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Abstract. This talk presents a detailed, self-contained and comprehen-
sive account of the state of the art in representing and reasoning with
fuzzy knowledge in Semantic Web Languages such a RDF/RDFS, OWL
2 and RIF and discuss some implementation related issues. We further
show to which extend we may generalise them to so-called annotation
domains, that cover also e.g. temporal, provenance and trust extensions.
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1 Introduction

Managing uncertainty and fuzzyness is starting to play an important role in
Semantic Web research, and has been recognised by a large number of research
efforts in this direction (see, e.g., [68] for a concise overview).

We recall that there has been a long-lasting misunderstanding in the literature
of artificial intelligence and uncertainty modelling, regarding the role of proba-
bility /possibility theory and vague/fuzzy theory. A clarifying paper is [28]. We
recall here the salient concepts for the inexpert reader. Under uncertainty theory
fall all those approaches in which statements rather than being either true or
false, are true or false to some probability or possibility (for example, “it will rain
tomorrow”). That is, a statement is true or false in any world/interpretation, but
we are “uncertain” about which world to consider as the right one, and thus we
speak about e.g. a probability distribution or a possibility distribution over the
worlds. For example, we cannot exactly establish whether it will rain tomorrow
or not, due to our incomplete knowledge about our world, but we can estimate
to which degree this is probable, possible, and necessary. On the other hand,
under fuzzy theory fall all those approaches in which statements (for example,
“the tomato is ripe”) are true to some degree, which is taken from a truth space
(usually [0,1]). That is, an interpretation maps a statement to a truth degree,
since we are unable to establish whether a statement is entirely true or false due
to the involvement of vague concepts, such as “ripe”, which do not have an pre-
cise definition (we cannot always say whether a tomato is ripe or not). Note that
all fuzzy statements are truth-functional, that is, the degree of truth of every
statement can be calculated from the degrees of truth of its constituents, while
uncertain statements cannot always be a function of the uncertainties of their
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constituents [27]. More concretely, in probability theory, only negation is truth-
functional, while in possibility theory, only disjunction (resp. conjunction) is
truth-functional in possibilities (resp. necessities) of events. Furthermore, math-
ematical fuzzy logics are based on truly many-valued logical operators, while
uncertainty logics are defined on top of standard binary logical operators.

We present here some salient aspects in representing and reasoning with fuzzy
knowledge in Semantic Web Languages (SWLs) such as triple languages RDF &
RDFS [19] (see, e.g. [69U70]), conceptual languages or frame-based languages of
the OWL 2 family [50] (see, e.g. [45I68/62]) and rule languages, such as RIF [53]
(see, e.g. [65I66/6]]).

In the following, we overview briefly SWLs and relate them to their logical
counterpart. Then, we briefly sketch the basic notions of Mathematical Fuzzy
Logic, which we require in the subsequent sections in which we illustrate the
fuzzy variants of SWLs.

2 Semantic Web Languages: Overview

The Semantic Web is a ‘web of data’ whose goal is to enable machines to un-
derstand the semantics, or meaning, of information on the World Wide Web.
In rough terms, it should extend the network of hyperlinked human-readable
web pages by inserting machine-readable metadatdl] about pages and how they
are related to each other, enabling automated agents to access the Web more
intelligently and perform tasks on behalf of users.

Semantic Web Languages (SWL) are the languages used to provide a formal
description of concepts, terms, and relationships within a given knowledge do-
main to be used to write the metadata. There are essentially three family of
languages: namely, triple languages RDF & RDFS [19] (Resource Description
Framework), conceptual languages of the OWL 2 family (Ontology Web Lan-
guage) [50] and rule languages of the RIF family (Rule Interchange Format) [53].
While their syntactic specification is based on XML [74], their semantics is based
on logical formalisms, which will be the focus here (see Fig. [l): briefly,

RDFS is a logic having intensional semantics and the logical counterpart is
pdf [47];

— OWL 2 is a family of languages that relate to Description Logics (DLs) [6];
— RIF relates to the Logic Programming (LP) paradigm [43];

— both OWL 2 and RIF have an extensional semantics.

RDF & RDFS. The basic ingredients of RDF are triples of the form (s,p,o0),
such as (umberto, likes, tomato), stating that subject s has property p with value
o. In RDF Schema (RDFS), which is an extension of RDF, additionally some
special keywords may be used as properties to further improve the expressivity
of the language. For instance we may also express that the class of ’tomatoes are
a subclass of the class of vegetables’, (tomato, sc, vegetables), while Zurich is an
instance of the class of cities, (zurich, type, city).

