant to a
query q
Score: The probability of being a multimedia object o relevant (Rel) to q

score := Pr(Rel | q, o)

Vague/Fuzzy model
Assumption: a multimedia object o is about a semantic index term (t ∈ T)
to some degree in [0, 1]
The mapping of objects o ∈ O to semantic entities t ∈ T is called semantic
annotation

F : O× T→ [0, 1]

F (o, t) indicates to which degree the multimedia object o is about the semantic index term t

Score: The evaluation of how much the multimedia object o is about the
the information need q

score := F (o, q)
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In other cases there may be both approaches as well

For instance, in Ontology Alignment, what about the degree n of the mapping

〈SUV ,Van,∩, n〉 ?

Probabilistic model: a car is a SUV (Van) or is not a SUV (Van)

Then, e.g. from a training set, compute

n = Pr(SUV ∩ Van)

Fuzzy model: a car is to some degree a SUV and to some other degree a Van

Then, e.g. from a training set, compute

n = kNNSUV (x) · kNNVan(x)
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Semantic Web Languages Basics
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Web Ontology Languages

Wide variety of languages for “Explicit Specification”
Graphical notations

Semantic networks
UML
RDF/RDFS

Logic based
Description Logics (e.g., OIL, DAML+OIL, OWL, OWL-DL,
OWL-Lite)
Rules (e.g., RuleML, RIF, SWRL, LP/Prolog)
First Order Logic (e.g., KIF)

RDF and OWL-DL are the major players (so far ...)
Possibly RIF is coming . . .
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RDF

Statements are of the form

〈subject , predicate, object〉

called triples: e.g.
〈umberto, plays, soccer〉

can be represented graphically as:

umberto
plays−→ soccer

Statements describe properties of resources

A resource is any object that can be pointed to by a URI (Universal Resource
Identifier):
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RDF Schema (RDFS)

RDF Schema allows you to define vocabulary terms and the relations
between those terms

RDF Schema terms (just a few examples):
Class
Property
type
subClassOf
range
domain

These terms are the RDF Schema building blocks (constructors) used
to create vocabularies:

<Person,type, Class>
<hasColleague, type, Property>
<Professor, subClassOf,Person>
<Carole, type,Professor>
<hasColleague, range,Person>
<hasColleague, domain,Person>
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Representing degrees in RDF/RDFS

How can we represent degrees of uncertainty and vagueness in RDF/RDFS?

Unfortunately, no standard exists yet

So far, an option is to uses special purpose properties and reification

〈statement1, hasSubject , o1〉
〈statement1, hasProperty , IsAbout〉
〈statement1, hasObject , snoopy〉
〈statement1, hasDegree, 0.8〉

But, then such statements have to be appropriately be managed by the system
according to the underlying uncertainty or vagueness theory
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OWL

Three species of OWL
OWL full is union of OWL syntax and RDF (Undecidable)
OWL DL restricted to FOL fragment (decidable in NEXPTIME)
OWL Lite is “easier to implement” subset of OWL DL (decidable in
EXPTIME)

Semantic layering

OWL DL within Description Logic (DL) fragment

OWL DL based on SHOIN (Dn) DL

OWL Lite based on SHIF(Dn) DL
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Description Logics (DLs)

The logics behind OWL-DL and OWL-Lite,
http://dl.kr.org/.
Concept/Class: names are equivalent to unary predicates

In general, concepts equiv to formulae with one free
variable

Role or attribute: names are equivalent to binary
predicates

In general, roles equiv to formulae with two free variables
Taxonomy: Concept and role hierarchies can be expressed
Individual: names are equivalent to constants
Operators: restricted so that:

Language is decidable and, if possible, of low complexity
No need for explicit use of variables

Restricted form of ∃ and ∀
Features such as counting can be succinctly expressed
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The DL Family

A given DL is defined by set of concept and role forming operators

Basic language: ALC(Attributive Language with Complement)

Syntax Semantics Example
C,D → > | >(x)

⊥ | ⊥(x)
A | A(x) Human

C u D | C(x) ∧ D(x) Human u Male
C t D | C(x) ∨ D(x) Nice t Rich
¬C | ¬C(x) ¬Meat
∃R.C | ∃y.R(x, y) ∧ C(y) ∃has_child.Blond
∀R.C ∀y.R(x, y)⇒ C(y) ∀has_child.Human

C v D ∀x.C(x)⇒ D(x) Happy_Father v Man u ∃has_child.Female
a:C C(a) John:Happy_Father
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Toy Example

Sex = Male t Female
Male u Female v ⊥

Person v Human u ∃hasSex .Sex
MalePerson v Person u ∃hasSex .Male

umberto:Person u ∃hasSex .¬Female

KB |= umberto:MalePerson
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Note on DL Naming
AL: C,D −→ > | ⊥ |A |C u D | ¬A | ∃R.> |∀R.C
C: Concept negation, ¬C. Thus, ALC = AL+ C
S: Used for ALC with transitive roles R+

U : Concept disjunction, C1 t C2
E : Existential quantification, ∃R.C
H: Role inclusion axioms, R1 v R2, e.g. is_component_of v is_part_of
N : Number restrictions, (≥ n R) and (≤ n R), e.g. (≥ 3 has_Child) (has

at least 3 children)
Q: Qualified number restrictions, (≥ n R.C) and (≤ n R.C),

e.g. (≤ 2 has_Child .Adult) (has at most 2 adult children)
O: Nominals (singleton class), {a}, e.g. ∃has_child .{mary}.

Note: a:C equiv to {a} v C and (a, b):R equiv to {a} v ∃R.{b}
I: Inverse role, R−, e.g. isPartOf = hasPart−

F : Functional role, f , e.g. functional(hasAge)
R+: transitive role, e.g. transitive(isPartOf )

For instance,

SHIF = S +H+ I + F = ALCR+HIF OWL-Lite (EXPTIME)
SHOIN = S +H+O + I +N = ALCR+HOIN OWL-DL (NEXPTIME)
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Semantics of Additional Constructs

H: Role inclusion axioms, I |= R1 v R2 iff R1
I ⊆ R1

I

N : Number restrictions,
(≥ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≥ n},
(≤ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≤ n}

Q: Qualified number restrictions,
(≥ n R.C)I = {x ∈ |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≥ n},
(≤ n R.C)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≤ n}

O: Nominals (singleton class), {a}I = {aI}

I: Inverse role, (R−)
I

= {〈x , y〉 | 〈y , x〉 ∈ RI}
F : Functional role, I |= fun(f ) iff ∀z∀y∀z if 〈x , y〉 ∈ fI and 〈x , z〉 ∈ fI

the y = z

R+: transitive role,
(R+)I = {〈x , y〉 | ∃z such that 〈x , z〉 ∈ RI ∧ 〈z, y〉 ∈ RI}
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Concrete Domains

Concrete domains: reals, integers, strings, . . .

(tim, 14):hasAge
(sf , “SoftComputing”):hasAcronym
(source1, “ComputerScience”):isAbout
(service2, “InformationRetrievalTool ′′):Matches
YoungPerson = Person u ∃hasAge. ≤18

Semantics: a clean separation between “object” classes and concrete
domains

D = 〈∆D,ΦD〉
∆D is an interpretation domain
ΦD is the set of concrete domain predicates d with a predefined
arity n and fixed interpretation dD ⊆ ∆n

D

Concrete properties: RI ⊆ ∆I ×∆D

Notation: (D). E.g., ALC(D) is ALC + concrete domains
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Representing degrees in OWL-DL/OWL-Lite

How can we represent degrees of uncertainty and vagueness in
OWL-DL/OWL-Lite?

Unfortunately, as for RDF, no standard exists yet

We may make an encoding as for RDF

s1:∃hasSubject .({o1} u ∃IsAbout .{snoopy}) u ∃hasDegree. =0.8

But, again then such statements have to be appropriately be managed by the
system according to the underlying uncertainty or vagueness theory

A rather dangerous approach
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LPs Basics (for ease, without default negation)

Predicates are n-ary
Terms are variables or constants
Rules are of the form

P(x)← ϕ(x,y)

where ϕ(x,y) is a formula built from atoms of the form B(z)
and connectors ∧,∨
For instance,

has_father(x , y) ← has_parent(x , y) ∧Male(y)

Facts are rules with empty body
For instance,

has_parent(mary , jo)
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LPs Semantics: FOL semantics

P∗ is constructed as follows:
1 set P∗ to the set of all ground instantiations of rules in P;
2 if atom A is not head of any rule in P∗, then add A← 0 to P∗;
3 replace several rules in P∗ having same head

A← ϕ1
A← ϕ2

...
A← ϕn

9>>>=>>>; with A← ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn .

