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Vague Statements

Sources of Vagueness

Uncertainty vs Vagueness: a clarification

What are vague concepts and do they exists?
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Uncertainty vs Vagueness: a clarification

@ What are the pictures about?
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Uncertainty vs Vagueness: a clarification

@ A concept is vague whenever its extension is deemed
lacking in clarity

Aboutness of a picture or piece of text

Tall person

High temperature

Nice weather

Adventurous trip

e Similar proof

@ Vague concepts:

e Are abundant in everyday speech and almost inevitable
e Their meaning is often subjective and context dependent
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About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic

Fuzzy Description Logics and OWL 2

@ Are there vague objects in the pictures?
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On the Existence of Vague Concepts
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Uncertainty vs Vagueness: a clarification

@ An object is vague whenever its identity is lacking in clarity
@ Dust
e Cloud
@ Dunes
e Sun
@ Vague objects:
e Are not identical to anything, except to themselves
(reflexivity)
e Are characterised by a vague identity relation (e.g. a
similarity relation)
@ BTW: example of uncertain object. “habitable Earth-like
planet in universe"
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Uncertainty vs Vagueness: a clarification

Vague Statements

@ A statement is vague whenever it involves vague concepts
or vague objects
e Heavy rain
e Tall person
e Hot temperature

@ The truth of a vague statement is a matter of degree, as it
is intrinsically difficult to establish whether the statement is
entirely true or false

@ There are 33 °C. Is it hot?
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Uncertainty vs Vagueness: a clarification

Sources of Vagueness: Matchmaking

Buyers Seller's
soft constraint soft constraint
30000 31500

30500 31250 32000

@ A car seller sells an Audi TT for 31500 <, as from the catalog price.

@ A buyer is looking for a sports-car, but wants to to pay not more than around
30000€

@ Classical DLs: the problem relies on the crisp conditions on price.
@ More fine grained approach: to consider prices as vague constraints (fuzzy sets)
(as usual in negotiation)

@ Seller would sell above 31500 €, but can go down to 30500 €
@ The buyer prefers to spend less than 30000 <, but can go up to 32000€

@ Highest degree of matching is 0.75 . The car may be sold at 31250 €.
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Uncertainty vs Vagueness: a clarification

Sources of Vagueness: Multimedia information
retrieval

media dependent properties media independent properties

~

Object features:
- color, shape, texture
- structure

Object Semantics Layer K

- S —
P ~\_\Snoopy is a dog

Snoopy ]I Birds and Dogs

/ are animals
oodstock //
[ Woodstock is a bird
\\_

ol
IsAbout (ol, Snoopy)=.8

02

Object Form Layer

IsAbout
ImageRegion | Object ID degree
o1 snoopy 0.8
02 woodstock | 0.7

“Find top-k image regions about animals”
Query(x) < ImageRegion(x) N isAbout(x, y) A Animal(y)
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Uncertainty vs Vagueness: a clarification

Sources of Vagueness: Distributed Information
Retrieval

Query Q

<Agent .
4 QIF’\ ¢
Cs | m e |

Then the agent has to perform automatically the following steps:

@ The agent has to select a subset of relevant resources .7’ C .7, as it is
not reasonable to assume to access to and query all resources
(resource selection/resource discovery);
@ For every selected source S; € .’ the agent has to reformulate its
information need Q4 into the query language £, provided by the
resource (schema mapping/ontology alignment);
© The results from the selected resources have to be merged together
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Uncertainty vs Vagueness: a clarification

Sources of Vagueness: Vague database query

HotellD | hasLoc ConferencelD | hasLoc
hi hi1 ci cl
h2 hi2 c2 cl2

hasLoc | hasLoc | distance hasLoc | hasLoc | close | cheap
hn ch 300 hil cl 0.7 0.3
hi1 cl2 500 hi1 cl2 0.5 0.5
hi2 ci 750 hi2 cl 0.25 | 0.8
hi2 cl2 800 hi2 cl2 0.2 0.9

“Find top-k cheapest hotels close to the train station”

q(h) «<hasLocation(h, hl) A hasLocation(train, cl) A close(hl, cl) A cheap(h)
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Uncertainty vs Vagueness: a clarification

Sources of Vagueness: Health-care: diagnosis of

pneumonia

Health Care Guideline:

]C S [ Community-Acquired Pneumonia in Adults

INSTITUTE FOR CLINICAL
SYSTEMS IMPROVEMENT

7
Patient presents svith

Seventh Edition

. X
Obtain chest x-1ay, especially if
5 patient has two or more of these
signs

symptoms suggesting y Schedule provider Ly " Lemp=l00TGREC) e
community-acquired ® Pulse =100 A
preumonia * Decreased breath sounds.
May 2006 “ * R
—_— + Respiratory rate = 20 =
‘Work Group Leader x

6
John Degelau, MD .

Internal Medicine, Demographic Factors
HealthParmers Medical Group Age  Males
Females

Work Group Members
Family Medicine
Ciarratt Trohee MTY

Nursing home resident
Comorbid illnesses
Neoplastic disease

Pneumonia Severity Index (PSI)

age (yrs)
age (yrs)-10

Chest xeray sho
infiltrate or stror
inical suspicion

@ E.g., Temp = 37.5, Pulse = 98, RespiratoryRate = 18 are in “danger zone”

already

@ Temperature, Pulse and Respiratory rate: these constraints are rather vague
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Uncertainty vs Vagueness: a clarification

Sources of Vagueness: Ontology alignment (schema
matching)

@ To which degree are two concepts of two ontologies
similar?
Washington Courses
Cournell Courses

American
History

Ancient and £
il Modern Ancient
Medieval
History European Modern European
A~ History European History
History
“History o7 /
the
Americas Medieval Renaissance
and Earl Modem European

History

Latin
American
History
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Uncertainty vs Vagueness: a clarification

Sources of Vagueness: Lifezone mapping

@ To which degree do certain areas have a specific bioclima

Humidity Province (celis)
W Superhumid (17,278
B rernumid (42.708)
Hurnid (218,080}
Subhuwmid (139,815)
Semiarad |51.828)
Arnd [11,008]
Perarid [3,847)
Superarid [153)

Holdridge life zones of USA
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Uncertainty vs Vagueness: a clarification

Sources of Vagueness: ARPAT, Air quality in the
province of Lucca

1 dati di domenica 21/02/2010

Sintesi dei dati rilevati dalle ore 0 alle ore 24 del giorno domenica 21/02/2010

S0, NO, co N PM,,
Stazione Tipo stazione pg/m? wg/m3 mg/m3 pg/m3 pg/m3  |Giudizio di qualita dell'aria
(media su 24h)|(max oraria)| (max oraria)| (max oraria)|(media su 24h)
Lucca_|P.za San Micheletto (RETE REGIONALE **)| urbana - traffico 1 75 37
Lucca V.le Carduccl urbana - traffico 1 2,3 49
Lucca Carignano (RETE REGIONALE **) rurale - fondo - (nefs') Buona
Viareggio Largo Risorgimento urbana - traffico 18 n.d. Buona
Viareggio |  Via Maroncelll (RETE REGIONALE **) | urbana - fondo 4 97 (n(;ls') 3 Accettabile
Capannori] V. di Plaggia (RETE REGIONALE **) | urbana - fondo 62 13 25
Porcari V. Carrara (RETE REGIONALE **) periferica - fondo| 1 51 - (n8145,) 24 Accettabile
so, NO, co N PMy,
Giudizio diqualita|  ,g/m3 ug/m3 mg/m? pg/m? ug/m?
(media su 24h)|(max oraria)| (max oraria)| (max oraria)|(media su 24h)
Buona 0-50 0-50 02,5 0-120 0-25
51-125 51-200 2,6-15 121-180 26-50
126-250 201-400 15,1-30 181-240 51-74
T R >400 >30 >240 >74
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Uncertainty vs Vagueness: a clarification

Sintesi dei dati rilevati dalle ore 0 alle ore 24 del giorno domenica 14/02/2010

50, NO, co 0, P
Stazione Tipo stazione | ug/m3 yg/m? mg/m? ugim? ug/m3  |Gludizio di qualita dellaria
(media su 2ah)|(max oraria)| (max oraria)| (max oraria)|(media su 24h)
Lucca |P.za San Micheletto (RETE REGIONALE **)| urbana - traffico 1 75 -— - 56 Scadente
Cuces V.le Cardued] urbana - traffico 3 3 s
Lucea Carignanc (RETE REGIONALE =) rurale - fonde — - Buona
Viareaglo Gorgo urbana - traffico % e Buona
Viareggio | Via Maroncelll (RETE REGIONALE *%) | urbana - fondo 1 121 (hiq,,,) a5
(Capannori| V. ol Piaggla (RETE REGIONALE **) urbana - fondo 79 2 59 Scadente
Porcari V. Carrara (RETE REGIONALE **) | periferica - fonde 2 72 (n,eﬁsw) 63 ‘ Scadente
s0, NO, co 0, PMyg
Gludizio di qualita m3 ug/m3 mg/m? pg/m3 m3
(media su 24h)|(max oraria)|(max oraria)| (max oraria)|(media su 24h)
Buona 0-50 0-50 0-2,5 0-120 0-25
51-125 51-200 2,6-15 121-180 26-50
126-250 201-400 15,1-30 181-240 51-74
=250 =400 >30 >240 =74
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On the Existence of Vague Concepts

On the Existence of Vague Objects
Vague Statements

Sources of Vagueness

Uncertainty vs Vagueness: a clarification

TripAdvisor: H

2,889 Reviews from our TripAdvisor Community

Your overall rating of this property

Click to rate

Traveler rating See reviews for Rating summary
Excellent [N 1467 4k Familes 202 Location 00,000,
Very good [N 1,029 Sleep Quality O.0.0.0.0
Average aq W Couples 1154 Rooms 00000
Poor ! 86 2 sdb 243 Service 0.0.0.0.0,

Value O.00.0@
Torribie | 3 @ Business 671 Cleanliness PEEEO
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On the Existence of Vague Concepts

About Vagueness On the Existence of Vague Objects
From Fuzzy Sets to Mathematical Fuzzy Logic Vague Statements
Fuzzy Description Logics and OWL 2 Sources of Vagueness

