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About Fuzziness



On the Existence of Fuzzy Concepts

What are fuzzy concepts and do they exists?



I Try to answer: What is this picture about?

(Registan Square, Samarkand, Uzbekistan,Umberto)



I Fuzzy concept: no unambiguous definition, e.g.
I What is a picture or piece of text about ?
I What is a tall person ?
I What is a high temperature ?
I What is nice weather ?
I What is an adventurous trip ?

I Fuzzy concepts:
I Are abundant in everyday speech and almost inevitable
I Their meaning is typically subjective and context dependent



On the Existence of Fuzzy Objects

What are fuzzy objects and do they exists?



I Are there fuzzy objects in the pictures?

(Erg Chebbi, pre-Sahara dunes, Merzouga, Morocco)



(The Sun)



I Fuzzy object: its identity is lacking in clarity
I Cloud
I Dunes
I Sun

I Fuzzy objects:
I Are not identical to anything, except to themselves

(reflexivity)
I Are characterised by a fuzzy identity relation (e.g. a

similarity relation)



Fuzzy Statements

I A statement is fuzzy whenever it involves fuzzy concepts or
fuzzy objects

I The truth of a fuzzy statement is a matter of degree,
I it is intrinsically difficult to establish whether the statement

is entirely true or false (can be e.g. almost true)
I The weather temperature is 33 ◦C. Is it hot?



Sources of Fuzziness: Multimedia information retrieval

IsAbout
ImageRegion Object ID degree
o1 snoopy 0.8
o2 woodstock 0.7
.
.
.

.

.

.

“Find top-k image regions about animals”
Query(x)← ImageRegion(x) ∧ isAbout(x , y) ∧ Animal(y)



Sources of Fuzziness: Lifezone mapping

I To which degree do certain areas have a specific bioclima

Holdridge life zones of USA



Sources of Fuzziness: ARPAT, Air quality in the
province of Lucca

75

74

http://www.arpat.toscana.it/

http://www.arpat.toscana.it/


TripAdvisor: Hotel User Judgments



Uncertainty vs Fuzziness: a clarification

I Initial difficulty:
I Understand the conceptual differences between uncertainty

and fuzziness
I Main problem:

I Interpreting a degree as a measure of uncertainty rather
than as a measure of fuzziness



Uncertain Statements

I A statement is true or false in any world/interpretation
I We are “uncertain” about which world to consider as the

actual one
I We may have e.g. a probability/possibility distribution over

possible worlds
I E.g., of uncertain statement: “it will rain tomorrow”

I We cannot exactly establish whether it will rain tomorrow or
not, due to our incomplete knowledge about our world

I But, we may estimate to which degree this is
e.g. probable/possible



Fuzzy Statements

I A statement is fuzzy if it involves fuzzy concepts/objects
I A statement is true to some degree, which is taken from a

truth space (usually [0,1])
I E.g. of fuzzy statement: “heavy rain”

I is graded and the degree depends on the amount of rain is
falling



In weather forecasts one may find:
Rain. Falling drops of water larger than 0.5 mm in diameter. “Rain” usually implies that the rain will

fall steadily over a period of time;

Light rain. Rain falls at the rate of 2.6 mm or less an hour;

Moderate rain. Rain falls at the rate of 2.7 mm to 7.6 mm an hour;

Heavy rain. Rain falls at the rate of 7.7 mm an hour or more.

I Quite harsh distinction: R = 7.7mm/h → heavy rain
R = 7.6mm/h → moderate rain

I Unsatisfactory:

I the more rain is falling, the more the sentence “heavy rain”
is true

I vice-versa, the less rain is falling the more the sentence
“heavy rain” is false



I I.e., the sentence “heavy rain” is intrinsically graded

I More fine grained approach:

I Define the various types of rains as

I Light rain, moderate rain and heavy rain are
fuzzy concepts



I Are there sentences combining the two orthogonal
concepts of uncertainty and fuzziness?

I Yes, and we use them daily !
I E.g. “There will be heavy rain tomorrow."