Note: in P∗ each atom A ∈ BP is head of exactly one rule
Herbrand Base of P is the set BP of ground atoms
Interpretation is a function I : BP → {0, 1}.
Model I |= P iff for all r ∈ P∗ I |= r , where I |= A← ϕ iff I(ϕ) ≤ I(A)

Least model exists and is least fixed-point of

TP (I)(A) = I(ϕ), for all A← ϕ ∈ P∗
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Toy Example

Q(x) ← B(x)

Q(x) ← C(x)

B(a) ←
C(b) ←

KB |= Q(a) KB |= Q(b) answers(KB,Q) = {a,b}

where answers(KB,Q) = {c | KB |= Q(c)}
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Representing degrees in LPs
How can we represent degrees of uncertainty and vagueness in LPs?

Unfortunately, no standard exists yet

However, as simple encoding is to make transform an n-ary predicate P into an n + 1-ary predicate, where
the additional argument stores the value:

IsAbout(o1,snoopy, 0.8)

For instance, in LP systems we may write

q(h, s)← hasLocation(h, hl), hasLocation(train, cl), close(hl, cl, s1), cheap(h, s2), s is s1 · s2

But, then again such statements have to be appropriately be managed the system according to the
underlying uncertainty or vagueness theory
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Uncertainty and Vagueness Basics
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Uncertainty & Logic

Any statement ϕ is either true or false
Due to lack of knowledge we can only estimate to which
probability/possibility/necessity degree they are true or false
Usually we have a possible world semantics with a distribution over
possible worlds
Possible world: any classical interpretation I, mapping any statement ϕ
into {0, 1}

W = {I classical interpretation}, I(ϕ) ∈ {0, 1}

Distribution: a mapping

µ : W → [0, 1], µ(I) ∈ [0, 1]

obeying some additional conditions (probability distribution, possibility distribution)

µ(I) indicates the probability/possibility that the world I is indeed the
actual one
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The probability of a statement ϕ is determined as

Pr(ϕ) =
∑
I|=ϕ

µ(I)

The posssibility of a statement ϕ is determined as

Poss(ϕ) = sup
I|=ϕ

µ(I)

The necessity of a statement ϕ is determined as

Necc(ϕ) = 1− Poss(¬ϕ) = inf
I 6|=ϕ

1− µ(I)
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Example

Probabilistic setting:

ϕ = sprinklerOn ∨ wet

W sprinklerOn wet µ

I1 0 0 0.1
I2 0 1 0.2
I3 1 0 0.4
I4 1 1 0.3

1 =
∑
I∈W

µ(I)

Pr(ϕ) = 0.2 + 0.4 + 0.3 = 0.9
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Example

Possibilistic setting:

ϕ = sprinklerOn ∨ wet

W sprinklerOn wet µ

I1 0 0 0.3
I2 0 1 1.0
I3 1 0 0.8
I4 1 1 1.0

1 = sup
I∈W

µ(I)

Poss(ϕ) = sup(1.0,0.8,1.0) = 1.0
Necc(ϕ) = 1− Poss(¬ϕ) = 1− 0.3 = 0.7

Uncertainty and Vagueness in Semantic Web Languages Lecture at Reasoning Web 2008 U. Straccia



Concepts and Techniques for Reasoning about Vagueness and Uncertainty
Basics on Semantic Web Languages

Uncertainty and Vagueness Basics
Uncertainty and Vagueness in Semantic Web Languages

Systems

Uncertainty & Logic
Vagueness & Logic

Properties of probabilistic formulae

Pr(ϕ ∧ ψ) = Pr(ϕ) + Pr(ψ)− Pr(ϕ ∨ ψ)
Pr(ϕ ∧ ψ) ≤ min(Pr(ϕ),Pr(ψ))
Pr(ϕ ∧ ψ) ≥ max(0,Pr(ϕ) + Pr(ψ)− 1)
Pr(ϕ ∨ ψ) = Pr(ϕ) + Pr(ψ)− Pr(ϕ ∧ ψ)
Pr(ϕ ∨ ψ) ≤ min(1,Pr(ϕ) + Pr(ψ))
Pr(ϕ ∨ ψ) ≥ max(Pr(ϕ),Pr(ψ))
Pr(¬ϕ) = 1− Pr(ϕ)
Pr(⊥) = 0
Pr(>) = 1
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Properties of possibilistic formulae

Poss(ϕ ∧ ψ) ≤ min(Poss(ϕ),Poss(ψ))
Poss(ϕ ∨ ψ) = max(Poss(ϕ),Poss(ψ))
Poss(¬ϕ) = 1− Nec(ϕ)
Poss(⊥) = 0
Poss(>) = 1
Nec(ϕ ∧ ψ) = min(Nec(ϕ),Nec(ψ))
Nec(ϕ ∨ ψ) ≥ max(Nec(ϕ),Nec(ψ))
Nec(¬ϕ) = 1− Poss(ϕ)
Nec(⊥) = 0
Nec(>) = 1
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Probabilistic Knowledge Bases

Finite nonempty set of basic events Φ = {p1, . . . ,pn}.

Event ϕ: Boolean combination of basic events

Logical constraint ψ⇐ϕ: events ψ and ϕ: “ϕ implies ψ”.

Conditional constraint (ψ|ϕ)[l ,u]: events ψ and ϕ, and
l ,u ∈ [0,1]: “conditional probability of ψ given ϕ is in [l ,u]”.

ψ ≥ l is a shortcut for (ψ|>)[l ,1], ψ ≤ u is a shortcut for
(ψ|>)[0,u]

Probabilistic knowledge base KB = (L,P):

finite set of logical constraints L,
finite set of conditional constraints P.
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Example

Probabilistic knowledge base KB = (L,P):

L = {bird⇐eagle}:

“Eagles are birds”.

P = {(have_legs |bird)[1,1], (fly |bird)[0.95,1]}:

“Birds have legs”.
“Birds fly with a probability of at least 0.95”.
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World I: truth assignment to all basic events in Φ.

IΦ: all worlds for Φ.

Probabilistic interpretation Pr : probability distribution on
IΦ.

Pr(ϕ) : sum of all Pr(I) such that I ∈ IΦ and I |=ϕ.

Pr(ψ|ϕ): if Pr(ϕ)>0, then Pr(ψ|ϕ) = Pr(ψ ∧ ϕ) /Pr(ϕ).

Truth under Pr :
Pr |= ψ⇐ϕ iff Pr(ψ ∧ϕ) = Pr(ϕ)

(iff Pr(ψ⇐ϕ) = 1).
Pr |= (ψ|ϕ)[l ,u] iff Pr(ψ ∧ ϕ)∈ [l ,u] ·Pr(ϕ)

(iff either Pr(ϕ) = 0 or Pr(ψ|ϕ)∈ [l ,u]).
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Example

Set of basic propositions Φ = {bird, fly}.
IΦ contains exactly the worlds I1, I2, I3, and I4 over Φ:

fly ¬fly
bird I1 I2
¬bird I3 I4

Some probabilistic interpretations:
Pr1 fly ¬fly
bird 19/40 1/40
¬bird 10/40 10/40

Pr2 fly ¬fly
bird 0 1/3
¬bird 1/3 1/3

Pr1(fly ∧ bird) = 19/40 and Pr1(bird) = 20/40 .
Pr2(fly ∧ bird) = 0 and Pr2(bird) = 1/3 .
¬fly⇐bird is false in Pr1, but true in Pr2 .
(fly |bird)[.95,1] is true in Pr1, but false in Pr2 .
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Satisfiability and Logical Entailment

Pr is a model of KB = (L,P) iff Pr |= F for all F ∈L ∪ P.

KB is satisfiable iff a model of KB exists.

KB ||= (ψ|ϕ)[l ,u]: (ψ|ϕ)[l ,u] is a logical consequence of KB
iff every model of KB is also a model of (ψ|ϕ)[l ,u].