Uncertainty vs Vagueness: a clarification

Uncertainty vs Vagueness: a clarification

@ Initial difficulty:

e Understand the conceptual differences between uncertainty
and vagueness

@ Main problem:

e Interpreting a degree as a measure of uncertainty rather
than as a measure of vagueness
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On the Existence of Vague Concepts

About Vagueness On the Existence of Vague Objects
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Uncertainty vs Vagueness: a clarification

Uncertain Statements

@ A statement is true or false in any world/interpretation

o We are “uncertain” about which world to consider
e We may have e.g. a probability distribution over possible
worlds

e E.g., “it will rain tomorrow”

e We cannot exactly establish whether it will rain tomorrow or
not, due to our incomplete knowledge about our world
o We can estimate to which degree this is probable
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About Vagueness On the Existence of Vague Objects
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Uncertainty vs Vagueness: a clarification

@ Consider a propositional statement (formula) ¢
@ Interpretation (world) Z € W,
Z:W—{0,1}

@ 7Z(¢) =1 means ¢ is true in Z, denoted Z |= ¢
@ Each interpretation Z depicts some concrete world
@ Given n propositional letters, |[W| = 2"

@ In uncertainty theory, we do not know which interpretation

7 is the actual one

All About Fuzzy Description Logics Lecture at Reasoning Web 2015
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About Vagueness On the Existence of Vague Objects
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Uncertainty vs Vagueness: a clarification

@ One may construct a probability distribution over the worlds

Pr:W — [0,1]
7 Pr(T) =1

@ Pr(Z) indicates the probability that Z is the actual world
@ Probability Pr(¢) of a statement ¢ in Pr

Pr(¢) =Y Pr(Z)
I¢

@ Pr(¢) is the probability of the event: "¢ is true"
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Uncertainty vs Vagueness: a clarification

Vague Statements

@ A statement is true to some degree, which is taken from a
truth space (usually [0, 1])

@ The convention prescribing that a proposition is either true
or false is changed towards graded propositions
@ E.g., “heavy rain”
e The compatibility of “heavy” in the phrase “heavy rain” is

graded and the degree depends on the amount of rain is
falling

@ The intensity of precipitation is expressed in terms of a
precipitation rate R: volume flux of precipitation through a
horizontal surface, i.e. m*/m?s = ms™!

@ Itis usually expressed in mm/h
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On the Existence of Vague Concepts

About Vagueness On the Existence of Vague Objects
From Fuzzy Sets to Mathematical Fuzzy Logic Vague Statements
Fuzzy Description Logics and OWL 2 Sources of Vagueness

Uncertainty vs Vagueness: a clarification

“Heavy rain” continued...E.g., in weather forecasts one may find:

@ Rain intensity measured as precipitation rate R: volume flux of
precipitation through a horizontal surface, i.e. m®/m?h = mh=1

Rain.
Light rain.

Moderate rain.
Heavy rain.

@ Quite harsh distinction:

Falling drops of water larger than 0.5 mm in diameter. “Rain” usually implies that the
rain will fall steadily over a period of time;

Rain falls at the rate of 2.6 mm or less an hour;

Rain falls at the rate of 2.7 mm to 7.6 mm an hour;

Rain falls at the rate of 7.7 mm an hour or more.

R=77mm/h — heavyrain
R=76mm/h — moderate rain

@ This is clearly unsatisfactory, as quite naturally

e The more rain is falling, the more the sentence “heavy rain”

is true

e Vice-versa, the less rain is falling the less the sentence is

true
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On the Existence of Vague Concepts
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Uncertainty vs Vagueness: a clarification

@ In other words, that the sentence “heavy rain” is no longer either
true or false, but is intrinsically graded

e Even if we have complete knowledge about the current
world, i.e. exact specification of the precipitation rate
@ More fine grained approach:
e Define the various types of rains as

Light Rain Moderate Rain Heavy Rain

25 5 75 mmi

e Light rain, moderate rain and heavy rain are vague
concepts
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About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

On the Existence of Vague Concepts

On the Existence of Vague Objects
Vague Statements

Sources of Vagueness

Uncertainty vs Vagueness: a clarification

@ Consider a propositional statement ¢

@ A propositional interpretation Z maps ¢ to a truth degree in [0, 1]
Z(¢) € [0,1]

@ l.e., we are unable to establish whether a statement is entirely
true or false due the occurrence of vague concept

@ Vague statements are truth-functional
e Degree of truth of a statement can be calculated from the
degrees of truth of its constituents
e Note that this is not possible for uncertain statements

@ Example of truth functional interpretation of vague statements:

(o A1)
I(pV) =
I(-¢) =

All About Fuzzy Description Logics

min(Z(¢), Z(v))
max(Z(¢), Z(¢))
1-1(9)
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Uncertainty vs Vagueness: a clarification

Uncertain Vague Statements

@ Recap:

e In a probabilistic setting each statement is either true or
false, but there is e.g. a probability distribution telling us
how probable each interpretation/sentence is

I(¢) € {0,1}, Pr(T) € [0,1] and Pr(¢) = > Pr(Z) €[0,1]
Tk

e In vagueness theory instead, sentences are graded

Z(9) € [0,1]
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About Vagueness On the Existence of Vague Objects
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Fuzzy Description Logics and OWL 2 Sources of Vagueness

Uncertainty vs Vagueness: a clarification

@ Are there sentences combining the two orthogonal
concepts of uncertainty and vagueness?
@ Yes, and we use them daily !
e E.g. “there will be heavy rain tomorrow"
@ This type of sentences are called uncertain vague
sentences
@ Essentially, there is

e uncertainty about the world we will have tomorrow
@ vagueness about the various types of rain
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On the Existence of Vague Concepts

About Vagueness On the Existence of Vague Objects
From Fuzzy Sets to Mathematical Fuzzy Logic Vague Statements
Fuzzy Description Logics and OWL 2 Sources of Vagueness

Uncertainty vs Vagueness: a clarification

@ Consider a propositional statement ¢
@ A model for uncertain vague sentences:
e Define probability distribution over worlds Z € W, i.e.

Pr(T) € [0,1],) _Pr(7) =1

@ Sentences are graded: each interpretation Z € W is truth
functional and maps sentences into [0, 1]

Z(¢) € [0,1]

e For a sentence ¢, consider the expected truth of ¢
ET(¢) =) Pr(T) -1(¢).
s

@ Note: if Z is bivalent (that is, Z(¢) € {0,1}) then ET(¢) = Pr(¢)

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia
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About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

Fuzzy Sets Basics

From Crisp Sets to Fuzzy Sets.
@ Let X be a universal set of objects

@ The power set, denoted 2A of aset A C X, is the set of
subsets of A, i.e.,

2A={B|BC A}
@ Often sets are defined as

A= {x|P(x)}

(x) is a statement “x has property P”

o P
e P(x) is either true or false for any x € X
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About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

@ Examples of universe X and subsets A, B € 2X may be

X = {x|xisaday}
A = {x|xisarainy day}
B = {x| xis aday with precipitation rate R > 7.5mm/h}

@ Inthe abovecase: BC AC X
@ The membership function of a set A C X:

xa: X —{0,1}

where ya(x) =1iff x € A
@ Note that for sets A, B € 2X

A C Biff ¥x € X. ya(x) < xa(x)
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Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

@ Complementof aset A i.e. A= X\ A Vx € X:
xa(X) =1—xa(x)

@ |Intersection and union: Vx € X

XAn8(X) min(xa(x), xs(x))
xaus(x) = max(xa(x),xs(x))

@ Cartesian product of two sets A, B € 2X

AxB={(a,b)|ac A becB}

@ Arelation RC X x X
@ isreflexive if forall x € X
XR(X7 X) =1
@ is symmetricifforall x,y € X
xr(X,¥) = xr(y, X)
@ Inverse of R, xg—1: X x X = {0,1}: Vx,y € X:

XFE—1(/V’ X) = XF?(va)

All About Fuzzy Description Logics Lecture at Reasoning Web 2015
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About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

@ Fuzzy set A: xa: X — [0, 1], or simply
A: X —[0,1]

@ Fuzzy power set over X, is denoted 2X i.e. the set of all
fuzzy sets over X

@ Example: the fuzzy set
C = {x|xisaday with heavy precipitation rate R}

is defined via the membership function

1 if R >75
xe(x)=< (x—5)/25 ifRe€[5,7.5)
0 otherwise
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About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

@ Fuzzy membership functions may depend on the context and
may be subjective

@ Shape may be quite different
@ Usually, it is sufficient to consider functions

(a) Trapezoidal trz(a, b, c, d); (b) Triangular tri(a, b, c); (c) left-shoulder Is(a, b); (d) right-shoulder rs(a, b)
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About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

Fuzzy Sets Construction

@ The usefulness of fuzzy sets depends critically on
appropriate membership functions

@ Methods for fuzzy membership functions construction is
largely addressed in literature
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About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

@ Easy and typically satisfactory method (numerical domain)
@ uniform partitioning into 5 fuzzy sets

Very Low Low Medium High Very High

Fuzzy sets construction using trapezoidal functions

very

Very Low Medium High High

Fuzzy sets construction using triangular functions
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@ Another popular method is based on clustering
@ Use Fuzzy C-Means to cluster data into 5 clusters

e Fuzzy C-Means extends K-Means to accommodates
graded membership

@ From the clusters ¢y, ..., ¢5 take the centroids 74, ..., 75
@ Build the fuzzy sets from the centroids

VeryLow Low Medium High VeryHigh

Fuzzy sets construction using clustering
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Norm-Based Fuzzy Set Operations

@ Standard fuzzy set operations are not the only ones
@ Most notable ones are triangular norms
t-norm ® for set intersection
t-conorm & (also called s-norm) for set union
negation © for set complementation
implication =

@ setinclusion A C B is defined as

Xlg(A(x) = B(x)
@ = is often defined from ® as r-implication
a=b=sup{c|la®c<b}.

@ These functions satisfy some properties that one expects
to hold
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Properties for t-norms and s-norms

Axiom Name T-norm S-norm
Taututology/Contradicton a® 0 =20 ad1=1

Identity agl=a ae0=a

Commutativity aRb=b®a adb=boa
Associativity (a®b)®c=a® (b®c) (adb)dc=ad(b®dc)
Monotonicity ifb<cthenagb<a®c ifb<c,thenadb<adc
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Properties for implication and negation functions

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0=b=1, a=1=1,1=0=0 60=1,61=0
Antitonicity ifa<bthena=c>b=rc ifa<b,thenca>ocb
Monotonicity ifb<cthena=b<a=rc
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@ By commutativity, ® and & are monotone also in the first
argument

@ ®isindempotentifa® a= a, forall a € [0, 1]

@ Megation function & is involutive iff © & a = a, for all
ac[0,1].