I This type of sentences are called uncertain fuzzy
sentences

I Essentially, there is
I uncertainty about the world we will have tomorrow
I fuzziness about the various types of rain



From Fuzzy Sets to Mathematical Fuzzy Logic



Fuzzy Sets Basics

From Crisp Sets to Fuzzy Sets.
I Let X be a universal set of objects
I The crisp membership function of a set A ⊆ X :

χA : X → {0,1}

where χA(x) = 1 iff x ∈ A
I Fuzzy set A:

χA : X → [0,1]

or simply A : X → [0,1]
I Example: the fuzzy set

C = {x | x is a day with heavy precipitation rate R}

is defined via the membership function

χC(x) =


1 if R ≥ 7.5
(x − 5)/2.5 if R ∈ [5,7.5)
0 otherwise



I Fuzzy membership functions may depend on the context and
may be subjective

I Shape may be quite different
I Usually, it is sufficient to consider functions

(a) (b)

(c) (d)
(a) Trapezoidal trz(a, b, c, d); (b) Triangular tri(a, b, c); (c) left-shoulder ls(a, b); (d) right-shoulder rs(a, b)



Fuzzy Sets Construction

I Simple and typically satisfactory method (numerical domain):

I uniform partitioning into 5 fuzzy sets

Fuzzy sets construction using trapezoidal functions

Fuzzy sets construction using triangular functions



I Another popular method is based on clustering
I Use Fuzzy C-Means to cluster data into 5 clusters

I Fuzzy C-Means extends K-Means to accommodates
graded membership

I From the clusters c1, . . . , c5 take the centroids π1, . . . , π5

I Build the fuzzy sets from the centroids

Fuzzy sets construction using clustering



Norm-Based Fuzzy Set Operations

I Standard fuzzy set operations are not the only ones
I Most notable ones are triangular norms

I t-norm ⊗ for set intersection
I t-conorm ⊕ (also called s-norm) for set union
I negation 	 for set complementation
I implication⇒ for set inclusion

I These functions satisfy some properties that one expects
to hold



Łukasiewicz, Gödel, Product logic and Standard Fuzzy
logic

I One distinguishes three different sets of fuzzy set
operations (called fuzzy logics)
I Łukasiewicz, Gödel, and Product logic
I Standard Fuzzy Logic (SFL) is a sublogic of Łukasiewicz

I min(a, b) = a⊗l (a⇒l b), max(a, b) = 1−min(1− a, 1− b)
Łukasiewicz Logic Gödel Logic Product Logic SFL

a⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a⇒ b min(1− a + b, 1)

{
1 if a ≤ b
b otherwise

min(1, b/a) max(1− a, b)

	 a 1− a

{
1 if a = 0
0 otherwise

{
1 if a = 0
0 otherwise

1− a

I Mostert–Shields theorem: any continuous t-norm can be
obtained as an ordinal sum of Ł, G and P.



Mathematical Fuzzy Logics Basics

I OWL 2 is grounded on Mathematical Logic
I Fuzzy OWL 2 is grounded on Mathematical Fuzzy Logic
I A statement is graded
I Truth space: set of truth values L
I Given a statement φ

I Fuzzy Interpretation: a function I mapping φ into L, i.e.

I(ϕ) ∈ L

I Usually

L = [0,1]

Ln = {0, 1
n
, . . . ,

n − 2
n − 1

, . . . ,1} (n≥1)



I Fuzzy statement: for formula φ and r ∈ [0,1]

〈φ, r〉

The degree of truth of φ is equal or greater than r



Fuzzy Semantic Web Languages



The Semantic Web Family of Languages

I Wide variety of languages

I RDFS: Triple language, -Resource Description Framework

I The logical counterpart is ρdf

I RIF: Rule language, -Rule Interchange Format,

I Relate to the Logic Programming (LP) paradigm

I OWL 2: Conceptual language, -Ontology Web Language

I Relate to Description Logics (DLs)



RDFS

I RDFS: the triple language

〈subject ,predicate,object〉

e.g. 〈umberto,born, zurich〉



I OWL 2 family: an object oriented language

class PERSON partial

restriction (hasName someValuesFrom String)

restriction (hasBirthPlace someValuesFrom GEOPLACE)

. . .