KB ||=tight (ψ|ϕ)[l ,u]: (ψ|ϕ)[l ,u] is a tight logical
consequence of KB iff l (resp., u) is the infimum (resp.,
supremum) of Pr(ψ|ϕ) subject to all models Pr of KB with
Pr(ϕ)>0.
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Example

Probabilistic knowledge base:

KB = ({bird⇐eagle} ,
{(have_legs |bird)[1,1], (fly |bird)[0.95,1]}) .

KB is satisfiable, since

Pr with Pr(bird ∧ eagle ∧ have_legs ∧ fly) = 1 is a model.

Some conclusions under logical entailment:

KB ||= (have_legs |bird)[0.3,1], KB ||= (fly |bird)[0.6,1].

Tight conclusions under logical entailment:

KB ||=tight (have_legs |bird)[1,1], KB ||=tight (fly |bird)[0.95,1],

KB ||=tight (have_legs |eagle)[1,1], KB ||=tight (fly |eagle)[0,1].
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Deciding Model Existence / Satisfiability

Theorem: The probabilistic knowledge base KB = (L,P) has a
model Pr with Pr(α)>0 iff the following system of linear
constraints over the variables yr (r ∈R), where
R = {I ∈IΦ | I |= L}, is solvable:∑

r∈R, r |=¬ψ∧ϕ
−l yr +

∑
r∈R, r |=ψ∧ϕ

(1− l) yr ≥ 0 (∀(ψ|ϕ)[l ,u]∈P)

∑
r∈R, r |=¬ψ∧ϕ

u yr +
∑

r∈R, r |=ψ∧ϕ
(u − 1) yr ≥ 0 (∀(ψ|ϕ)[l ,u]∈P)∑

r∈R, r |=α
yr = 1

yr ≥ 0 (for all r ∈R)
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Computing Tight Logical Consequences

Theorem: Suppose KB = (L,P) has a model Pr such that
Pr(α)>0. Then, l (resp., u) such that KB ||=tight (β|α)[l ,u]
is given by the optimal value of the following linear program
over the variables yr (r ∈R), where R = {I ∈IΦ | I |= L}:

minimize (resp., maximize)
∑

r∈R, r |= β∧α
yr subject to∑

r∈R, r |=¬ψ∧ϕ
−l yr +

∑
r∈R, r |=ψ∧ϕ

(1− l) yr ≥ 0 (∀(ψ|ϕ)[l ,u]∈P)

∑
r∈R, r |=¬ψ∧ϕ

u yr +
∑

r∈R, r |=ψ∧ϕ
(u − 1) yr ≥ 0 (∀(ψ|ϕ)[l ,u]∈P)∑

r∈R, r |=α
yr = 1

yr ≥ 0 (for all r ∈R)
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Towards Stronger Notions of Entailment

Problem: Inferential weakness of logical entailment.

Solutions:
Probability selection techniques: Perform inference from a
representative distribution of the encoded convex set of
distributions rather than the whole set, e.g.,

distribution of maximum entropy,
distribution in the center of mass.

Probabilistic default reasoning: Perform constraining rather
than conditioning and apply techniques from default
reasoning to resolve local inconsistencies.

Probabilistic independencies: Further constrain the convex
set of distributions by probabilistic independencies.
(⇒ adds nonlinear equations to linear constraints)
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Entailment under Maximum Entropy

Entropy of a probabilistic interpretation Pr , denoted H(Pr):

H(Pr) = −
∑

I∈IΦ

Pr(I) · log Pr(I) .

The ME model of a satisfiable probabilistic knowledge base KB
is the unique probabilistic interpretation Pr that is a model of KB
and that has the greatest entropy among all the models of KB.

KB ||=me (ψ|ϕ)[l ,u]: (ψ|ϕ)[l ,u] is a ME consequence of KB iff the
ME model of KB is also a model of (ψ|ϕ)[l ,u].

KB ||=me
tight (ψ|ϕ)[l ,u]: (ψ|ϕ)[l ,u] is a tight ME consequence of KB

iff for the ME model Pr of KB, it holds either (a) Pr(ϕ) = 0, l = 1,
and u = 0, or (b) Pr(ϕ) > 0 and Pr(ψ|ϕ) = l = u.
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Logical vs. Maximum Entropy Entailment

Probabilistic knowledge base:
KB = ({bird⇐eagle} ,

{(have_legs |bird)[1,1], (fly |bird)[0.95,1]}) .

Tight conclusions under logical entailment:
KB ||=tight (have_legs |bird)[1,1], KB ||=tight (fly |bird)[0.95,1],

KB ||=tight (have_legs |eagle)[1,1], KB ||=tight (fly |eagle)[0,1].

Tight conclusions under maximum entropy entailment:
KB ‖∼me

tight (have_legs |bird)[1,1], KB ‖∼me
tight (fly |bird)[0.95,0.95],

KB ‖∼me
tight (have_legs |eagle)[1,1], KB ‖∼me

tight (fly |eagle)[0.95,0.95].
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Lexicographic Entailment

Pr verifies (ψ|ϕ)[l ,u] iff Pr(ϕ) = 1 and Pr |= (ψ|ϕ)[l ,u].

P tolerates (ψ|ϕ)[l ,u] under L iff L ∪ P has a model
that verifies (ψ|ϕ)[l ,u].

KB = (L,P) is consistent iff there exists an ordered
partition (P0, . . . ,Pk ) of P such that each Pi is the
set of all C ∈ P \

⋃i−1
j=0 Pj tolerated under L by P \

⋃i−1
j=0 Pj .

This (unique) partition is called the z-partition of KB.
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Let KB = (L,P) be consistent, and (P0, . . . ,Pk ) be its z-partition.

Pr is lex-preferable to Pr ′ iff some i ∈{0, . . . , k} exists such that

|{C∈Pi |Pr |= C}|> |{C∈Pi |Pr ′ |= C}| and
|{C∈Pj |Pr |= C}|= |{C∈Pj |Pr ′ |= C}| for all i<j≤k .

A model Pr of F is a lex-minimal model of F iff
no model of F is lex-preferable to Pr .

KB ‖∼ lex (ψ|ϕ)[l ,u]: (ψ|ϕ)[l ,u] is a lex-consequence of KB iff
every lex-minimal model Pr of L with Pr(ϕ)=1 satisfies (ψ|ϕ)[l ,u].

KB ‖∼ lex
tight (ψ|ϕ)[l ,u]: (ψ|ϕ)[l ,u] is a tight lex-consequence of KB

iff l (resp., u) is the infimum (resp., supremum) of Pr(ψ) subject
to all lex-minimal models Pr of L with Pr(ϕ) = 1.
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Logical vs. Lexicographic Entailment

Probabilistic knowledge base:
KB = ({bird⇐eagle} ,

{(have_legs |bird)[1,1], (fly |bird)[0.95,1]}) .

Tight conclusions under logical entailment:
KB ||=tight (have_legs |bird)[1,1], KB ||=tight (fly |bird)[0.95,1],

KB ||=tight (have_legs |eagle)[1,1], KB ||=tight (fly |eagle)[0,1].

Tight conclusions under probabilistic lexicographic entailment:

KB ‖∼ lex
tight (have_legs |bird)[1,1], KB ‖∼ lex

tight (fly |bird)[0.95,1],

KB ‖∼ lex
tight (have_legs |eagle)[1,1], KB ‖∼ lex

tight (fly |eagle)[0.95,1].
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Bayesian Networks

Well-structured, exact conditional constraints plus conditional
independencies specify exactly one joint probability distribution.

Joint probability distributions can answer any queries, but can be
very large and are often hard to specify.

Bayesian network (BN): compact specification of a joint distribution,
based on a graphical notation for conditional independencies:

a set of nodes; each node represents a random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:
P(Xi |Parents(Xi ))

Any joint distribution can be represented as a BN.
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The model can answer questions like “What is the probability that it is raining, given the grass is wet?”