@ Salient negation functions are:

Standard or Lukasiewicz negation: ©,a=1 — a;
Godel negation: cgais 1if a= 0, else is 0.

@ tukasiewicz negation is involutive, Gédel negation is not.
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@ Salient t-norm functions are:
Godel t-norm: a®g b = min(a, b);
Bounded difference or Lukasiewicz t-norm:
a® b=max(0,a+b—1);
Algebraic product or product t-norm: a®p b = a- b;
Drastic product: a®q b =
0 when (a, b) € [0, 1[x[0, 1]
{ min(a, b) otherwise
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@ Salient s-norm functions are:

Godel s-norm: a @4 b = max(a, b);
Bounded sum or Lukasiewicz s-norm:

a®; b=min(1,a+ b);
Algebraic sum or product s-norm: a®p b= a+ b — ab;
Drastic sum: a®g b =

1 when (a, b) €]0, 1]x]0, 1]
{ max(a, b) otherwise
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Salient properties of norms:
@ Ordering among t-norms (® is any t-norm):

®d§®§®g
®d§®/§®p§®g.

@ The only idempotent t-norm is ®g.
@ The only t-norm satisfying a®@ a= 0 for all a € [0, 1] is ®g.
@ Ordering among s-norms (& is any s-norm):

@gS@S@d
@gg@pg@lg@d-
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@ The only idempotent s-norm is @g.
@ The only s-norm satisfying a® a =1 for all a €]0, 1] is @©g.
@ The dual s-norm of ® is defined as

asb=1-(1—-ax(1->b).

@ Kleene-Dienes implication: x = y = max(1 — x, y) is called
@ Fuzzy modus ponens:leta>nanda= b>m
e Under Kleene-Dienes implication, we infer thatif n > 1 —m
thenb>m
e Under r-implication relative to a t-norm ®@, we infer that
b>n®m
@ composition of two fuzzy relations Ry: X x X — [0, 1] and
Ro: X x X —[0,1]: forall x,ze X
@ (RioR)(x,2)= SUPy e x Ri(x,y) ® Ra(y, 2)
@ A fuzzy relation R is transitive iff for all x,z € X
R(x.2)>(Ro R)(x,2)
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tukasiewicz, Godel, Product logic and Standard Fuzzy
logic

@ One distinguishes three different sets of fuzzy set
operations (called fuzzy logics)

e tukasiewicz, Gédel, and Product logic
e Standard Fuzzy Logic (SFL) is a sublogic of tukasiewicz

@ min(a,b) = a®; (a=b), max(a,b) =1 —min(1 —a,1 —b)

Lukasiewicz Logic Godel Logic Product Logic SFL
a® b max(a+ b — 1,0) min(a, b) a-b min(a, b)
adb min(a + b, 1) max(a, b) at+b—a-b max(a, b)
) 1 ifa<b )
a=b min(1 —a+ b, 1) {b otherwise min(1, b/a) max(1 — a, b)
oa 1—a 1 ifa=0 1 ifa=0 1_2a
0 otherwise 0 otherwise

@ Mostert—Shields theorem: any continuous t-norm can be
obtained as an ordinal sum of these three
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Some additional properties

Property tukasiewicz Logic ~ Godel Logic ~ Product Logic ~ SFL

X®ox=0 °

xdox=1 °

XQ@X=X .

XPHX=x °

SOXxX=X

xﬁy:@x@y

Ox=y)=x®0y
ce(xey)=0oxooy
Sxey)=0x®0y

@ Note: If all conditions in the upper part of a column have to
be satisfied then we collapse to classical two-valued logic
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Fuzzy Modifiers

@ Fuzzy modifiers: interesting feature of fuzzy set theory

@ A fuzzy modifier apply to fuzzy sets to change their
membership function

e Examples: very, more_or_less, and slightly
@ A fuzzy modifier m represents a function

fm:[0,1] — [0, 1]

Examp|93 fvery(x) :X27 fmoreioriless(x) = tl’l(o, X, 1 )7 fslightly(x) = \/}
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@ Modelling the fuzzy set of very heavy rain:

Xvery heavy rain(X) = fvery(Xheavyrain(X))
()(heavyraln(x))2
(rs(5,7.5)(x))?

@ A typical shape of modifiers: linear modifiers Im(a, b)

0 a 1 X

@ Note: linear modifiers require one parameter c only
Im(a, b) = Im(c)
wherea=c/(c+1), b=1/(c+1)
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Mathematical Fuzzy Logics Basics

@ OWL 2 is grounded on Mathematical Logic
@ Fuzzy OWL 2 is grounded on Mathematical Fuzzy Logic
@ A statement is no longer either true or false, but is graded

@ Truth space: set of truth values L with some structure
@ Given a statement ¢
e Fuzzy Interpretation: a function Z mapping ¢ into L, i.e.

I(p) e L
e Usually
L = [0,1]
1 n—2
= — >
L, {O’n""’n—1’ A (n>1)
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@ Fuzzy statement: for r€[0, 1]
(¢,r)

The degree of truth of ¢ is equal or greater than r

@ Examples:

Fuzzy FOL: (RainyDay(d),0.75)

Fuzzy LPs: (RainyDay(d) «,0.75)
Fuzzy RDFS: ((d, type, RainyDay),0.75)
Fuzzy DLs: (d:RainyDay,0.75)
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@ Fuzzy interpretation Z:

e Maps each basic statement p; into [0, 1]
e Extended inductively to all statements

(o A1)
(¢ V1)
(¢ = v)
(0 )
(—9)
(3x.0)
(Vx.0)

t\n\\t\u\x

where
o AZ s the domain of 7

I(¢) ® Z(v)

(o) ® Z(¥)

I(¢) = Z(¥)

(¢ =) @L(Y — )
©I(¢)

SUPaeaz Z3(¢)

infaeAI I)?(QS) y

® ®, @, =, and & are the t-norms, t-conorms, implication
functions, a negation functions
e The function Z2 is as Z except that x is interpreted as a
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Example

@ In Lukasiewicz logic:
¢ = Cold A Cloudy

7 | Cold | Cloudy Z(p)

Zy| O 0.1 max(0,0+ 0.1 — 1) =0.0
I, | 0.3 0.4 |max(0,0.34+04—-1)=0.0
Iz | 0.7 0.8 |max(0,0.7+09—-1)=0.6
Iy | 1 1 max(0,1+1-1)=1.0

@ Note: given m propositional letters
e Fuzzy interpretations over L = [0, 1] are not recursively
enumerable
e There are n™ fuzzy interpretations over L,
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@ One may also consider the following abbreviations:

dAgh = GA (P )

PVgh = (=) = d) Ag (¥ = ¢) = 1)
dsf

¢ = ¢—0

(p<n = (g, 1-1)

@ In case = is the r-implication based on ®, then

@ Agis Godel t-norm
e Vg is Gbdel s-norm
@ - is interpreted as the negation function related to ®
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@ 7 satisfies (¢, r), or Z is a model of (¢, r)

TE (6,1) i Z(6) > r

@ T is amodel of ¢ if Z(¢) =1
@ Fuzzy knowledge base K: finite set of fuzzy statements

@ 7 satisfies (is a model of) K: Z | K iff it satisfies each
elementin it

@ Best entailment degree of ¢ w.r.t. K:

bed(K, ¢) = sup{r|K=(¢,n}
@ Best satisfiability degree of ¢ w.r.t. K:

bsd(K, ¢) = sup {Z(9) |7 = K}

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics

Mathematical Fuzzy Logics Basics

Proposition (Fuzzy Modus Ponens )
For r-implication —, for r, s € [0,1]:

(¢, 1), (¢ = 9,8) | (¥, r®s)

V.

Salient equivalences:

——p =
PN =

(¢ A —9)
¢V o
VXx.p

(£, SFL)

(G, SFL)
(£,G,N)

(£)

-3x.=¢ (k, SFL)

¢
¢
1
1
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Proposition

Salient equivalences:

t+ G = Boolean Logic
t4+n Boolean Logic
G+ N = Boolean Logic
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Proposition (BED)

bed(K, ») = min x. such that K U {(¢ < x)} satisfiable.

Proposition (BSD)

bsd(K, ¢) = max x. such that K U {(, x)} satisfiable.
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On Witnessed Models

@ Witnessed interpretation Z:

I(3x.¢) = I¥(¢), for some a e A” (1)
I(Vx.¢) = ZIi(¢), for some a € A* (2

@ The supremum (resp. infimum) are attained at some point
@ Classical interpretations are witnessed

@ Fuzzy interpretations may not be witnessed

@ E.g., 7 is not witnessed as Eq. (1) not satisfied:

AT = N
ZY(A(x)) = 1-1/n<1, foraln
I(3Ax.A(x)) = supZy(A(x))
= supl—-1/n=1
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Proposition (Withnessed model property)

In tukasiewicz logic and SFL over L = [0, 1], or for all cases in
which the truth space L is finite, a fuzzy KB has a witnessed
fuzzy model iff it has a fuzzy model.

@ Not true for Gédel and product logic over L = [0, 1]
e —Vx p(x) A =Ix —p(x) has no classical model
e In Gddel logic it has no finite model, but has an infinite
model: for integer n > 1, let Z such that Z(p(n)) = 1/n

I(Vxp(x)) = irr17f1/n =0
Z(3Ix—-p(x)) = sup—-1/n=sup0=0
n
@ IMHO: non-witnessed models make little sense in KR
@ We will always assume that interpretations are witnessed
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Fuzzy Propositional Logic: Reasoning

@ We need to distinguish if truth space is L = [0, 1] or
L,,_{O,n,...,n <, .. 1}

@ Case L, easier: given m propositional letters, there are m”
possible interpretations

@ We may use

@ Operational Research
o Analytic Tableaux, Non-Deterministic Analytic Tableaux
e Reduction into Classical Propositional Logic
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Operational Research: Case tukasiewicz Logic & SFL

@ Basic idea: translate formulae into equational constraints
about truth degrees
@ For a formula ¢ consider a variable x,

e Intuition: x; will hold the degree of truth of statement ¢
e Example: constraints under tukasiewicz for (—¢, 0.6)

X-¢ € [O, 1]
X¢ € [O, 1]
X-¢p = 1-— Xo

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

@ We may use Mixed Integer Linear Programming for the encodings of
constraints
For Lukasiewicz:

QO X1 X Xo=2Z
Bt —1<zxi+x—1>z—y,z<1-y,ye{0,1}},
where y is a new variable.

o xXi®Xe=z{Xx+x<z+y,y<z,xi+x>zyec{0,1}},
where y is a new variable.