! Obtained manually, semi-automatically, or automatically.
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Fig. 1. Semantic Web Languages from a Logical Perspective

Form a computational point of view, one computes the so-called closure (de-
noted cl(K)) of a set of triples K. That is, one infers all possible triples using

inference rules [46/47/52], such as
(A,sc, B), (X, type, A)
(X, type, B)
“if A subclass of B and X instance of A then infer that X is instance of B”,

and then store all inferred triples into a relational database to be used then for
querying. We recall also that there also several ways to store the closure cl(K)
in a database (see [1J37]). Essentially, either we may store all the triples in table
with three columns subject, predicate, object, or we use a table for each predicate,
where each table has two columns subject, object. The latter approach seems to
be better for query answering purposes. Note that making all implicit knowledge
explicit is viable due to the low complexity of the closure computation, which is
O(|K|?) in the worst case.

OWL Family. The Web Ontologoy Language OWL [49] and its successor OWL
2 [23J50] are “object oriented” languages for defining and instantiating Web
ontologies. Ontology (see, e.g. [31]) is a term borrowed from philosophy that
refers to the science of describing the kinds of entities in the world and how they
are related. An OWL ontology may include descriptions of classes, properties
and their instances, such as

class Person partial Human
restriction (hasName someValuesFrom String)

restriction (hasBirthPlace someValuesFrom Geoplace)
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“The class Person is a subclass of class Human and has two attributes: hasName
having a string as value, and hasBirthPlace whose value is an instance of the
class Geoplace”.

Given such an ontology, the OWL formal semantics specifies how to derive its
logical consequences. For example, if an individual Peter is an instance of the
class Student, and Student is a subclass of Person, then one can derive that Peter
is also an instance of Person in a similar way as it happens for RDFS. However,
OWL is much more expressive than RDFS, as the decision problems for OWL
are in higher complexity classes [5I] than for RDFS. In Fig. 2] we report the
various OWL languages, their computational complexity and as subscript the
DL their relate to [6/26].

OWL Full Undecidable

2NEXPTIME-complete

NEXPTIME-complete

OWL 1 Lite
SHIF,

EXPTIME-complete

OWL 2 RL OWL2EL PTIME-complete
Horn EL++

owL2aL AC?
DL-Lite

Fig. 2. OWL family and complexity

OWL 2 [2350] is an update of OWL 1 adding several new features, includ-
ing an increased expressive power. OWL 2 also defines several OWL 2 profiles,
i.e. OWL 2 language subsets that may better meet certain computational com-
plexity requirements or may be easier to implement. The choice of which profile
to use in practice will depend on the structure of the ontologies and the reason-
ing tasks at hand. The OWL 2 profiles are:

OWL 2 EL is particularly useful in applications employing ontologies that con-
tain very large numbers of properties and/or classes (basic reasoning prob-
lems can be performed in time that is polynomial with respect to the size
of the ontology [0]). The EL acronym reflects the profile’s basis in the ££
family of description logics [5].

OWL 2 QL is aimed at applications that use very large volumes of instance
data, and where query answering is the most important reasoning task. In
OWL 2 QL, conjunctive query answering can be implemented using con-
ventional relational database systems. Using a suitable reasoning technique,
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sound and complete conjunctive query answering can be performed in
LOGSPACE with respect to the size of the data (assertions) [21]. The
QL acronym reflects the fact that query answering in this profile can be im-
plemented by rewriting queries into a standard relational Query Language
such as SQL [72].

OWL 2 RL is aimed at applications that require scalable reasoning without
sacrificing too much expressive power. OWL 2 RL reasoning systems can
be implemented using rule-based reasoning engines as a mapping to Logic
Programming [43], specifically Datalog [72], exists. The RL acronym reflects
the fact that reasoning in this profile can be implemented using a standard
rule language [30]. The computational complexity is the same as for Data-
log [25] (polynomial in the size of the data, EXPTIME w.r.t. the size of the
knowledge base).

RIF Family. The Rule Interchange Format (RIF) aims at becoming a standard
for exchanging rules, such as

Forall ?Buyer ?Item 7Seller
buy (?Buyer ?Item 7Seller) :- sell(?Seller ?Item ?Buyer)

“Someone buys an item from a seller if the seller sells that item to the buyer”

among rule systems, in particular among Web rule engines. RIF is in fact a
family of languages, called dialects, among which the most significant are:

RIF-BLD The Basic Logic Dialect is the main logic-based dialect. Technically,
this dialect corresponds to Horn logic with various syntactic and seman-
tic extensions. The main syntactic extensions include the frame syntax and
predicates with named arguments. The main semantic extensions include
datatypes and externally defined predicates.