Pr(Rain = T | GrassWet = T ) =
Pr(Rain = T , GrassWet = T )

Pr(GrassWet = T )

=

P
Y∈{T ,F} Pr(Rain = T , GrassWet = T , Sprinkler = Y )P

Y1,Y2∈{T ,F} Pr(GrassWet = T , (Rain = Y1, Sprinkler = Y2))

=
0.99 · 0.01 · 0.2 + 0.8 · 0.99 · 0.2

0.99 · 0.01 · 0.2 + 0.9 · 0.4 · 0.8 + 0.8 · 0.99 · 0.2 + 0 · 0.6 · 0.8
≈ 0.3577 .
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Possibilistic Knowledge Bases

Possibilistic formulae have the form Pϕ≥ l or Nϕ≥ l ,
l ∈ [0,1]

Encode to what extent ϕ is possibly resp. necessarily true
Possibilistic interpretation: π : IΦ → [0,1]

π(I) is the degree to which the world I is possible
It is assumed that π(I) = 1 for some I ∈IΦ

Possibility/Necessity of an event ϕ under π:

Poss(ϕ) = sup {π(I) | I ∈IΦ, I |=ϕ}( where max ∅= 0)

Necc(ϕ) = 1− Poss(¬ϕ)

Truth under π:
π |= Pϕ≥ l iff Poss(ϕ)≥ l

π |= Nϕ≥ l iff Necc(ϕ)≥ l
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Deciding Logical entailment (Hollunder’s method)

Reduction to propositional entailment
Let

KBl = {ϕ |Nϕ≥ l ′ ∈ KB, l ′ ≥ l}
KBl = {ϕ |Nϕ≥ l ′ ∈ KB, l ′ > l}

Then

KB |= Nϕ≥ l iff KBl |= ϕ

KB |= Pϕ≥ l iff KB0 |= ϕ or
there is Pψ≥ l ′ ∈ KB with l ′ ≥ l ,KB1−l′ ∪ {ψ} |= ϕ
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Vagueness & Logic

Statements involve concepts for which there is no exact
definition, such as

tall, small, close, far, cheap, expensive, “is about”, “similar
to”.

A statements is true to some degree, which is taken from a
truth space
E.g., “Hotel Verdi is close to the train station to degree
0.83”
E.g., “The image is about a sun set to degree 0.75”
Truth space: set of truth values L and an partial order ≤
Many-valued Interpretation: a function I mapping formulae
into L, i.e. I(ϕ) ∈ L
Mathematical Fuzzy Logic: L = [0,1], but also {0

n ,
1
n , . . . ,

n
n}

for an integer n≥1
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Problem: what is the interpretation of e.g. ϕ ∧ ψ?
E.g., if I(ϕ) = 0.83 and I(ψ) = 0.2, what is the result of 0.83 ∧ 0.2?

More generally, what is the result of n∧m, for n,m ∈ [0,1]?
The choice cannot be any arbitrary computable function,
but has to reflect some basic properties that one expects to
hold for a “conjunction”
Norms: functions that are used to interpret connectives
such as ∧,∨,¬,→

t-norm: interprets conjunction
s-norm: interprets disjunction

Norms are compatible with classical two-valued logic
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Axioms for t-norms and s-norms

Axiom Name T-norm S-norm
Tautology / Contradiction a ∧ 0 = 0 a ∨ 1 = 1
Identity a ∧ 1 = a a ∨ 0 = a
Commutativity a ∧ b = b ∧ a a ∨ b = b ∨ a
Associativity (a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∨ b) ∨ c = a ∨ (b ∨ c)
Monotonicity if b ≤ c, then a ∧ b ≤ a ∧ c if b ≤ c, then a ∨ b ≤ a ∨ c
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Axioms for implication and negation functions

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0→ b = 1 ¬ 0 = 1, ¬ 1 = 0

a→ 1 = 1
Antitonicity if a ≤ b, then a→ c ≥ b → c if a ≤ b, then ¬ a ≥ ¬ b
Monotonicity if b ≤ c, then a→ b ≤ a→ c

Usually,
a→ b = sup{c : a ∧ c ≤ b}

is used and is called r-implication and depends on the t-norm
only
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Typical norms
Lukasiewicz Logic Gödel Logic Product Logic Zadeh

¬x 1− x if x = 0 then 1
else 0

if x = 0 then 1
else 0 1− x

x ∧ y max(x + y − 1, 0) min(x, y) x · y min(x, y)
x ∨ y min(x + y, 1) max(x, y) x + y − x · y max(x, y)

x ⇒ y if x ≤ y then 1
else 1− x + y

if x ≤ y then 1
else y

if x ≤ y then 1
else y/x max(1− x, y)

Note: for Lukasiewicz Logic and Zadeh, x ⇒ y ≡ ¬x ∨ y

Any other t-norm can be obtained as a combination of
Lukasiewicz, Gödel and Product t-norm
Zadeh: not interesting for mathematical fuzzy logicians: its
a sub-logic of Łukasiewicz and, thus, rarely considered by
fuzzy logicians

¬Z x = ¬Łx
x ∧Z y = x ∧Ł (x →Ł y)

x →Z y = ¬Łx ∨Ł y
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Some additional properties of t-norms, s-norms, implication
functions, and negation functions of various fuzzy logics.

Property Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic

x ∧ ¬ x = 0 • • •
x ∨ ¬ x = 1 •
x ∧ x = x • •
x ∨ x = x • •
¬¬ x = x • •

x ⇒ y = ¬ x ∨ y • •
¬ (x ⇒ y) = x ∧ ¬ y • •
¬ (x ∧ y) = ¬ x ∨ ¬ y • • • •
¬ (x ∨ y) = ¬ x ∧ ¬ y • • • •

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) • •
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) • •

Note: If all conditions in the upper part of a column have to
be satisfied then we collapse to classical two-valued logic,
i.e. L = {0,1}
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Propositional Fuzzy Logic

Formulae: propositional formulae

Truth space is [0,1]

Formulae have a a degree of truth in [0,1]

Interpretation: is a mapping I : Atoms → [0,1]

Interpretations are extended to formulae using norms to interpret
connectives ∧,∨,¬,→

I(ϕ ∧ ψ) = I(ϕ) ∧ I(ψ)
I(ϕ ∨ ψ) = I(ϕ) ∨ I(ψ)
I(ϕ→ ψ) = I(ϕ)→ I(ψ)
I(¬ϕ) = ¬I(ϕ)

Rational r ∈ [0,1] may appear as atom in formula, where
I(r) = r
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Example

In Lukasiewicz logic:

ϕ = Cold ∧ Cloudy

I Cold Cloudy I(ϕ)

I1 0 0.1 max(0,0 + 0.1− 1) = 0.0
I2 0.3 0.4 max(0,0.3 + 0.4− 1) = 0.0
I3 0.7 0.8 max(0,0.7 + 0.9− 1) = 0.6
I4 1 1 max(0,1 + 1− 1) = 1.0
...

...
...

...
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Note:

I(r → ϕ) = 1 iff I(ϕ) ≥ r
I(ϕ→ r) = 1 iff I(ϕ) ≤ r

Semantics:

I |= ϕ iff I(ϕ) = 1
I |= KB iff I |= ϕ for all ϕ ∈ KB
KB |= ϕ iff for all I. if I |= KB then I |= ϕ

Deduction rule is valid: for r , s ∈ [0,1]:

r → ϕ, s → (ϕ→ ψ) |= (r ∧ s)→ ψ

Informally,

From ϕ ≥ r and (ϕ→ ψ) ≥ s infer ψ ≥ r ∧ s
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Example
In Lukasiewicz logic:

ϕ = 0.4→ (Cold ∧ Cloudy)

Read: Cold ∧ Cloudy ≥ 0.4

I Cold Cloudy I(ϕ)
I1 0 0.1 0.4→ 0.0 = min(1,1− 0.4 + 0.0) = 0.6
I2 0.3 0.4 0.4→ 0.0 = min(1,1− 0.4 + 0.0) = 0.6
I3 0.7 0.8 0.4→ 0.6 = min(1,1− 0.4 + 0.6) = 1.0
I4 1 1 0.4→ 1.0 = min(1,1− 0.4 + 1.0) = 1.0
...

...
...

...

I1 6|= ϕ
I2 6|= ϕ
I3 |= ϕ
I4 |= ϕ
...