OWL 2 Profiles

OWL 2 EL I Useful for large size of properties and/or classes
I The EL acronym refers to the EL family of DLs

OWL 2 QL I Useful for very large volumes of instance data
I Conjunctive query answering via query rewriting and

SQL
I OWL 2 QL relates to the DL family DL-Lite

OWL 2 RL I Useful for scalable reasoning without sacrificing too
much expressive power

I OWL 2 RL maps to Datalog



RIF/RuleML

I RIF/RuleML family: the rule language

Forall ?Buyer ?Item ?Seller
buy(?Buyer ?Item ?Seller) :- sell(?Seller ?Item ?Buyer)



Important point: RDFS, OWL 2 and RIF/RuleML are logical
languages
I RDFS: logic with intensional semantics
I OWL 2: relates to the Description Logics family
I RIF/RuleML: relates to the Logic Programming paradigm

(e.g., Datalog, Datalog±)
I OWL 2 and RIF/RuleML have extensional semantics



The case of Fuzzy RDFS



Fuzzy RDFS

I Triples may have attached a degree n in L or Ln

〈(subject ,predicate,object),n〉

I Meaning: the degree of truth of the statement is at least n
I Example:

〈(o1, IsAbout , snoopy),0.8〉
I How to represent fuzzy triples in RDFS?

I Use reification method:

(s1, hasObj, o1), (s1, hasRel, IsAbout), (s1, hasObj, snoopy), (s1, hasDeg0.8)

I Unfortunately, RDFS is lacking the "annotation property" of
triples



Fuzzy RDFS Query Answering

I Conjunctive query: extends a crisp RDF query and is of
the form

〈q(x), s〉 ← ∃y.〈τ1, s1〉, . . . , 〈τn, sn〉,
s = f (s1, . . . , sn,p1(z1), . . . ,ph(zh))

where
I τi triples involving literals and variables in x,y

I zi are tuples of literals or variables in x or y

I pj(t) ∈ [0,1]

I f is a scoring function f : ([0,1])n+h → [0,1]

I Example:

〈q(x), s〉 ← 〈(x , type,SportCar), s1〉, (x ,hasPrice, y), s = s1·cheap(y)

where e.g. cheap(y) = ls(0,10000,12000)(y), has
intended meaning to “retrieve all cheap sports car"



Example

G =


〈(o1, IsAbout , snoopy), 0.8〉 〈(o2, IsAbout ,woodstock), 0.9〉
(snoopy , type, dog) (woodstock , type, bird)
〈(Dog, sc,SmallAnimal), 0.4〉 〈(Bird , sc,SmallAnimal), 0.7〉
(SmallAnimal, sc,Animal)


Consider the query

〈q(x), s〉 ← 〈(x , IsAbout , y), s1〉, 〈(y , type,Animal), s2〉, s = s1 · s2

Then

ans(G, q) = {〈o1, 0.32〉, 〈o2, 0.63〉}



Annotation domains & RDFS

I Generalisation of fuzzy RDFS
I a triple is annotated with a value taken from a so-called annotation

domain, rather than with a value in [0,1]
I allows to deal with several domains (such as, fuzzy, temporal,

provenance) and their combination, in a uniform way
I Fuzzyness

I 〈(HolidayInnHotel, closeTo, IEA17Venue), 0.7〉
I true to some degree

I Time
I 〈(umberto,workedFor , IEI), [1992, 2001]〉
I true during 1992–2001

I Provenance
I 〈(umberto, knows, salem), http://www.straccia.info/foaf.rdf〉
I true in http://www.straccia.info/foaf.rdf

I Multiple Domains:

〈(CountryXYZ , type,Dangerous), 〈[1975, 1983], 0.8, 0.6〉〉

Time × Fuzzy × Trust

http://www.straccia.info/foaf.rdf


I Annotation Domain: idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉

where ⊕ is >-annihilating, i.e.
1. ⊕ is idempotent, commutative, associative;
2. ⊗ is commutative and associative;
3. ⊥⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;
4. ⊗ is distributive over ⊕,

i.e. λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);
I Induced partial order:

λ1 � λ2 ⇐⇒ λ1 ⊕ λ2 = λ2

I Annotated triple: for λ ∈ L

〈(s,p,o), λ〉



The case of Fuzzy Description Logics



Fuzzy Description Logics Basics

For a degree n in L or Ln

I 〈a:C,n〉 states that a is an instance of concept/class C with
degree at least n

I 〈C1 v C2,n〉 states that class C1 is ausbclass of C2 to
degree n



Towards Fuzzy OWL 2 and its Profiles

I Fuzzy OWL 2 added value:
I fuzzy concrete domains (e.g., young)

I modifiers (e.g., very young)
I other extensions:

I aggregation functions: weighted sum, OWA, fuzzy integrals

I fuzzy rough sets

I fuzzy spatial relations

I fuzzy numbers, ...