RIF-PRD The Production Rule Dialect aims at capturing the main aspects
of various production rule systems. Production rules, as they are currently
practiced in main-stream systems like Jesdd or JRulesﬁ, are defined using
ad hoc computational mechanisms, which are not based on a logic. For this
reason, RIF-PRD is not part of the suite of logical RIF dialects and stands
apart from them. However, significant effort has been extended to ensure as
much sharing with the other dialects as possible. This sharing was the main
reason for the development of the RIF Core dialect;

RIF-Core The Core Dialect is a subset of both RIF-BLD and RIF-PRD,
thus enabling limited rule exchange between logic rule dialects and pro-
duction rules. RIF-Core corresponds to Horn logic without function symbols
(i.e., Datalog) with a number of extensions to support features such as ob-
jects and frames as in F-logic [3§].

RIF-FLD The Framework for Logic Dialects is not a dialect in its own right, but
rather a general logical extensibility framework. It was introduced in order to

2 http://www. jessrules.com/
3 http://www.ilog.com/products/jrules/
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drastically lower the amount of effort needed to define and verify new logic
dialects that extend the capabilities of RIF-BLD.

3 Mathematical Fuzzy Logic Basics

Given that SWLs are grounded on Mathematical Logic, it is quite natural to
look at Mathematical Fuzzy Logic [36] to get inspiration for a fuzzy logic exten-
sions of SWLs. So, we recap here briefly that in Mathematical Fuzzy Logic, the
convention prescribing that a statement is either true or false is changed and is
a matter of degree measured on an ordered scale that is no longer {0,1}, but
[0,1]. This degree is called degree of truth (or score) of the logical statement
¢ in the interpretation Z. In this section, fuzzy statements have the form ¢: r,
where 7€ [0, 1] (see, e.g. [35J36]) and ¢ is a statement, which encode that the
degree of truth of ¢ is greater or equal r. A fuzzy interpretation T maps each
basic statement p; into [0, 1] and is then extended inductively to all statements:

L(oNY) =T(9) @L(Y) , (¢ V) =1(d) B L(Y)
(¢ =) =L(d) = I(¢) , I(=¢) = I(9)

Z(3z.¢(x)) = SEHAI>II(¢(G)) » Zlvag(a)) = inf I(¢(a)),

where A7 is the domain of Z, and ®, @, =, and & are so-called t-norms, t-
conorms, implication functions, and negation functions, respectively, which extend
the Boolean conjunction, disjunction, implication, and negation, respectively, to
the fuzzy case [40]. Usually, the implication function = is defined as r-implication,
that is, a = b = sup {c | a®c < b}. The notions of satisfiability and logical conse-
quence are defined in the standard way. A fuzzy interpretation Z satisfies a fuzzy
statement ¢: r or Z is a model of ¢: r, denoted Z = ¢: r iff Z(¢) > r.

One usually distinguishes three different logics, namely Lukasiewicz, Godel,
and Product logics [36], whose combination functions are reported in Table [II
Zadeh logic, namely a ® b = min(a,b), a ® b = max(a,b), ©a = 1 — a and
a = b= max(1—a,b), is entailed by Lukasiewicz logic, as min(a, b) = a® (a = b)
and max(a,b) = 1—min(1—a,1—b). Table@ and Blreport axioms these functions
have to satisfy. Table [ recalls some salient properties of the various fuzzy
logics. Worth noting is that a fuzzy logic satisfying all the listed properties has

Table 1. Combination functions of various fuzzy logics

Lukasiewicz logic = Gddel logic  Product logic
a®b max(a+b—1,0) min(a,bd) a-b
a®b min(a+b,1) max(a, b) a+b—a-b
1 ifa<b
b otherwise

1 ifa=0 1 ifa=0
Sa 1—a . .
0 otherwise |0 otherwise

a=bmin(l—a+0b,1) { min(1,b/a)
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Table 2. Properties for t-norms and s-norms

Axiom Name T-norm S-norm

Tautology / Contradiction a ® 0 = 0 a®l=1

Identity a®l=a a®0=a

Commutativity a®b=>bRa a®b=bPa
Associativity (a®@b)@c=a® (b®c) (a®b)dc=a®d (bdc)
Monotonicity ifb<c,thena®b<a®cifb<c,thena®db<ad®c