...
...
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Let

||ϕ||KB = inf{I(ϕ) | I |= KB} (truth degree)

|ϕ|KB = sup{r | KB |= r → ϕ} (provability degree)

then ||ϕ||KB = |ϕ|KB

Also,

|¬ϕ|KB = 1− |ϕ|KB
|ϕ|KB = sup{r | KB |= r → ϕ} = inf{s | KB |= ϕ→ s}

Proposition

|ϕ|KB = min x . such that KB ∪ {ϕ→ x} satisfiable.
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Decision algorithm, e.g. for Lukasiewicz Logic
We use MILP (Mixed Integer Linear Programming) to compute |ϕ|KB
Let r ∈ [0, 1], variable or expresson 1− r ′ (r ′ variable), admitting solution in [0, 1], ¬r = 1− r , ¬¬r = r
For each propositional letter p, let xp be a variable denoting the degree of truth of p

Apply inference rules

r → p 7→ xp ≥ r, xp ∈ [0, 1]
p → r 7→ xp ≤ r, xp ∈ [0, 1]
r → ¬ϕ 7→ ϕ→ ¬r
¬ϕ→ r 7→ ¬r → ϕ
r → (ϕ ∧ ψ) 7→ x1 → ϕ, x2 → ψ,

y ≤ 1− r, xi ≤ 1− y, x1 + x2 = r + 1− y,
xi ∈ [0, 1], y ∈ {0, 1}

(ϕ ∧ ψ)→ r 7→ x1 → ¬ϕ, x2 → ¬ψ,
x1 + x2 = 1− r, xi ∈ [0, 1]

r → (ϕ→ ψ) 7→ ϕ→ x1, x2 → ψ,
r + x1 − x2 = 1, xi ∈ [0, 1]

(ϕ→ ψ)→ r 7→ x1 → ϕ, ψ → x2,
y − r ≤ 0, y + x1 ≤ 1, y ≤ x2, y + r + x1 − x2 = 1,
xi ∈ [0, 1], y ∈ {0, 1}

If no rule is applicable, solve the MILP problem of the form

min x s.t. Ax + By ≥ h

where aij , bij , cl , hk ∈ [0, 1], xi admits solutions in [0, 1], while yj admits solutions in {0, 1}
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Example

Consider KB = {0.6→ p, 0.7→ (p → q)}

Let us show that |q|KB = 0.6 ∧ 0.7 = max(1, 0.6 + 0.7− 1) = 0.3

Recall that |q|KB = min x. such that KB ∪ {q → x} satisfiable

KB ∪ {q → x} = {0.6→ p, 0.7→ (p → q), q → x, x ∈ [0, 1]}

7→ {xp ≥ 0.6, xq ≤ x, 0.7→ (p → q), {x, xp} ⊆ [0, 1]}

7→ {xp ≥ 0.6, xq ≤ x, p → x1, x2 → q, 0.7 + x1 − x2 = 1, {x, xp, xi} ⊆ [0, 1]}

7→ {xp ≥ 0.6, xq ≤ x, xp ≤ x1, xq ≥ x2, 0.7 + x1 − x2 = 1, {x, xp, xi} ⊆ [0, 1]} = S

It follows that 0.3 = min x. such that Sat(S)
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Predicate Fuzzy Logics Basics

Formulae: First-Order Logic formulae, terms are either variables or constants

we may introduce functions symbols as well, with crisp semantics (but uninteresting), or we need to

discuss also fuzzy equality (which we leave out here)

Truth space is [0, 1]

Formulae have a a degree of truth in [0, 1]

Interpretation: is a mapping I : Atoms → [0, 1]

Interpretations are extended to formulae as follows:

I(¬φ) = I(φ)→ 0

I(φ ∧ ψ) = I(φ) ∧ I(ψ)

I(φ→ ψ) = I(φ)→ I(ψ)

I(∃xφ) = sup
c∈∆I

Ic
x (φ)

I(∀xφ) = inf
c∈∆I

Ic
x (φ)

where Ic
x is as I, except that variable x is mapped into individual c

Definitions of I |= φ, I |= T , |= φ, T |= φ, ||φ||T and |φ|T are as for the propositional case
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¬∀xϕ(x) ≡ ∃x¬ϕ(x) true in Ł, but does not hold for logic G and Π

(¬∀x p(x)) ∧ (¬∃x ¬p(x)) has no classical model. In Gödel logic it has no finite model, but has an infinite
model: for integer n ≥ 1, let I such that I(p(n)) = 1/n

I(∀x p(x)) = inf
n

1/n = 0

I(∃x ¬p(x)) = sup
n
¬1/n = sup 0 = 0

Note: If I |= ∃x φ(x) then not necessarily there is c ∈ ∆I such that I |= φ(c).

∆I = {n | integer n ≥ 1}
I(p(n)) = 1− 1/n < 1, for all n

I(∃x p(x)) = sup
n

1− 1/n = 1

Witnessed formula: ∃x φ(x) is witnessed in I iff there is c ∈ ∆I such that I(∃x φ(x)) = I(φ(c))
(similarly for ∀x φ(x))

Witnessed interpretation: I witnessed if all quantified formulae are witnessed in I

Proposition

In Ł, φ is satisfiable iff there is a witnessed model of φ.

The proposition does not hold for logic G and Π
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Uncertainty and Vagueness in Semantic Web Languages
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A Probabilistic RDF

Probabilistic generalization of RDF
Terminological probabilistic knowledge about classes
Assertional probabilistic knowledge about properties of
individuals
Assertional probabilistic inference for acyclic probabilistic
RDF theories, which is based on logical entailment in
probabilistic logic, coupled with a local probabilistic
semantics
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Probabilistic RDF schema tuples

Non-probabilistic triples:
<i , type, c>
<p1, subPropertyOf, p2>
<p, range, c>
<p, domain, c>

i ∈ I individual (URI reference or blank node)
p,pi properties
c class

Probabilistic schema quadruples: <c, subClassOf, C, µ>
c class
C set of classes
µ : C → [0,1] withP

c∈C µ(c) = 1
If <c, subClassOf, C1, µ1> and <c, subClassOf, C1, µ2> with
C1 6= C2 then C1 ∩ C2 = ∅

Uncertainty and Vagueness in Semantic Web Languages Lecture at Reasoning Web 2008 U. Straccia



Concepts and Techniques for Reasoning about Vagueness and Uncertainty
Basics on Semantic Web Languages

Uncertainty and Vagueness Basics
Uncertainty and Vagueness in Semantic Web Languages

Systems

The case of RDF
The case of Description Logics
The case of Logic Programs

Example of probabilistic RDF instance tuples

Uncertainty and Vagueness in Semantic Web Languages Lecture at Reasoning Web 2008 U. Straccia



Concepts and Techniques for Reasoning about Vagueness and Uncertainty
Basics on Semantic Web Languages

Uncertainty and Vagueness Basics
Uncertainty and Vagueness in Semantic Web Languages

Systems

The case of RDF
The case of Description Logics
The case of Logic Programs

Probabilistic RDF instance tuples

Probabilistic instance quadruples:

<i , p, V , µ>
<i , type, C, δ>

i individual, p property
V ⊆ I ∪ L, set of individuals or literals
µ distribution over V , µ : V → [0,1] withP

v∈V µ(v) ≤ 1
If <i , p, V1, µ1>,<i , p, V2, µ2> with V1 6= V2 then V1 ∩ V2 = ∅

C set of classes
δ : C → [0,1] withP

c∈C δ(c) ≤ 1
If <i , type, C1, δ1>, <i , type, C2, δ2>⇒ V1 = V2 and δ1 = δ2

pRDF theory: a pair (S,R), where S is a set of pRDF schema tuples
and R is a set of pRDF instance tuples
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Semantics (excerpt)

p-path P: for property p, P is a sequence of n tuples <si , pi , vi , γi>
where

for all i , ∃ <si , pi , V , µ> s.t. vi ∈ V , µ(vi ) = δi
for all i , <pi , subPropertyOf∗, p>
for all i ≤ n − 1, vi = si+1

A pRDF instance is acyclic if for all properties p, there are no cyclic
p-paths in it
World: A world w is a set of triples <s, p, v> such that either

s is an individual, p is a property and v is an individual or
literal, or
s is an individual, p is type and v is a class

pRDF interpretation: I : W → [0, 1] with
P

w∈W I(w) = 1
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Satisfaction:

I |=< s,p,V , µ > iff
∀v ∈ V , µ(v) ≤

∑
<s,p,v>∈W I(< s,p, v >)

I |= (S,R) iff
I satisfies all tuples in R
for all p-paths < si , pi , vi , γi >i∈[1...n] in (S,R),
⊗iγi ≤