@ xi = xe=2z—{(1-x1) @ x = 2z}.

For SFL:

Q@ X1 QgXe =2
m{z<x,z<0xx<z+y,x<z+(1-y),yec{0,1}},
where y is a new variable.

@ X1 BgXe =2
={z>x,z>%x+y>zx+(1-y)>zye{0,1}},
where y is a new variable.

@ Xy =g Xe=2—(1—X1)PBgXe = 2.
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o Transform K into NNF
e Initialize the fuzzy theory T and the initial set of constraints Cy: by

T
Ck

{o1(¢.n) € K}
{xy 2 n|{¢,n) € K}

e Apply the following inference rules until no more rules can be applied

(var). For variable x4 occurring in Cxc add x4 € [0, 1]to Cxc
(var). For variable x_, 4 occurringin Cic add x;, =1 — x_ 4 to Cxc
b ® b
(1). If L€ Tic thenCxc = Cic U {x, =0}
(T). §T € TicthenCc := Cxc U {x1 =1}

(N). If ¢ Adp € Ty, then
@ add ¢ and  to Tic

@ Ci =Crx U{xs ® Xy =Xpnp}

(V). f¢p Ve Ti,then
@ add ¢ and  to Tic

e Cic = Crc U {Xp ® Xy = Xpay}

(—). f¢p — 1 € T, then
@ add nnf(—¢) and ¥ to Tic

@ Cx = Cic U{(1 = Xpn(=g)) = Xy = Xp—p}
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sat(K): K is satisfiable iff the final set of constraints Cx has
a solution
bed(K,¢): @ Add —¢ to Tk
@ Add x4 > 1 —x,x € [0,1] to Cx, x new
@ Compute final set of constraints Cx
@ Then, solve the optimisation problem

bed(K, ») = min x. such that Cx has a solution

bsd(IC,¢): @ Add ¢ to T
@ Add x; > x,x € [0,1] to C, x new
@ Compute final set of constraints Cx
@ Then, solve the optimisation problem

bsd(K, ) = max x. such that Cx has a solution
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Analytical Fuzzy Tableau: Case SFL

@ Main property the method is based on:
e if Zis model of (¢ A ¢, n) then Z is a model of both (¢, n)
and (¢, n);
e if Z is model of (¢ Vv ¢, n) then Z is a model of either (¢, n)

or (¢, n).
@ 7 cannot be a model of both (p, n) and (—p,m) if n>1—m.

@ Aclash is either
e a fuzzy statement (L, n) with n > 0; or
e a pair of fuzzy statements (p, n) and (—p, m) withn>1—-m

@ Clash-free: does not contain a clash
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@ Transform K into NNF
@ |Initialize the completion Sx. = K
© Apply the following inference rules to Sx until no more rules can be applied

0 We call a set of fuzzy statements Sx. complete iff none of the rules below can be
applied to Sk

© Note that rule (V) is non-deterministic
(N). i {pA,n)y € Sk and {{¢p, n), (x»,n)} Z Sk , then add both
(¢,n) and (i, n) to Sk
(V). If(pVh,n) € Sk and {{¢, n), (x»,n)} N Sxc = 0, then add
either (¢, n) or (3, n) to Sk
(=). If (¢ = ¢, n)y € Sk and (nnf(—¢) V ¢, n) & Sk, then add
(nnf(—¢) V ¢, n) to Sk

sat(K): K is satisfiable iff we find a complete and
clash-free completion Sy of K
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@ For BED and BSD we need some more work
@ Given K, define
N© = {0,05,1} U {n|(¢,n) € K}

N* = NCU{1—n|ne N}
e = min{d/2|n,me N* n#md=|n—m|}

Proposition
Under SFL, given K, then forn > 0

K E (¢,n) iff CU{(=¢,1 — n+e€)} is not satisfiable .

Moreover, K is satisfiable iff it has a model over N.
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bed(K, ¢): Find greatest n € N* such that K |= (¢, n)

bsd(KC, $): Find greatest n € N* such that KK U {(¢, n)}
satisfiable

[m] = -
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Non Deterministic Analytic Fuzzy Tableau

@ Works for finitely-valued fuzzy propositional logic over L,
@ Works also for SFL (as in place of [0, 1], we may use N)
@ Basic idea is as for fuzzy tableau, but now we guess the truth degrees
(N). lf{p N1, n)y € Sk, ny, e € Lp such that ny ® n, = nand
{{¢, m), (¥, m2)}  Sic , then add both (¢, ny) and (i, np) to
Sk
(V). lf{pV,n)y €Sk, ny,no € Ly such that ny & n, = nand
{<¢7 n1)7 <¢7 n2>} Z S’C ) then add both <¢7 n1> and <’¢7 n2> to
Sk
(—=). (¢ —,ny € Sk, ny,n € Ly such that ny = n, = nand
{{¢, m), (¥, m2)} € S, then add both (¢, ny) and (i, nz) to
Sk
@ Aclash is either
@ afuzzy statement (L, n) with n > 0; or
@ a pair of fuzzy statements (p, n) and (—=p, m) such that

Xp >N, ©Xp> M Xp € Lp

has no solution
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Reduction to Classical Propositional Logic: Case SFL
over [0, 1]

@ Given K, we know that we can use

Ln:N’C:{V17'~77n}

with 5 < 7jp1,1 < i <n—1
@ Basic idea: use atom A, to represent
The truth degree of A has to be equal or greater than r

@ Similarly for As,, A<, and A,
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@ To start with, build Crispy,
e Forallatoms A, forall1 <i<n-12<j<n-1

AZ’YM - A>')’i
Asyy = Ay,

@ Build Crispy:

Crispc = {p(#,n) | {¢,n) € K} U
Crispy,, ,

p(X, ¥)
&

T
Life>0
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ﬁA>1—c

p(#,¢) A p(¥,C)
p(8,¢) V p(¥,c)
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Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

Proposition

Given KC under SFL over Ly, then K |= (¢, c¢) iff
KU{(=¢,1 —c)} is not satisfiable, where ¢~ is the next
smaller value than c in L,

sat(K): K is satisfiable iff Crispy. satisfiable
bed(IKC, ¢): Find greatest ¢ € L, such that K = (¢, ¢)

bsd(IC, ¢): Find greatest ¢ € L, such that LU {(¢,¢)}
satisfiable
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Crisp DLs
Fuzzy DLs

Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

The Semantic Web Fa

@ Wide variety of languages

@ RDFS: Triple language, -Resource Description Framework
@ The logical counterpart is pdf
@ RIF: Rule language, -Rule Interchange Format,
@ Relate to the Logic Programming (LP) paradigm
@ OWL 2: Conceptual language, -Ontology Web Language

@ Relate to Description Logics (DLs)

Class/Concept
Language

=] 5 = = DA



From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

OWL 2 Profiles

Crisp DLs

Fuzzy DLs

Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

About Vagueness

OWL 2 EL

OwWL 2 QL

OWL 2 RL

Useful for large size of properties and/or classes
Basic reasoning problems solved inpolynomial time
The EL acronym refers to the ££ family of DLs

Useful for very large volumes of instance data
Conjunctive query answering via via query rewriting and
SQL

OWL 2 QL relates to the DL family DL-Lite

Useful for scalable reasoning without sacrificing too
much expressive power

OWL 2 RL maps to Datalog

Computational complexity: same as for Datalog,
polynomial in size of the data, EXPTIME w.r.t. size of
knowledge base
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Description Logics (DLs)

@ Concept/Class: names are equivalent to unary predicates

e In general, concepts equiv to formulae with one free
variable

@ Role or attribute: names are equivalent to binary predicates
e In general, roles equiv to formulae with two free variables
@ Taxonomy: Concept and role hierarchies can be expressed
@ Individual: names are equivalent to constants
@ Operators: restricted so that

e Language is decidable and, if possible, of low complexity
@ No need for explicit use of variables

@ Restricted form of 3 and V
e Features such as counting can be succinctly expressed
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@ Basic ingredients: descriptions of classes, properties, and
their instances, such as

e a:C, meaning that individual a is an instance of
concept/class C

a:Person M vhasChild.Femal

e (a, b):R, meaning that the pair of individuals (a, b) is an
instance of the property/role R

(tom, mary):hasChild
e C C D, meaning that the class C is a subclass of class D

Person C VhasChild.Person
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The DL Family

Crisp DLs

Fuzzy DLs

Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

@ A given DL is defined by set of concept and role forming operators
@ Basic language: ALC (Attributive £Language with Complement)

Syntax Semantics Example
C,D — T [ T

L [ L)

A | AX) Human
cnbD | C(x) A D(x) Human 1 Male
cub | C(x) Vv D(x) Nice U Rich

-C | =C(x) —Meat
3R.C | 3y.R(x,y) A C(y) Jhas_child. Blond
VR.C Vy.R(x,y) = C(y) Vhas_child.Human
CCD Vx.C(x) = D(x) Happy_Father C Man M 3has_child. Female
a.C C(a) John:Happy _Father

All About Fuzzy Description Logics
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DL Semantics

@ Semantics is given in terms of an interpretation Z = (AZ, -7), where
@ A7 is the domain (a non-empty set)
@ Tisan interpretation function that maps:
@ Concept (class) name A into a subset AT of AT
@ Role (property) name R into a subset RZ of AT x AT
@ Individual name ainto an element of AZ x A sit. a2 # b~ if a # b (UNA)
@ Interpretation function T is extended to concept expressions:

T = AT
1T = 9
€nec)t = cinct
(Cru Cz)i = C1IZ u szz
(=0) = af\c
(3R.0)T = {xeal|3y.(xy)eRTryecCt}
(vR.C)T = {xeal|vy.(xy)eRT=>yec?}

@ Finally, we say that
@ Zisamodelof C C D, written Z = C C D, iff cT C DT
@ ZTisamodelof a:C, written Z = a:C, iff aZ € CT