Fuzzy Concrete Domains

I E.g., Small ,Young,High,etc. with explicit membership
function

I Representation of Young Person:

Minor = Person u ∃hasAge. ≤18
YoungPerson = Person u ∃hasAge.ls(10,30)

I Representation of Heavy Rain:

HeavyRain = Rain u ∃hasPrecipitationRate.rs(5,7.5)



Fuzzy Modifiers

I Very , moreOrLess, slightly , etc.
I Representation of Sport Car

SportsCar = Car u ∃speed .very(rs(80,250))

I Representation of Very Heavy Rain

VeryHeavyRain = Rainu∃hasPrecipitationRate.very(rs(5,7.5)) .



Aggregation Operators

I Aggregation operators: aggregate concepts, using functions
such as the mean, median, weighted sum operators, etc.

I Allows to express the concept

0.3 · ExpensiveHotel + 0.7 · LuxuriousHotel v GoodHotel

I a good hotel is the weighted sum of being an expensive
and luxurious hotel

I Aggregated concepts are popular in robotics:
I to recognise complex objects from atomic ones



Fuzzy DLs Query Answering

I Conjunctive query: similar to fuzzy RDFS CQs:

〈q(x), s〉 ← ∃y.〈τ1, s1〉, . . . , 〈τn, sn〉,
s = f (s1, . . . , sn,p1(z1), . . . ,ph(zh))

where
I τ1, . . . , τn are expressions A(z) or R(z, z ′), where A is a

concept name, R is a role name, z, z ′ are individuals or
variables in x or y

I Example:

〈q(x), s〉 ← 〈SportCar(x), s1〉,hasPrice(x , y), s = s1·cheap(y)

where e.g. cheap(y) = ls(10000,12000)(y), has intended
meaning to retrieve all cheap sports car.



Some Applications

I (Multimedia) Information retrieval
I Recommendation systems
I Image interpretation
I Ambient intelligence
I Ontology merging
I Matchmaking
I Decision making
I Summarization
I Robotics perception
I Software design
I Machine learning



Example

G =


〈(o1, snoopy):IsAbout , 0.8〉 〈(o2,woodstock):IsAbout , 0.9〉
snoopy :Dog woodstock :Bird
〈Dog v SmallAnimal, 0.4〉 〈Bird v SmallAnimal, 0.7〉
SmallAnimal v Animal


Consider the query

〈q(x), s〉 ← 〈IsAbout(x , y), s1〉, 〈Animal(y), s2〉, s = s1 · s2

Then

ans(G, q) = {〈o1, 0.32〉, 〈o2, 0.63〉}, ans1(G, q) = {〈o2, 0.63〉}



Example (Simplified Matchmaking)

I A car seller sells an Audi TT for 31500e, as from the catalog price.
I A buyer is looking for a sports-car, but wants to to pay not more than around 30000e
I Classical sets: the problem relies on the crisp conditions on price

I More fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)
I Seller may consider optimal to sell above 31500e, but can go down to 30500e
I The buyer prefers to spend less than 30000e, but can go up to 32000e

AudiTT = SportsCar u ∃hasPrice.rs(30500, 31500)
Query = SportsCar u ∃hasPrice.ls(30000, 32000)

I Highest degree to which the concept
C = AudiTT u Query
is satisfiable is 0.75 (the degree to which the Audi TT and the query matches is 0.75)

I The car may be sold at 31250e



Example: Learning fuzzy GCIs from OWL data

I Learning of fuzzy GCIs from crisp OWL data

I Use Case: What are Good hotels, using TripAdvisor data?
I Given

I OWL 2 Ontology about meaningful city entities and their descriptions
I TripAdvisor data about hotels and user judgments

I We have learnt that in e.g., Pisa, Italy

〈∃hasAmenity .Babysitting u ∃hasPrice.fair v Good_Hotel, 0.782〉

“A hotel having babysitting as amenity and a fair price is a good hotel (to
degree 0.782)”

I Real valued price attribute hasPrice has been automatically fuzzyfied



Representing Fuzzy OWL Ontologies in OWL

I OWL 2 is W3C standard, with classical logic semantics
I Hence, cannot support natively Fuzzy Logic