P
<si ,pi ,vi>∈W I(< si , pi , vi >)

⊗ is a t-norm

Entailment: (S,R) |=< s, p,V , µ > iff any model of (S,R) is a model of
< s, p,V , µ >
Atomic queries: <?s, p, v , γ >, < s, ?p, v , γ >, < s, p, v , ?γ >
Conjunctive queries: q1 ∧ q2 ∧ ... ∧ qn, qi atomic queries
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Fuzzy RDF

Statement (triples) may have attached a degree in [0,1]:
for n ∈ [0,1]

〈(subject ,predicate,object),n〉

Meaning: the degree of truth of the statement is at least n
For instance,

〈(o1, IsAbout , snoopy),0.8〉
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Fuzzy RDFS semantics

Some rules in fuzzy RDFS (set is not complete). Recall Rational Pavelka Logic (→ is r-implication)

〈(a, sp, b), n〉, 〈(b, sp, c),m〉
(〈(a, sp, c), n ∧ m〉

〈(a, sp, b), n〉, 〈(x, a, y),m〉
〈(x, b, y), n ∧ m〉

〈(a, sc, b), n〉, 〈(b, sc, c),m〉
〈(a, sc, c), n ∧ m〉

〈(a, sc, b), n〉, 〈(x, type, a),m〉
〈(x, type, b), n ∧ m〉

〈(a, dom, b), n〉, 〈(x, a, y),m〉
〈(x, type, b), n ∧ m〉

〈(a, range, b), n〉, 〈(x, a, y),m〉
〈(y, type, b), n ∧ m〉

〈(a, dom, b), n〉, 〈(c, sp, a),m〉, 〈(x, c, y), k〉
〈(x, type, b), n ∧ m ∧ k〉

〈(a, range, b), n〉, 〈(c, sp, a),m〉, 〈(x, c, y), k〉
〈(y, type, b), n ∧ m ∧ k〉

sp = “subPropertyOf”, sc = “subClassOf”
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Example

Fuzzy RDF representation

〈(o1, IsAbout , snoopy), 0.8〉
〈(snoopy , type, dog), 1.0〉
〈(woodstock , type, bird), 1.0〉
〈(dog, subClassOf ,Animal), 1.0〉
〈(bird , subClassOf ,Animal), 1.0〉

then
KB |= 〈∃x .(o1, IsAbout , x) ∧ (x , type,Animal), 0.8〉
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The case of Description Logics
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Probabilistic DLs

Terminological probabilistic knowledge about concepts and roles
Assertional probabilistic knowledge about instances of concepts
and roles
Terminological probabilistic inference based on lexicographic
entailment in probabilistic logic (stronger than logical entailment)
Assertional probabilistic inference based on lexicographic
entailment in probabilistic logic (for combining assertional
and terminological probabilistic knowledge)
Terminological and assertional probabilistic inference problems
reduced to sequences of linear optimization problems
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Directly extends probabilistic propositional logic
in place of atoms we have now concepts

(ψ|ϕ)[l ,u]: informally encodes that
“generally, if an individual is an instance of ϕ, then
it is an instance of ψ with a probability in [l ,u]”

a : (ψ|ϕ)[l ,u]: informally encodes that
“if individual a is an instance of ϕ, then a is an
instance of ψ with a probability in [l ,u]”
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Example

Eagle v Bird
Penguin v Bird

(Fly | Bird)[0.95,1]
(Fly | Penguin)[0,0.05]

KB ‖∼ lex
tight (Fly | Eagle)[0.95,1]

KB ‖∼ lex
tight (Fly | Penguin)[0,0.05]
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Possibilistic DLs

Directly extends possibilistic propositional logic
Expressions: Pα≥ l or Nα≥ l , where α is a classical description
logic axiom and l ∈ [0,1]

Example

N(∃owns.Porsche v CarFanatic t RichPerson)≥0.8
P(RichPerson v Golfer)≥0.7

N((tom,911):owns) ≥ 1
N(911:Porsche) ≥ 1

N(tom:¬CarFanatic) ≥ 0.7 .

KB |= P(tom:Golfer)≥0.7 .
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Fuzzy DLs

The semantics is an immediate consequence of the First-Order-Logic translation of DLs expressions

Interpretation:
I = ∆I

CI : ∆I → [0, 1]

RI : ∆I × ∆I → [0, 1]

∧ = t-norm
∨ = s-norm
¬ = negation
→ = implication

Concepts:

Syntax Semantics
C,D −→ > | >I (x) = 1

⊥ | ⊥I (x) = 0
A | AI (x) ∈ [0, 1]

C u D | (C1 u C2)I (x) = C1
I (x) ∧ C2

I (x)

C t D | (C1 t C2)I (x) = C1
I (x) ∨ C2

I (x)

¬C | (¬C)I (x) = ¬CI (x)

∃R.C | (∃R.C)I (x) = supy∈∆I RI (x, y) ∧ CI (y)

∀R.C (∀R.C)I (u) = infy∈∆I RI (x, y)→ CI (y)}

Assertions: 〈a:C, r〉, I |= 〈a:C, r〉 iff CI (aI ) ≥ r (similarly for roles)

individual a is instance of concept C at least to degree r , r ∈ [0, 1] ∩ Q
Inclusion axioms: 〈C v D, r〉,

I |= 〈C v D, r〉 iff infx∈∆I CI (x)→ DI (x) ≥ r
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Main Inference Problems

Graded entailment: Check if DL axiom α is entailed to degree at least r

KB |= 〈α, r〉 ?

BTVB: Best Truth Value Bound problem

|α|KB = sup{r | KB |= 〈α, r〉} ?

Top-k retrieval: Retrieve the top-k individuals that instantiate C w.r.t. best
truth value bound

anstop−k (KB,C) = Topk{〈a, v〉 | v = |a:C)|KB}
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Towards fuzzy OWL Lite and OWL DL

Recall that OWL Lite and OWL DL relate to SHIF(D) and
SHOIN (D), respectively
We need to extend the semantics of fuzzy ALC to fuzzy
SHOIN (D) = ALCHOINR+(D)

Additionally, we add
modifiers (e.g., very )
concrete fuzzy concepts (e.g., Young)
both additions have explicit membership functions
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Concrete fuzzy concepts

E.g., Small, Young,High, etc. with explicit membership function

Use the idea of concrete domains:
D = 〈∆D ,ΦD〉
∆D is an interpretation domain
ΦD is the set of concrete fuzzy domain predicates d with a predefined arity n = 1, 2 and fixed
interpretation dD : ∆n

D → [0, 1]

For instance,

Minor = Person u ∃hasAge. ≤18
YoungPerson = Person u ∃hasAge.Young

functional(hasAge)
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Modifiers

Very , moreOrLess, slightly , etc.

Apply to fuzzy sets to change their membership function

very(x) = x2

slightly(x) =
√

x

For instance,

SportsCar = Car u ∃speed.very(High)
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Fuzzy SHOIN (D)

Concepts:
Syntax Semantics

C,D −→ > | >(x)
⊥ | ⊥ (x)

A | A(x)
(C u D) | C1(x) ∧ C2(x)
(C t D) | C1(x) ∨ C2(x)

(¬C) | ¬C(x)
(∃R.C) | ∃x R(x, y) ∧ C(y)
(∀R.C) | ∀x R(x, y)→ C(y)
{a} | x = a

(≥ n R) | ∃y1, . . . , yn.
Vn

i=1 R(x, yi ) ∧
V

1≤i<j≤n yi 6= yj

(≤ n R) | ∀y1, . . . , yn+1.
Vn+1

i=1 R(x, yi )→
W

1≤i<j≤n+1 yi = yj
FCC | µFCC (x)

M(C) | µM (C(x))
R −→ P | P(x, y)

P− | P(y, x)

Assertions:
Syntax Semantics

α −→ 〈a:C, r〉 | r → C(a)
〈(a, b):R, r〉 r → R(a, b)

Axioms:

Syntax Semantics
τ −→ 〈C v D, r〉 | ∀x r → (C(x)→ D(x)), where→ is r-implication

fun(R) | ∀x∀y∀z R(x, y) ∧ R(x, z)→ y = z
trans(R) (∃z R(x, z) ∧ R(z, y))→ R(x, y)
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Example (Graded Entailment)

audi_tt mg ferrari_enzo

Car speed
audi_tt 243
mg ≤ 170
ferrari_enzo ≥ 350

SportsCar = Car u ∃hasSpeed.very(High)