@ Tisamodel of (a, b):R, written T |= (a, b):R, iff (a, bT) € RT

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



Crisp DLs

Fuzzy DLs

Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Note on DL Naming

Ac: C,D — T |L |A|CND |-A|3RT |VR.C
C: Concept negation, —=C. Thus, ALC = AL +C
S: Used for ALC with transitive roles R+
U: Concept disjunction, Cy U C»
&: Existential quantification, 3R.C
H: Role inclusion axioms, Ry C R», e.g. is_component_of C is_part_of
N Number restrictions, (> n R) and (< n R), e.g. (> 3 has_Child) (has
at least 3 children)
Q: Qualified number restrictions, (> n R.C) and (< n R.C),
e.g. (< 2 has_Child.Adult) (has at most 2 adult children)
O: Nominals (singleton class), {a}, e.g. 3has_child.{mary}.
Note: a:C equiv to {a} C C and (a, b):R equiv to {a} C 3R.{b}
Z: Inverse role, R—, e.g. isPartOf = hasPart~
F: Functional role, f, e.g. functional(hasAge)

R.4: transitive role, e.g. transitive(isPartOf)
For instance,

SHIF = SH+H+T+F=ALCRLHIF OWL-Lite
SHOIN = S+H+O+T+N=ALCRLHOIN OWL-DL
SROIQ = S+R+0+T+ Q=ALCR+ROIN OWL 2
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Semantics of Additional Constructs
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#: Role inclusion axioms, Z |= Ry C R, iff B2 C RyZ
N Number restrictions,
(>nR)?: ={xeAl:|{y|(xy) e R} >n}
(<nR? ={xeAT:|{y|(xy) € RF} <n}
Q: Qualified number restrictions,
(>nRC) ={xel{y|(x,y) e RE Ay e CT} > n},
(nRCY ={xeAT:|{y| (x,y) e RE Ay e CT} < n}
©: Nominals (singleton class), {a}Z = {aZ}
T: Inverse role, (R~)* = {(x,y) | (y,x) € R%}

F: Functional role, | |= fun(f) iff VzVyvz if (x,y) € fF and (x,z) €
they =2z

R4 transitive role,
(R)T = {(x,y) | 3z such that (x,z) € RT A (z,y) € RT}

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia
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Basics on Concrete Domains

@ Concrete domains: reals, integers, strings, ...

(tim, 14):hasAge

(sf, “SoftComputing” ) :hasAcronym

(sourcel, “"ComputerScience” ) :isAbout
(service2, “InformationRetrievalTool" ) :Matches
Minor = Person 3hasAge. <is

@ Semantics: a clean separation between “object” classes and concrete
domains
e D= <AD, ¢D>
e Apis an interpretation domain
e ®pis the set of concrete domain predicates d with a
predefined arity n and fixed interpretation d” C A7,
e Concrete properties: RT C AT x Ap
@ Notation: (D). E.g., ALC(D) is ALC + concrete domains
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DL Knowledge Base

@ A DL Knowledge Base is a pair £ = (T,.A), where

e T isa TBox
@ containing general inclusion axioms of the form C C D,
@ concept definitions of the form A= C
@ primitive concept definitions of the form AC C
@ role inclusions of the form RC P
@ role equivalence of the form R =P
e Ais a ABox
@ containing assertions of the form a:C
@ containing assertions of the form (a, b):R

@ An interpretation Z is a model of IC, writtenZ = K iff Z =T andZ = A,
where

@ 7 =T (Zisamodel of 7) iff Z is a model of each element in T
@ 7 = A (Zis amodel of A) iff Z is a model of each element in A
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Basic Inference Problems (Formally)

Consistency: Check if knowledge is meaningful

@ Is K satisfiability? — Is there some model Z of K ?

@ Is C satisfiability? — CZ # 0 for some some model T of
K?

Subsumption: structure knowledge, compute taxonomy

@ K= CLC D?+ lsittrue that C* C D for all models 7
of K ?

Equivalence: check if two classes denote same set of instances

@ K= C=D?w lsittrue that CT = D” for all models 7
of £ ?

Instantiation: check if individual a instance of class C

@ K= aC?+~ lsittrue that a¥ € C* for all models Z of
K?

Retrieval: retrieve set of individuals that instantiate C
@ Compute the set {a | K |= a:C}
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Reduction to Satisfiability

Crisp DLs

Fuzzy DLs

Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

Problems are all reducible to KB satisfiability
Subsumption: K = CC Diff (T, Au{a:Cm1—-D}) not
satisfiable, where a is a new individual
Equivalence: C=EC=DifKECCDandK=DCC
Instantiation: K = a:C iff (T, AU {a:—~C}) not satisfiable

Retrieval: The computation of the set {a | K |= a:C} is
reducible to the instance checking problem

All About Fuzzy Description Logics
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Reasoning in DLs: Basics

@ OWL 2: tableaux based algorithms

@ OWL 2 EL: structural based algorithms

@ OWL 2 QL: query rewriting based algorithms

@ OWL 2 RL: logic programming based algorithms
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Tableaux: Basics

@ Tableaux algorithm deciding satisfiability
@ Try to build a tree-like model Z of the KB
@ Decompose concepts C syntactically
o Apply tableau expansion rules
e Infer constraints on elements of model
@ Tableau rules correspond to constructors in logic (M, L, ...)
e Some rules are nondeterministic (e.g., L, <)
e In practice, this means search
@ Stop when no more rules applicable or clash occurs
e Clash is an obvious contradiction, e.g., A(x), 2A(x)
@ Cycle check (blocking) may be needed for termination
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Negation Normal Form (NNF)

@ We have to transform concepts into Negation Normal

Form: push negation inside using de Morgan’ laws

T

- L

C

~(C1 N Cy)
~(CyUCp)

and

~(3R.C)
~(VR.C)

All About Fuzzy Description Logics

— 1

— T

— C

— =CiU-Co
— =Ci M -G
— VR.-C
— 3JR-C
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Completion-Forest

@ This is a forest of trees, where
@ each node x is labelled with a set £(x) of concepts

@ each edge (x, y) is labelled with £(({x, y)) = {R} for some role R (edges correspond to

relationships between pairs of individuals)

The forest is initialized with
@ aroot node a, labelled £(x) = @ for each individual a occurring in the KB

@ anedge (a, b) labelled L({a, b)) = {R} for each (a, b):R occurring in the KB
Then, for each a:C occurring in the KB, set £L(a) — L(a) U {C}
The algorithm expands the tree either by extending £(x) for some node x or by adding new leaf nodes.
Edges are added when expanding 3R.C
A completion-forest contains a clash if, for a node x, {C, ~C} C L(x)

If nodes x and y are connected by an edge(x, y), then y is called a successor of x and x is called a
predecessor of y. Ancestor is the transitive closure of predecessor.

A node y is called an R-successor of a node x if y is a successor of x and £((x, y)) = {R}.

The algorithm returns “satisfiable" if rules can be applied s.t. they yield a clash-free, complete (no more
rules can be applied) completion forest
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ALC Tableau rules without GCI’s
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Rule Description
() if1.  Ci MGy € L(x)and
2. {C1,Cg} Zﬁ(x)
then  L(x) = L(x) U{Cy, Co}

()] if1.  Cy UGy € L(x) and

2. {CG,CInL(x)=0
then  L(x) — L(x) U {C} for some C € {Cy, Co}

(3) 1. 3RCeL(x)and

2. x has no R-successor y with C € L(y)
then  create a new node y with £({x,y)) = {R} and L(y) = {C}

(V) if1.  VR.C € L(x) and
2. x has an R-successor y with C ¢ L(y)
then L(y) — L(y)U{C}

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



Is 3R.CNVR.(-C U -D) 1 3R.D satisfiable? Yes.




Is 3R.CNVR.(-C U -D) 1 3R.D satisfiable? Yes.

£(x) = {3R.CNVR.(~C L -D) N 3R.D}

X




Is 3R.CNVR.(-C U -D) 1 3R.D satisfiable? Yes.

£(x) = {3R.CNVR.(~C L -D) 1 3R.D}

X




Is 3R.CNVR.(-C U -D) 1 3R.D satisfiable? Yes.

£(x) = {3R.C,VR.(~C LU -D),3R.D}

X




Is 3R.CNVR.(-C U -D) 1 3R.D satisfiable? Yes.

£(x) = {3R.C,YR.(~C LU -D),3R.D}

X




Is 3R.CNVR.(-Cu -D) M 3R.D satisfiable? Yes

£(x) = {3R.C,YR.(~C LU -D),3R.D}

X
R
L) = {C}y/

«a0)>» «F»r « =)»




Is 3R.CNVR.(-Cu -D) M 3R.D satisfiable? Yes

£(x) = {3R.C,VR.(~C LI ~D),3R.D}

X
R
L) = {C}y/

«a0)>» «F»r « =)»




Is 3R.CNVR.(-Cu -D) M 3R.D satisfiable? Yes

£(x) = {3R.C,VR.(~C U -D),3R.D}

R
L(y1) ={C,-CuU-D} /

)4l

X

«a0)>» «F»r « =)»




Is 3R.CNVR.(-Cu -D) M 3R.D satisfiable? Yes

£(x) = {3R.C,VR.(~C U -D),3R.D}

R
L(y1) ={C,-CuU-D} /

)4l

X

«a0)>» «F»r « =)»
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Example

Is 3R.C M VR.(=C 1 —D) n 3R.D satisfiable? Yes.
L(x) = {3R.C,VR.(-C U —-D), 3R.D}

X

R R
L(y1) ={C,~Cu =D, ~D} L(y2) ={D,~Cu -D,-C}

n Y2

@ Finished. No more rules applicable and the tableau is complete and clash-free
@ Hence, the concept is satisfiable

@ The tree corresponds to a model T = (AZ, . T)
@ The nodes are the elements of the domain: AZ = {x,y1,¥2}
@ For each atomic concept A, set AT = {z | A € £(2)}
@ ¢t ={n}.D" ={p}
@ Foreachrole R, set RZ = {(x,y) | thereis an edge labeled R from x to y}
@ RT = {(x,y1), (x,y2)}
@ It can be shown that x € (3R.C M VR.(~C LU —~D) M 3R.D)T # ¢
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Soundness and Completeness

Let A be an ALC ABox and F a completion-forest obtained by
applying the tableau rules to A. Then

@ The rule application terminates;

@ If F is clash-free and complete, then F defines a
(canonical) (tree) model for A; and

© If A has a model I, then the rules can be applied such that
they yield a clash-free and complete completion-forest.
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KBs with GCls

@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB I = (T, A) is satisfiable with 7 # 07?
@ Basic idea: since t(C C D) = Vx.—t(C, x) Vv t(D, x)

@ we use the rule: foreach CC D € T, add ~C U D to every node
@ But, termination is not guaranteed

@ E.g., consider K = (T, A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia
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KBs with GCls

@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB I = (T, A) is satisfiable with 7 # 07?