I However, Fuzzy OWL 2, has been defined using OWL 2
I Uses the axiom annotation feature of OWL 2

I Any Fuzzy OWL 2 ontology is a legal OWL 2 ontology



I A java parser for Fuzzy OWL 2 exists
I Protégé plug-in exists to encode Fuzzy OWL ontologies



Annotation domains & OWL

I For OWL 2, it it is like for RDFS, but annotation domain has
to be a complete lattice

I Exception for OWL profiles OWL EL, OWL QL and OWL
RL: annotation domains may be as for RDFS



The case of Fuzzy Logic Programs



Fuzzy Logic Programming Basics

I Truth space is [0,1] or {0, 1
n , . . . ,

n−2
n−1 , . . . ,1} (n≥1)

I Generalized LP rules are of the form

〈R(x), s〉 ← ∃y.〈R1(z1), s1〉, . . . , 〈Rk (zk ), sk 〉,
s = f (s1, ..., sk , p1(z′1), . . . , ph(z′h))

I Meaning of rules: “take the truth-values of all Ri(zi),pj(z′j ),
combine them using the truth combination function f , and
assign the result to R(x)”

I Facts: ground expressions of the form 〈R(c),n〉
I Meaning of facts: “the degree of truth of R(c) is at least n”

I Fuzzy LP: a set of facts (extensional database) and a set
of rules (intentional database). No extensional relation may
occur in the head of a rule



Example: Soft shopping agent
I User preferences:

〈Pref1(x , p), s〉 ← HasPrice(x , p), s = ls(10000, 14000)(p)

〈Pref2(x), s〉 ← HasKM(x , k), s = ls(13000, 17000)(k)

〈Buy(x , p), s〉 ← 〈Pref1(x , p), sp〉, 〈Pref2(xk ), sk 〉, s = 0.7 · sp + 0.3 · sk

ID MODEL PRICE KM
455 MAZDA 3 12500 10000
34 ALFA 156 12000 15000

1812 FORD FOCUS 11000 16000
...

...
...

...

I Problem: All tuples of the database have a score:
I We cannot compute the score of all tuples, then rank them.

Brute force approach not feasible for very large databases
I Top-k fuzzy LP problem: Determine efficiently just the top-k ranked

tuples, without evaluating the score of all tuples. E.g. top-3 tuples

ID PRICE SCORE
1812 11000 0.6
455 12500 0.56
34 12000 0.50



Rule Languages and Semantic Web

I There are quite many LP/ASP systems
(monotone/non-monotone)

I each with its own feature set
I some with SW interface

I SWIProlog, DLV, . . .

I More SW related: various frameworks exist . . .

I SWRL: rules with concept and role expressions as atoms
I Datalog±: Datalog with existential restriction on rule head
I RuleML: quite large range of features

I The development of fuzzy LPs is essentially in parallel with that
of classical LPs (since early ’80s)

I A common problem with LP frameworks (incl. fuzzy)

I Lack of standardised language and semantics
I SWRL, RuleML are exceptions



Annotation domains & Datalog

I For Datalog, it it is like for RDFS
I The reasoning decision problems’ complexity is inherited

from their fuzzy variants. Decidable if lattice and truth
space are finite, else undecidable in general



Conclusions



Conclusions & Future work

I We’ve overviewed basic concepts related to Fuzzyness in
Semantic Web Languages, such as
I RDFS, OWL 2, Datalog

I Semantic Web Applications:
I Robotics, Ontology Mappings, Multimedia Object

annotation, Matchmaking, (Multimedia/Distributed)
Information Retrieval, Recommender Systems, User
Profiling, . . .



Emerging Field for SWLs: Enhanced Fuzzy Queries

I Fuzzy Quantified queries may provide many opportunities to
improve CQ query features for any SWL: e.g.

I Visualise roads in which many of the recent car incidents
involved severely injured people

I Fuzzy quantified query schema:
Q of B X are A

I Q is a fuzzy quantifier, e.g. many
I B X is a reference fuzzy set over which Q quantifies,

e.g. recent (B) car incidents (X )
I A is a fuzzy set imposing a condition to be satisfied,

e.g. severely injured people

I Fuzzy Queries may be applied both to crisp ontologies as well
as to fuzzy ontologies



That’s it !
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