KB |= 〈ferrari_enzo:SportsCar, 1〉
KB |= 〈audi_tt :SportsCar, 0.92〉
KB |= 〈mg:¬SportsCar, 0.72〉
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Example (Graded Subsumption)

Minor = Person u ∃hasAge. ≤18

YoungPerson = Person u ∃hasAge.Young

KB |= 〈Minor v YoungPerson, 0.2〉

Note: without an explicit membership function of Young, this inference cannot
be drawn
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Example (Simplified Negotiation)

a car seller sells an Audi TT for 31500e, as from the catalog price.

a buyer is looking for a sports-car, but wants to to pay not more than around 30000e

classical DLs: the problem relies on the crisp conditions on price

more fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)
seller may consider optimal to sell above 31500e, but can go down to 30500e
the buyer prefers to spend less than 30000e, but can go up to 32000e

AudiTT = SportsCar u ∃hasPrice.R(x ; 30500, 31500)
Query = SportsCar u ∃hasPrice.L(x ; 30000, 32000)

highest degree to which the concept
C = AudiTT u Query
is satisfiable is 0.75 (the possibility that the Audi TT and the query matches is 0.75)

the car may be sold at 31250e
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Top-k retrieval in tractable DLs: the case of
DL-Lite/DLR-Lite

DL-Lite/DLR-Lite: a simple, but interesting DLs

Captures important subset of UML/ER diagrams

Computationally tractable DL to query large databases

Sub-linear, i.e. LOGSpace in data complexity

(same cost as for SQL)

Good for very large database tables, with limited declarative
schema design
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Knowledge base: KB = 〈T ,A〉, where T andA are finite sets of axioms and assertions

Axiom: Cl1 u ... u Cln v Cr (inclusion axiom)

Note for inclusion axioms: the language for left hand side is different from the one for right hand side

DL-Litecore :
Concepts: Cl → A | ∃R

Cr → A | ∃R | ¬A | ¬∃R
R → P | P−

Assertion: a:A, (a, b):P

DLR-Litecore : (n-ary roles)
Concepts: Cl → A | ∃P[i]

Cr → A | ∃P[i] | ¬A | ¬∃P[i]
∃P[i] is the projection on i-th column

Assertion: a:A, 〈a1, . . . , an〉:P

Assertions are stored in relational tables

Conjunctive query: q(x)← ∃y.conj(x, y)
conj is an aggregation of expressions of the form B(z) or P(z1, z2),
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Examples:
isa CatalogueBook v Book
disjointness Book v ¬Author
constraints CatalogueBook v ∃positioned_In
role − typing ∃positioned_In v Container
functional fun(positioned_In)
constraints Author v ∃written_By−

∃written_By v CatalogueBook

assertion Romeo_and_Juliet :CatalogueBook
(Romeo_and_Juliet ,Shakespeare):written_By

query q(x , y)← CataloguedBook(x),Ordered_to(x , y)

Consistency check is linear time in the size of the KB

Query answering in linear in in the size of the number of assertions
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Top-k retrieval in DL-Lite/DLR-Lite

We extend the query formalism: conjunctive queries, where fuzzy predicates
may appear

conjunctive query

q(x, s)← ∃y.conj(x, y), s = f (p1(z1), . . . , pn(zn))

1 x are the distinguished variables;
2 s is the score variable, taking values in [0, 1];
3 y are existentially quantified variables, called non-distinguished variables;
4 conj(x, y) is a conjunction of DL-Lite/DLR-Lite atoms R(z) in KB;
5 z are tuples of constants in KB or variables in x or y;
6 zi are tuples of constants in KB or variables in x or y;
7 pi is an ni -ary fuzzy predicate assigning to each ni -ary tuple ci the score

pi (ci ) ∈ [0, 1];
8 f is a monotone scoring function f : [0, 1]n → [0, 1], which combines the

scores of the n fuzzy predicates pi (ci )
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Example:
Hotel v ∃HasHLoc
Hotel v ∃HasHPrice

Conference v ∃HasCLoc
Hotel v ¬Conference

HasHLoc
HotelID HasLoc
h1 hl1
h2 hl2
.
.
.

.

.

.

HasCLoc
ConfID HasLoc
c1 cl1
c2 cl2
.
.
.

.

.

.

HasHPrice
HotelID Price
h1 150
h2 200
.
.
.

.

.

.

q(h, s)←HasHLoc(h, hl),HasHPrice(h, p),Distance(hl, cl, d)

HasCLoc(c1, cl), s = cheap(p) · close(d) .

where the fuzzy predicates cheap and close are defined as

close(d) = ls(0, 2km)(d)
cheap(p) = ls(0, 300)(p)
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Semantics informally:
a conjunctive query

q(x, s)← ∃y.conj(x, y), s = f (p1(z1), . . . , pn(zn))

is interpreted in an interpretation I as the set

qI = {〈c, v〉 ∈ ∆× . . .× ∆× [0, 1] | . . .

such that when we consider the substitution

θ = {x/c, s/v}

the formula
∃y.conj(x, y) ∧ s = f (p1(z1), . . . , pn(zn))

evaluates to true in I.

Model of a query: I |= q(c, v) iff 〈c, v〉 ∈ qI

Entailment: KB |= q(c, v) iff I |= KB implies I |= q(c, v)

Top-k retrieval: anstop−k (KB, q) = Topk{〈c, v〉 | KB |= q(c, v)}

Uncertainty and Vagueness in Semantic Web Languages Lecture at Reasoning Web 2008 U. Straccia



Concepts and Techniques for Reasoning about Vagueness and Uncertainty
Basics on Semantic Web Languages

Uncertainty and Vagueness Basics
Uncertainty and Vagueness in Semantic Web Languages

Systems

The case of RDF
The case of Description Logics
The case of Logic Programs

How to determine the top-k answers of a query?
Overall strategy: three steps

1 Check if KB is satisfiable, as querying a non-satisfiable KB is meaningless (checkable in linear time)

2 Query q is reformulated into a set of conjunctive queries r(q,T )

Basic idea: reformulation procedure closely resembles a top-down resolution procedure for
logic programming

q(x, s) ← B(x), A(x), s = f (x)

B1 v A

B2 v A

q(x, s) ← B(x), B1(x), s = f (x)

q(x, s) ← B(x), B2(x), s = f (x)

3 The reformulated queries in r(q,T ) are evaluated overA (seen as a database) using standard

top-k techniques for DBs
for all qi ∈ r(q,T ), anstop−k (qi ,A) = top-k SQL query overA database

anstop−k (KB, q) = Topk (
S

qi∈r(q,T ) ansk (qi ,A))
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The case of Logic Programs
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Probabilistic Logic Programs under ICL

Logic programs P under different “choices” (Independent
Choice Logic)
Each choice along with P produces a first-order model.
By placing a probability distribution over the different
choices, one then obtains a distribution over the set of
first-order models.
ICL generalizes Pearl’s structural causal models.
ICL also generalizes Bayesian networks, influence
diagrams, Markov decision processes, and normal form
games.
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Example
The probability of rain is 0.2

Rain(x) ← hRain(x)

CRain = {hRain(T ), hRain(F )}
µ(hRain(T )) = 0.2

µ(hRain(F )) = 0.8

The probability of sprinkler on is 0.4

SprinklerOn(x) ← hSprinklerOn(x)

CSprinklerOn = {hSprinklerOn(T ), hSprinklerOn(F )}
µ(hSprinklerOn(T )) = 0.4

µ(hSprinklerOn(F )) = 0.6

If it is raining or the sprinkler is on then the grass is wet

GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

What is the probability that the grass is wet?
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Example (cont.)

We have to sum up the probabilities of each total choice that added to the program make the query true

Rain(x) ← hRain(x)

CRain = {hRain(T ), hRain(F )}
µ(hRain(T )) = 0.2 µ(hRain(F )) = 0.8

SprinklerOn(x) ← hSprinklerOn(x)

CSprinklerOn = {hSprinklerOn(T ), hSprinklerOn(F )}
µ(hSprinklerOn(T )) = 0.4 µ(hSprinklerOn(F )) = 0.6

GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)
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Example (cont.)