@ Basic idea: since t(C C D) = Vx.—t(C, x) Vv t(D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, ~Human LI 3hasMother.Human} umberto
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KB Satisfiability

@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since t(C C D) = Vx.—t(C, x) Vv t(D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —Human LI ShasMother.Human} umberto
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Representing Fuzzy OWL Ontologies in OWL

@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since t(C C D) = Vx.—t(C, x) V t(D, x)
@ we use therule: foreach CC D € T, add —C U D to every node

@ But, termination is not guaranteed
@ E.g., consider £ = (T, A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —~Human L1 3hasMother.Human, —Human} umberto
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since t(C C D) = Vx.—t(C, x) V t(D, x)
@ we use therule: foreach CC D € T, add —C U D to every node

@ But, termination is not guaranteed
@ E.g., consider £ = (T, A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —~Human L 3hasMother.Human, —Human} umberto
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv t(D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —Human LI ShasMother.Human} umberto
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv t(D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —~Human LI ShasMother.Human, 3hasMother.Human} umberto
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?
@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv t(D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node
@ But, termination is not guaranteed
@ E.g, consider K = (T, A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, -~Human L 3hasMother.Human, 3hasMother. Human} umberto
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since t(C C D) = Vx.—t(C, x) V t(D, x)
@ we use the rule: foreach CC D € T, add —~C U D to every node
@ But, termination is not guaranteed

@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, ~Human U 3hasMother.Human, 3hasMother.Human} umberto
hasMother

L(y1) = {Human, ~Human L 3hasMother.Human} v
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv t(D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —Human LI ShasMother.Human, 3hasMother.Human} umberto
hasMother

L(y1) = {Human, —Human | 3hasMother.Human} 2
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv t(D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —Human LI ShasMother.Human, 3hasMother.Human} umberto
hasMother

L(y1) = {Human, ~Human U 3hasMother.Human, 3hasMother.Human} v
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv t(D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —Human LI 3hasMother.Human, 3hasMother. Human} umberto
hasMother
L(y1) = {Human, ~Human LI 3hasMother.Human, 3hasMother.Human} v
hasMother l
L(y2) = {Human, —Human LI 3hasMother.Human} Y2
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv t(D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —Human LI 3hasMother.Human, 3hasMother. Human} umberto
hasMother
L(y1) = {Human, ~Human LI 3hasMother.Human, 3hasMother.Human} v
hasMother
L(y2) = {Human, —Human LI 3hasMother.Human} Y2
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv (D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —Human LI 3hasMother.Human, 3hasMother. Human} umberto
hasMother
L(y1) = {Human, ~Human LI 3hasMother.Human, 3hasMother.Human} v
hasMother l
L(y2) = {Human, —Human L1 3hasMother.Human, 3hasMother. Human} Y2
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv (D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —Human LI 3hasMother.Human, 3hasMother. Human} umberto
hasMother
L(y1) = {Human, ~Human LI 3hasMother.Human, 3hasMother.Human} v
hasMother l
L(y2) = {Human, —Human L1 3hasMother.Human, 3hasMother. Human} Y2
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@ We have seen how to test the satisfiability of an ABox .A
@ But, how can we check if a KB K = (T, A) is satisfiable?

@ Basic idea: since {(C C D) = Vx.—t(C, x) Vv (D, x)
@ we use the rule: foreach CC D € T, add ~C U D to every node

@ But, termination is not guaranteed
@ E.g., consider K = (T, .A)

T = {Human C 3hasMother.Human}
A = {umberto:Human}
L(umberto) = {Human, —Human LI 3hasMother.Human, 3hasMother. Human} umberto
hasMother
L(y1) = {Human, ~Human LI 3hasMother.Human, 3hasMother.Human} v
hasMother l

L(y>) = {Human, —~Human U 3hasMother.Human, 3hasMother.Human’} Yo
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Node Blocking in ALC

@ When creating new node, check ancestors for equal label set
@ |If such a node is found, new node is blocked
@ No rule is applied to blocked nodes

L(umberto) = {Human, -~Human U 3hasMother.Human, 3hasMother. Human} umberto
hasMother
L(y1) = {Human, —Human L 3hasMother.Human, 3hasMother. Human} M
hasMother
L(y2) = {Human, ~Human L1 3hasMother.Human, 3hasMother.Human} Yo blocked: L(y1) = L(y»)
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Node Blocking in ALC

@ When creating new node, check ancestors for equal label set
@ |If such a node is found, new node is blocked
@ No rule is applied to blocked nodes

L(umberto) = {Human, -~Human L 3hasMother.Human, 3hasMother.Human} umberto
hasMother
L(y1) = {Human, —Human L 3hasMother.Human, 3hasMother. Human} M
hasMother hasMother
L(y2) = {Human, —Human L 3hasMother.Human, 3hasMother.Human} ¥ blocked: L(y1) = L(y»)

@ Block represents cyclical model

© AT = {umberto, y1, y»}
© Human® = {umberto, y1, yo}

@ hasMother™ = {(umberto, y1), {y1,¥2), (Y2, 1)}
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Blocking in ALC

@ A non-root node x is blocked if for some ancestor y, y is
blocked or £L(x) = L(y), where y is not a root node

@ A blocked node x is indirectly blocked if its predecessor is
blocked, otherwise it is directly blocked

@ If x is directly blocked, it has a unique ancestor y such that
L(x) = L(y)

@ if there existed another ancestor z such that £(x) = £(2)
then either y or z must be blocked

@ If x is directly blocked and y is the unique ancestor such
that £(x) = L(y), we will say that y blocks x
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ALC Tableau rules with GCl’s

Rule

Description

(M)

(L)

€

)

©)

if 1.
2.
then

if 1.
2.
then

if 1.
2.
then

if 1.
2.
then
if 1.
2.
then

C1 M Gy € L(x), x is not indirectly blocked and

{C1,C} Z L(x)
L(x) = L(x) U{C1, Ca}

C1 U Gy € L(x), x is not indirectly blocked and
{Ci,C}NL(x) =0
L(x) — L(x) U {C} for some C € {Cy, Co}

3R.C € L(x), x is not blocked and
X has no R-successor y with C € L(y)
create a new node y with £({x, y)) = {R} and L(y) = {C}

VR.C € L(x), x is not indirectly blocked and
X has an R-successor y with C & L(y)
L{y) = L(y)U{C}

CLC D e T, xis not indirectly blocked and
{nnf(=C),D} N L(x) =0

L(x) — L(x) U {E} for some

E € {nnf(~C), D} (nnf(~C) is NNF of =C)

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



Crisp DLs

Fuzzy DLs

Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Soundness and Completeness

Let K be an ALC KB and F a completion-forest obtained by
applying the tableau rules to K. Then

@ The rule application terminates;

@ If F is clash-free and complete, then F defines a
(canonical) (free) model for K; and

© I/fK has a model I, then the rules can be applied such that
they yield a clash-free and complete completion-forest.
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Fuzzy DLs Basics

@ We have seen how to “fuzzify” classical sets and FOL
e Fuzzy statements are of the form (¢, n), where ¢ is a
statement and n € [0, 1]
@ The natural extension to fuzzy DLs consists then in
replacing ¢ with a DL expression

@ Several fuzzy variants of DLs have been proposed: they
can be classified according to

The DL resp. ontology language that they generalize

The allowed fuzzy constructs

The underlying fuzzy logic

Their reasoning algorithms and computational complexity
results

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



Crisp DLs

Fuzzy DLs

Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

@ In classical DLs, a concept C is interpreted by an
interpretation Z as a set of individuals

@ Infuzzy DLs, a concept C is interpreted by 7 as a fuzzy set
of individuals

@ Each individual is instance of a concept to a degree in [0, 1]

@ Each pair of individuals is instance of a role to a degree in
[0, 1]
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@ (a:C, n) states that a is an instance of concept/class C with
degree at least n

@ ((a,b):R, n) states that (a, b) is an instance of relation R
with degree at least n

@ (Cy C Gy, n) states a vague subsumption relationship

e The FOL statement Vx.Cq(x) — C»(x) is true to degree at
least n

@ Note: one may find also fuzzy DL expressions (« > n),
(a<ny, (a>ny, (a<n),and (« = n)

@ We use the form («, n), i.e. (o> n) only

e Remind that graded axioms are intended to be produced
semi- or automatically
e Hardly they may have the form (« <n), (o> n) or (a < n)
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The semantics is an immediate consequence of the First-Order-Logic translation of DLs expressions

T — AI ® = t-norm
Interpretation: ct AT - 0,1] & = s-nortr_n
RT AT x AT [0, 1 D e
X — [0,1] = = implication
Syntax Semantics
c,D — T 7T 1
L] L% = 0
Al AT € [01
cno ||| (¢ nG)ix = CIx etk
Concepts: cun | || (Guc)rx) = I e KX
c—»D| || (€c—>Dfx = cFfx)=Dx
=C | || (=C)*(x) )
3R.C | || BGROT(x) = sup, a7 AT ¥) @ CT(Y)
VR.C (YR.C)T(x) = inf a7 RT(xy) = CT(1)}
{a} {a}Z (x) 1ifal = x, else 0

Assertions: (a:C,r), T k= (a:C, r) iff CZ(aT) > r (similarly for roles)

General Inclusion Axioms:

(CC D,ry,

@ T (cCoDrif inf, oz CT(x) = DT(x) > r
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Some Remarks

@ Like for fuzzy FOL, V and 3 are not complementary in
general: i.e. VR.C # -3R.-C
@ VYR.C = —-3R.—~C under tukasiewicz logic and SFL
@ (CC D,n) may be rewrittenas (T C C — D, n)
@ In early works, a fuzzy GCl is of the form C C D with
semantics:
e 7 is a model of C C D iff for every x € AT we have that
C%(x) < D*(x)
e This is the same of fuzzy axiom (T C C —4 D, 1), where
—x Is an r-implication
@ Disjointness: use (CMn D C.L,1) rather than (C C =D, 1)

@ they are not the same, e.g. (A C —A, 1) says that AI(X) < 0.5, forall Z and forall x € AT
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Witnessed Interpretation

@ Witnessed Interpretation:
e Infima and suprema are attained at some point

(3R.CY*(x) = RY(x,y)® C%(y)forsomey e AT
(VR.C)X(x) = R*(x,y)= C*(y)forsomey e A®
(cc DY = C*(x)= D*(x) for some x € AT

@ It is customary to stick to witnessed interpretations only
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@ Fuzzy knowledge base: K = (T, A)

e T is afuzzy TBox, that is a finite set of fuzzy GCl
e Ais a fuzzy ABox, that is a finite set of fuzzy assertions

@ Acyclic fuzzy ontologies: TBox with axioms of the form
A C, C (primitive GCI)

A C C (primitive GCI)

A = C (definitional GCI)

e Aconcept name

@ AC, Cshorthandfor (TC A— C,n)
e No nominal {a} occurs in the TBox
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@ We say that

@ concept name A directly uses concept name B w.r.t. T, denoted
A —7 B, if Ais the head of some axiom 7 € T such that B occurs

in the body of =
@ concept name A uses concept name B w.r.t. T, denoted A ~~7 B,
if there exist concept names Ay, ..., Ay, suchthat Ay = A, A, =B

and, for every 1 < i < n, it holds that A; —7 A1

@ TBox T is cyclic (acyclic) if there is (no) A such that
A~r A
@ TBox 7 is unfoldable if
e 7T is acyclic

e If A=C < T then A does not occur in the head of any other
axiom
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@ 7 satisfies (is a model of) I = (T, A) iff it satisfies each
elementin Aand T

@ Afuzzy KB K = (T, A) entails an axiom E, denoted
K [= E, iff every model of K satisfies E

@ We say that two concepts C and D are equivalent, denoted
C =k Diff in every model T of K and for all x € AZ,
Ct(x) = D*(x)
@ Best entailment degree: for assertion of GCl ¢
bed(K, ¢) = sup{r|K=(s,r}
@ Best satisfiability degree: for concept C

bsd(KC,C) = sup sup C*(x) .
IEK xeAT
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Some Salient Fuzzy Concept Equivalences

Property

tukasiewicz Godel Product

SFL

cCn-C=1
cu-Cc=T
cnc=cC
cuc=cC
--C=C
C—sD=-Cub
C—D=-D—-C
-(C—=D)y=Ccn-D
-(CnD)=-Cu-D
-(CubD)=-Cn-D

Cn(DUE)=(CND)L(CHE)
Cu(DNE)=(CuD)N(CUE)
JR.C = ~VR.~C
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@ Recall that OWL 2 relates to SROZQ(D)

@ We need to extend the semantics to fuzzy SROZQ(D)
@ Additionally, we add

modifiers (e.g., very)

concrete fuzzy concepts (e.g., Young)

both additions have explicit membership functions
other extensions:

@ aggregation functions: weighted sum, OWA, fuzzy integrals
@ fuzzy rough sets, fuzzy spatial, fuzzy numbers
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Number Restrictions, Inverse, Transitive roles, ...

@ The semantics of the concept (> n R.C) is: A interpreted as Godel t-norm

n
Wt oavn NROGY)ACOIA N\ Vi #Y
i=1 1<i<j<n

@ The semantics of the concept (< nR.C)is: A interpreted as Godel t-norm

n+1
(R =9y, Yt AR ACE) =\ vi=y,
i=1 1<i<j<n+1

Note: (> 1 R) = 3R.T
For transitive roles R we impose: for all x, y € AT

RY(x,y) > sup R*(x,2)® R*(z,y)
zenT

@ For inverse roles we have for all x, y € AT
RE(x,¥) = RT(y, %)
@ The semantics of fucntional roles fun(R) is

VxVyVz. R(x,y) NR(x,2) =y =2z

@ Similar for other SROZQ constructs
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Fuzzy Concrete Domains

@ E.g., Small, Young, High, etc. with explicit membership
function
@ Use the idea of concrete domains:
("] D = <AD, ¢D>
e Apis an interpretation domain

e ®p is the set of concrete unary fuzzy domain predicates d
and fixed interpretation d?: Ap — [0, 1]

@ Specifically,

d — Is(ab)|rs(ab)]|tri(a b,c)|trz(ab,c,d)
| >y ’ <y | v

Cc,D — vT.d|3Td
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@ Representation of Young Person:

Young(x)

Minor = Personm JhasAge. <ig
YoungPerson = Person 3hasAge.ls(10,30)

@ Representation of Heavy Rain:

HeavyRain = Rain 1 3hasPrecipitationRate.rs(5,7.5)
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Modifiers

@ Very, moreQOrLess, slightly, etc.
@ Fuzzy modifier m with function fp: [0,1] — [0, 1]

C — m(C)|VT.m(d)|3T.m(d)

where m is a linear modifier
@ Representation of Sport Car

0 80 250

SportsCar = Car n3dspeed.very(rs(80,250))
@ Representation of Very Heavy Rain

VeryHeavyRain = Rainm3hasPrecipitationRate.very(rs(5,7.5)) .
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Aggregation Operators

@ Aggregation operators: aggregate concepts, using functions
such as the mean, median, weighted sum operators
@ Given an n-ary aggregation operator @ : [0, 1]" — [0, 1]
e We fuzzy concepts by allowing to apply @ to n concepts
C1,...,Cn, i.e.

C — 0Q(Cy,...,Cp)
@ Semantics:
Q(Cy,...,Co) (x) = ©(C¥(x),...,CI(x)).
@ Allows to express the concept
GoodHotel = 0.3 - ExpensiveHotel + 0.7 - LuxuriousHotel

e The membership function of good hotels is the weighted
sum of being an expensive and luxurious hotel
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Some Applications

@ Information retrieval
@ Recommendation systems
@ Image interpretation
@ Ambient intelligence
@ Ontology merging

@ Matchmaking

@ decision making

@ Summarization

@ Robotics perception
@ Software design

@ Machine learning
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Example (Graded Entailment)

audi_tt ferrari_enzo
Car speed
audj_tt 243
mg <170
ferrari_enzo | > 350

SportsCar =  Car 1 3hasSpeed.very(High)
K | (ferrari_enzo:SportsCar, 1)

K | (audi_tt:SportsCar, 0.92)
K [ (mg:—SportsCar,0.72)

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



Crisp DLs

Fuzzy DLs

Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

Example (Graded Subsumption)

About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Young(x)

Minor Person 3hasAge. <1s
YoungPerson = Person 3hasAge.Young
fun(hasAge)

K = (Minor C YoungPerson, 0.6)

Note: without an explicit membership function of Young, this inference cannot
be drawn
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Example (simplified Matchmaking)

Buyers Seller's
soft constraint soft constraint

30000 31500

30500 31250 32000

A car seller sells an Audi TT for 31500 €, as from the catalog price.
A buyer is looking for a sports-car, but wants to to pay not more than around 30000 €
Classical sets: the problem relies on the crisp conditions on price

More fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)
@ Seller may consider optimal to sell above 31500 €, but can go down to 30500 €
@ The buyer prefers to spend less than 30000 €, but can go up to 32000€
AudiTT =  SportsCar M 3hasPrice.rs(30500, 31500)
Query = SportsCar M JhasPrice.Is(30000, 32000)
@ Highest degree to which the concept
C = AudiTT M Query
is satisfiable is 0.75 (the degree to which the Audi TT and the query matches is 0.75)

@ The car may be sold at 31250€
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Example: Learning fuzzy GCls from data

@ Learning of fuzzy GCls from crisp data

@ Use Case: What are Good hotels, using TripAdvisor data?
@ Given
@ OWL 2 Ontology about meaningful city entities and their descriptions
@ TripAdvisor data about hotels and user judgments
@ We may learn that in e.g., Pisa, Italy

(3hasAmenity .Babysitting 1 IhasPrice.fair C Good_Hotel, 0.282)

“A hotel having babysitting as amenity and a fair price is a
good hotel (to degree 0.282)”

@ Real valued price attribute hasPrice has been automatically fuzzyfied

hasPrice

L F H, v
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Example: Multi-Criteria Decision Making

We have to select among two sites, Ay, Ay

There are two criteria (Cy -Transportation Issues, and C, -Public Nuisance) for judgement
There are two experts (Eq, Ep) that make judgments

The decision matrix of the experts is shown below:

E ] Criteria [2M Criteria

| 0.48 [ 0.52 0.52 [ 0.48
Alter. Cy | Co Alter. Cy | Co
xy | Ay | tri(0.6,0.7,0.8) | #i(0.9,0.95,1.0) x| A tri(0.55,0.6,0.7) tri(0.4,0.45, 0.5)
Xxp | Ay | 1i(0.6,0.7,0.8) trf(0.4, 0.5,0.6) Xxp | Ap | tri(0.35,0.4,0.45) | tri(0.5,0.55,0.6)

For each expert k = 1, 2, for each alternative i = 1, 2 and for each criteria j = 1, 2, we define the concept

Pk = 3hasScore.a’

i

Now, for each expert k and alternative i, we define the weighted concept

K_  k pk , Kk pk
A =wy - Py +wy - P

Finally, we combine the two experts outcome, by defining the weighted concept

A =05-A +05. A2

It can be verified that rv(KC, Ay) = bsd(KC, Ay) = 0.26 and rv(KC, Ap) = bsd(KC, Ay) = 0.37
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Representing Fuzzy OWL Ontologies in OWL

@ OWL 2 is W3C standard, with classical logic semantics
e Hence, cannot support natively Fuzzy Logic

@ However, Fuzzy OWL 2, has been defined using OWL 2
e Uses the axiom annotation feature of OWL 2

@ Any Fuzzy OWL 2 ontology is a legal OWL 2 ontology
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@ A java parser for Fuzzy OWL 2 exists
@ Protégé plug-in exists to encode Fuzzy OWL ontologies

000 2010/ 8/FuzzyTest.owl) - (/U:

@ » | [® FuzmyTest (hip /) b.org/ontologies/ 2010/ 8/ FuzzyTest.owl ) om0

[ AciveOnwology _Enuties Classes _Object Properties _Data Properties __Individuals _OWLYiz DL Query _SoftFacts Tab | Fuzzy OWL |-

o]