Total choice: select a ground atom from each choice

Rain(x) ← hRain(x)

CRain = {hRain(T ), hRain(F )}
SprinklerOn(x) ← hSprinklerOn(x)

CSprinklerOn = {hSprinklerOn(T ), hSprinklerOn(F )}
GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

B Total choice
B1 hRain(T ), hSprinklerOn(T )
B2 hRain(T ), hSprinklerOn(F )
B3 hRain(F ), hSprinklerOn(T )
B4 hRain(F ), hSprinklerOn(F )
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Example (cont.)

Total choice B making query true: P ∪ B |= GrassWet(T )

Rain(x) ← hRain(x)

CRain = {hRain(T ), hRain(F )}
SprinklerOn(x) ← hSprinklerOn(x)

CSprinklerOn = {hSprinklerOn(T ), hSprinklerOn(F )}
GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

B Total choice P ∪ B |= GrassWet(T )
B1 hRain(T ), hSprinklerOn(T ) •
B2 hRain(T ), hSprinklerOn(F ) •
B3 hRain(F ), hSprinklerOn(T ) •
B4 hRain(F ), hSprinklerOn(F )
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Example (cont.)

Probability of total choice B: µ(B) = Πa∈Bµ(a)

Condition on µ:
P

a∈C µ(a) = 1

Rain(x) ← hRain(x)

µ(hRain(T )) = 0.2 µ(hRain(F )) = 0.8

SprinklerOn(x) ← hSprinklerOn(x)

µ(hSprinklerOn(T )) = 0.4 µ(hSprinklerOn(F )) = 0.6

GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

B Total choice P ∪ B |= GrassWet(T ) µ(B)
B1 hRain(T ), hSprinklerOn(T ) • 0.08
B2 hRain(T ), hSprinklerOn(F ) • 0.12
B3 hRain(F ), hSprinklerOn(T ) • 0.32
B4 hRain(F ), hSprinklerOn(F ) 0.48

1.0
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Example (cont.)

Probability of q: Pr(q) =
P

B,P∪B|=q µ(B)

Rain(x) ← hRain(x)

µ(hRain(T )) = 0.2 µ(hRain(F )) = 0.8

SprinklerOn(x) ← hSprinklerOn(x)

µ(hSprinklerOn(T )) = 0.4 µ(hSprinklerOn(F )) = 0.6

GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

B Total choice P ∪ B |= GrassWet(T ) µ(B) Pr(GrassWet(T ))
B1 hRain(T ), hSprinklerOn(T ) • 0.08 +
B2 hRain(T ), hSprinklerOn(F ) • 0.12 +
B3 hRain(F ), hSprinklerOn(T ) • 0.32 +
B4 hRain(F ), hSprinklerOn(F ) 0.48

1.0 0.52
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Possibilistic Logic Programs

Simple extension of Possibilistic necessity valued
propositional logic
Facts: 〈P(t1, . . . , tn),N l〉
Rules: 〈A← B1, . . . ,Bn,N l〉
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Fuzzy LPs Basics

We consider fuzzy LPs, where

Truth space is [0,1]
Interpretation is a mapping I : BP → [0,1]
Generalized LP rules are of the form

R(x)←∃y.f (R1(z1), . . . ,Rl (zl ),p1(z′1), . . . ,ph(z′h)) ,

Meaning of rules: “take the truth-values of all Ri (zi ), pj (z′j ),
combine them using the truth combination function f , and
assign the result to R(x)”
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Rules:

R(x, s)← ∃y.conj(x, y), s = f (p1(z1), . . . , pl+h(zl+h))

1 x are the distinguished variables;
2 s is the score variable, taking values in [0, 1];
3 y are existentially quantified variables, called non-distinguished variables;
4 conj(x, y) is a list of atoms Ri (z) in KB;
5 z are tuples of constants in KB or variables in x or y;
6 zi are tuples of constants in KB or variables in x or y;
7 pi is an ni -ary fuzzy predicate assigning to each ni -ary tuple ci the score

pi (ci ) ∈ [0, 1];
8 f is a monotone scoring function f : [0, 1]l+h → [0, 1], which combines the

scores of the n fuzzy predicates pi (ci )
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Semantics of fuzzy LPs

Model of a LP:
I |= P iff I |= r , for all r ∈ P∗
I |= A← ϕ iff I(ϕ) ≤ I(A)

Least model exists and is least fixed-point of

TP(I)(A) = I(ϕ)

for all A← ϕ ∈ P∗

Fuzzy LPs may be tricky:

〈A, 0〉
A ← (A + 1)/2

In the minimal model the truth of A is 1 (requires ω TP iterations)!

There are several ways to avoid this pathological behavior:
We consider L = {0, 1

n ,
2
n . . . ,

n−1
n , 1}, n natural number, e.g.

n = 100
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Example: Soft shopping agent
I may represent my preferences in Logic Programming with the rules

Pref1(x, p, s) ← HasPrice(x, p), LS(10000, 14000, p, s)

Pref2(x, s) ← HasKM(x, k), LS(13000, 17000, k, s)

Buy(x, p, s) ← Pref1(x, p, s1), Pref2(x, s2), s = 0.7 · s1 + 0.3 · s2

ID MODEL PRICE KM
455 MAZDA 3 12500 10000
34 ALFA 156 12000 15000

1812 FORD FOCUS 11000 16000
.
.
.

.

.

.
.
.
.

.

.

.

Problem: All tuples of the database have a score:

We cannot compute the score of all tuples, then rank them. Brute force approach not feasible.

Top-k problem: Determine efficiently just the top-k ranked tuples, without evaluating the score of all tuples.
E.g. top-3 tuples

ID PRICE SCORE
1812 11000 0.6
455 12500 0.56
34 12000 0.50
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Top-k retrieval in LPs

If the database contains a huge amount of facts, a brute
force approach fails:

one cannot anymore compute the score of all tuples, rank
all of them and only then return the top-k

Better solutions exists for restricted fuzzy LP languages:
Datalog + restriction on the score combination functions
appearing in the body
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Basic Idea

We do not compute all answers, but determine answers
incrementally
At each step i , from the tuples seen so far in the database,
we compute a threshold δ
The threshold δ has the property that any successively
retrieved answer will have a score s ≤ δ
Therefore, we can stop as soon as we have gathered k
answers above δ, because any successively computed
answer will have a score below δ
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Example

Logic Program P is

q(x , s)← p(x , s1), s = s1
p(x , s)← r1(x , y , s1), r2(y , z, s2), s = min(s1, s2)

RecordID r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75
4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55
...

...
...

...
...

...
...

What is
Top1(P, q) = Top1{〈c, s〉 | P |= q(c, s)} ?
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q(x, s)← p(x, s1), s = s1
p(x, s)← r1(x, y, s1), r2(y, z, s2), s = min(s1, s2)

RecordID r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75 ←

→ 4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Action: STOP, top-1 tuple score is equal or above threshold 0.75 = max(min(1.0, 0.75),min(0.7, 0.95))

Queue δ
− 0.75

Predicate Answers
q 〈e, 0.75〉〈l, 0.7〉
p 〈e, 0.75〉, 〈l, 0.7〉

Top1(P, q) = {〈e, 0.75〉}

Note: no further answer will have score above threshold δ
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RDF
Probability: could not find one available
Fuzzyness: could not find one available

Description Logics
Probability: PRONTO, ContraBovemRufum
Fuzzyness: fuzzyDL, DLDB, DLMedia, FIRE, DeLorean,

Logic Programming
Probability: ICL, PRISM, Alchemy, CILog, nFOIL, BLP, ...
Fuzzyness: GAP over XSB, MVLP (see Straccia) 7→ “Works
for any LP system with arithmetic built-in predicates“
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Conclusions & Future work

We’ve overviewed basic concepts related to Uncertainty
and Vagueness Representation and Reasoning in
Semantic Web languages, such as

RDF, Description Logics, Logic Programs
Semantic Web Applications:

Ontology Mappings, Multimedia Object annotation,
Matchmaking, (Multimedia/Distributed) Information
Retrieval, Recommender Systems, User Profiling, . . .

Future Work:
Standardization
Graphical User Interfaces
Top-k retrieval
Combination of Uncertainty and Vagueness
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