® Fuzzy Datatype.
© Fuzzy Concept
® Weighted Concept
: ::nzlgvh‘:‘:v:;:‘r;c“mm Frelien typeand fill with parameters
® Fuzzy Modifier Type
= Fuzzy Modified Role | =
@ Fuzzy Axiom rightshoulder %
@ Ontology —
® Fuzzy Wodited Datatype A 2000 .\
B R
& 3000 i
®HighPower i A
@ Highspeed K1 00 T . Amrions @
: \:,:;:cnld ZRIUMYIIZ fuzzyType =\ datatypets 000
'® Expensive 2 (10000 DD:_I::I:‘! ’WE-\WMW!I\' a=\200\"
R
[anvotations: _____________________ue=al]
Anoctatons @)
5 ]
Aroctatons @)
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Reasoning Problems and Algorithms

Consistency problem:
@ Is K satisfiable?
@ Is C coherent, i.e. is CZ(x) > 0 for some Z |= K and x € AT?
Instance checking problem:
@ Does K = (a:C, n) hold?
Subsumption problem:
@ Does K = (C C D, n) hold?
Best entailment degree problem:
@ What is bed(KC, ¢)?
Best satisfiability degree problem:
@ What is bsd(K, ¢)?
Instance retrieval problem:
@ Compute the set {(a,n) | n = bed(K, a:C)}
Top-k retrieval problem:

@ Compute the top-k ranked elements of
{{a,n) | n= bed(K,a:C)}
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Some Reductions

Representing Fuzzy OWL Ontologies in OWL

@ K is satisfiable iff bsd(K, a: L) > 0, where aiis a new individual.

@ Cis coherent w.rt. K if one of the following holds:

@ KU {(a:C > 0)} is satisfiable, where ais a new individual
@ KKE(CCL,1)

@ bsd(K,C) >0
@ K = (aC, ny if one of the following holds:
@ K U {(a:C < ny} is not satisfiable
@ bed(K,aC)>n
@ Kk (C C D, n) if one of the following holds:
@ KU {(aC — D < ny}is not satisfiable, where ais a new individual
@ bed(KK,CC D) >n
@ We have that

bed(K,¢) = minx.suchthat C U {(¢ < x)} satisfiable
bsd(IC, ) = maxx.suchthat K U {(¢ > x)} satisfiable
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Reasoning in Fuzzy DLs: Basics

@ Algorithms for fuzzy DLs: are a mixture of classical DLs
reasoning algorithms and algorithms for Mathematical
Fuzzy Logic

@ Fuzzy OWL 2:

e Fuzzy tableaux based algorithms

@ Tableaux and non deterministic tableaux
@ Operational Research

e Reduction into classical DLs
@ Fuzzy OWL 2 EL: fuzzy structural based algorithms
@ Fuzzy OWL 2 QL: fuzzy query rewriting based algorithms
@ fuzzy OWL 2 RL: fuzzy logic programming based
algorithms
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@ Works as for classical ALC on completion forests
e Blocking is as for classical ALC
e The completion forest is expanded by repeatedly applying
inference rules
e The completion-forest is complete when none of the rules
are applicable
@ Additionally, at each inference step we add equational
constraints that have to hold
@ Eventually, the initial KB is satisfiable if the final set of
equational constraints has a solution
e For the latter case, we may use a MILP solver
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Rule Description
(var) For variable x,. add x,,..c € [0, 1] to Cx. For variable X(v, w):R’ add X(v,w):R € [0,1]to Cr
(A) if —A€L(v)thenaddx,.4 =1—X,._at0Cx
(1) If L € L£(v)thenadd x,,. | =0toCxr
(T) If T € L(v)thenadd x,. =1toCx
(M) if Cy M Cy € L(v), vis not indirectly blocked
then L(v) = L(v) U {Cy, Co}, and add Xy:cy @ Xv:C, > Xy:cy 11 Gy 10 Cr
(W) if Cy U Cy € L(v), vis not indirectly blocked
then L(v) — L(v) U {Cy, Co}, and add Xy:0; © Xv:c, > Xy:c L Gy 1O Cr
(V) if VR.C € L(v), vis not indirectly blocked
then L(w) — L(w) U {C},and add x,,,.c > x,.yg.c ® X(v, w):R toCr
3) if 3R.C € L(v), vis not blocked
then  create new node w with £({v, w)) = {R} and £(w) = {C}, and add x,,.c ® X(v, w):R > xy3Rp.ct0CF
() if (C C D,n)y € T, vis notindirectly blocked
then  L(v) — L(v) U {C, D},andadd x,.p > x,.c ® nto Cr
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@ Works as for classical ALC on completion forests
@ Node labels £(v) contain, rather than DL concept expressions,
expressions of the form (C, n)

“The truth degree of being v instance of C is > n"

@ Blocking is as for classical ALC
@ The completion forest is expanded by repeatedly applying
inference rules
@ The completion-forest is complete when none of the rules are
applicable
@ Additionally, we adapt the notion of clash: a clash is either
e (L,n)with n> 0;or
e apair (C,n)and (-C,m) withn>1—-m
@ Eventually, the initial KB is satisfiable if there is a clash-free complete
completion forest
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(M). If (i) (Cy 1 Co,n) € L(v), (ii) {(Cy,n), (Co,n)} € L(V), and
(iii) node v is not indirectly blocked, then add (C, n) and
(Co, n) to L(v).

(). If (i) (Cy L Ca,n) € L(V), (i) {(Cr, ), (Ca, )} N L(v) =0,
and (i) node v is not indirectly blocked, then add some
(C,n)y € {{Cy,n),(Ca,n)} to L(V).

(V). If (i) (VR.C,n) € L(v), (ii) {R,m) € L({v,w)) withm >1—n,
(iii) (C, n) & L(w), and (iv) node v is not indirectly blocked,
then add (C, n) to £(w).

(3). If (@) (3R.C,n) € L(v), (i) there is no (R, ny) € L({v, w)) with
(C, no) € L(w) such that min(ny, n2) > n, and (iij) node v is
not blocked, then create a new node w, add (R, n) to
L({v,w)) and add (C, n) to L(w).

(©). K@ (T ED,nyeT, (i) (D,ny & L(v), and (iii) node v is not
indirectly blocked, then add (D, n) to L(v).
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Non-Deterministic Analytic Fuzzy Tableaux

@ It's a combination of the analogous method for fuzzy
propositional logic and analytical fuzzy tableau
@ Rule example:

(M). If (i) (Cy 1 Co, m) € L(v), (ii) there are my, mz € L, such that
my @ my = mwith {(Cy, my), (Co, m2)} & L(v), and (iii) node
v is not indirectly blocked, then add (C1, my) and (Cs,, m;) to
L(v)
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Reduction to Classical DLs

@ Same principle as for the reduction for propositional fuzzy
logic

@ Needs adaption to the DL constructs: e.g. 3,V and C

@ Examples of reduction rules for SFL:

P(A>7) = Ay
p(CND,>~)= p(C,>~)Np(D,> )
p(CND,<v)= p(C,<v)Up(D,<v)
p(VR.C,>v) = Vp(R,>1-7).p(C,>7)
p(VR.C,<~v)= 3p(R,>21—7).p(C,<)
p(3R.C,> )= 3Fp(R,>7).p(C,> )
pP(ER.C,<~)=  Vp(R,>~).p(C,<7)

p(R,>7)= R>,

p((a:C,y) = {ap(C,>7)}

P(CED. M) = Useii a<nlp(C; 2 a) Ep(D, > )}
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Computational Complexity

The bad news...undecidability!

Assume that fuzzy GCls are restricted to be classical, i.e. of the form («, 1) only. Then
for the following fuzzy DLs, the KB satisfiability problem is undecidable over [0, 1]:

o ELC with classical axioms only under tukasiewicz logic and product logic;
@ £.£C under any non Gédelt-norm ®;

© &.c with concept assertions of the form (o = n) only under any non
Gédelt-norm ®;

Q AL with concept implication operator — and concept assertions of the form
(a = n) only under any non Gédelt-norm ®.

© c£.cC under SFL with weighted sum constructor.

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



Crisp DLs

Fuzzy DLs

Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic
Fuzzy Description Logics and OWL 2

Some decidability results..

The KB satisfiability problem is decidable for
@ SROZIQ under SFL over [0, 1] and Gédel logic over Lp
SROIN under tukasiewicz logic over Lp
SHZ under any continuous t-norm over L, without TBox

ALC with concept implication operator —, for any continuous t-norm over [0, 1]
with acyclicTBox

SHIF with concept implication operator —, for tukasiewicz logic over [0, 1] with
acyclicTBox

@ S7Z under any continuous t-norm over [0, 1] without TBox
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Languages supported by fuzzy ontology reasoners:

Reasoner Fuzzy DL Logic Degrees  Other constructors GUI
fuzzyDL SHIF(D) Z, General Modifiers, rough, aggregation e
Fire SHIN Z Numbers .
FPLGERDS ALC 3 Numbers  Role negatio/top/bottom
YADLR ALCOQ yana General Local reflexivity
Delorean SROIQ(D) Z,G General  Modifiers, rough DL .
GURDL ALC General  Numbers No
FRESG ALC(D) z Numbers  Fuzzy datatype expressions .
LiFR DLP fragment Z Numbers  Weighted concepts
SMT-based solver ALE n No No
DLMedia DLR-Lite Z,G Numbers  Image similarity .
SoftFacts DLR-Lite Z,G Numbers  Fuzzy datataypes .
ONTOSEARCH2 DL — Liter General Numbers .
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Reasoning services offered by fuzzy ontology reasoners

Reasoner CON ENT CSAT SUB IR BDB Other tasks OPT
fuzzyDL . . . . . . Defuzzification .
Fire . . . . . Classification .
FPLGERDS .
YADLR Partial . Partial Realisation
Delorean . . . ° . .
GURDL L] L] L] L]
FRESG . . . . Realisation
LiFR Partial . . .
SMT-based solver .
DLMedia Top-k Image Retrieval .
SoftFacts Top-k CQA .
ONTOSEARCH2 Retrieval

“CON”, “ENT”, “CSAT”, “SUB”, “IR”, “BED”, and “OPT"” represent consistency,
entailment, concept satisfiability, subsumption, instance retrieval, BED, and

optimisations, respectively
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