Table 3. Properties for implication and negation functions

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0 =b=1, a=1=1, 1=0=0 ©60=1, 61=0
Antitonicity ifa<b, thena=c>b=c ifa<b, thenSa>6b
Monotonicity ifb<c,thena=b<a=c

necessarily to collapse to the Boolean, two-valued, case. As a note, [29] claimed
that fuzzy logic collapses to boolean logic, but didn’t recognise that to prove it,
all the properties of Table d have been used. Additionally, we have the following
inferences: let @ > n and a = b > m. Then, under Kleene-Dienes implication,
we infer that “if n > 1 — m then b > m”. More importantly, to what concerns
our paper, is that under an r-implication relative to a t-norm ®, we have that

froma>nanda=b>m,weinfer b >n®m . (1)

To see this, as a > n and a = b =sup{c | a®c < b} = ¢ > m it follows that
b>a®c>n®m. In asimilar way, under an r-implication relative to a t-norm
®, we have that

froma=>b>nand b= c>m, weinfer thata=>c>nQm. (2)

We say ¢: n is a tight logical consequence of a set of fuzzy statements I iff n
is the infimum of Z(¢) subject to all models Z of K. Notice that the latter is

Table 4. Some additional properties of combination functions of various fuzzy logics

Property Lukasiewicz Logic Godel Logic Product Logic Zadeh Logic
R0z =0 + + + -
THOor=1 +

rTRr =1

rDr=x

ocr =
r=>yYy=0xrdy
Or=y) =206y
c(z®y)=0zd0yY
Slzdy) =0z0yY

R

N R R RSy
[l

A+
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equivalent to n=sup {r | = ¢: r}. n is called the best entailment degree of ¢
w.r.t. K (denoted bed(K, ¢)), i.e.

bed(K,¢) =sup{r|KE=¢:r}.

On the other hand, the best satisfiability degree of ¢ w.r.t. K (denoted bsd(IC, ¢))

1S

bsd(K,0) = sup{T(¢) |7 |= K}

We refer the reader to [34y35136] for reasoning algorithms for fuzzy propositional
and First-Order Logics. For illustrative purpose, we recap here a simple method
to determine bed(K, ¢) and bsd(K, ¢) via Mixed Integer Linear Programming
(MILP) for the case of propositional Lukasiewicz logic. To this end, it can be
shown that

bed(K, ¢) = min z. such that KU {—¢: 1 — x} satisfiable
bsd(K, ¢) = max x. such that K U {¢: x} satisfiable .

Now, for a formula ¢ consider a variable x4 (with intended meaning: the degree of
truth of ¢ is greater or equal to z4). Now we apply the following transformation
o that generates a set of MILP in-equations:

bed(K, ¢) = min x. such that = € [0,1],2-¢ > 1 — z,0(—¢),
for all ¢' > n e K,zy > n,o(¢),

zp € [0,1] if ¢ = p

Ty =1—24,76 € [0,1] if¢:—\¢,

_ Ty, @ Ty = Ty, : _
U(¢) N U(¢1),O’(¢2),l‘¢ € [Ov 1] 1f¢ N ¢1 " ¢2

Tg, B Toy = To if =1V

(=1 V ¢2) ifgp=0¢1=¢2.

In the definition above, z < 1 & z2 and z < 1 ® x2, with 0 < z;,z < 1, can be
encoded as the sets of constraints:

z < w1 a2 — {z < a1+ 32},
z<1@r2—{y<l—z,z14+22—-1>2—y,y€{0,1}}.

As the set of constraints is linearly bounded by K and as MILP satisfiability
is NP-complete, we get the well-known result that determining the best entail-
ment /satisfiability degree is NP-complete for propositional Lukasiewicz logic.
We conclude with the notion of fuzzy set [10]. A fuzzy set R over a countable
crisp set X is a function R: X — [0, 1]. The degree of subsumption between two
fuzzy sets A and B, denoted A C B, is defined as inf,ex A(z) = B(z), where
= is an implication function. Note that if A(z) < B(z), for all x €0, 1], then
A C B evaluates to 1. Of course, A C B may evaluate to a value v € (0, 1) as well.
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Fig. 3. (a) Trapezoidal function trz(a, b, ¢, d), (b) triangular function tri(a, b, ¢), (c) left
shoulder function Is(a,b), (d) right shoulder function rs(a,b) and (e) linear modifier
Im(a,b)

L B

A (binary) fuzzy relation R over two countable crisp sets X and Y is a function
R: X xY — [0,1]. The inverse of R is the function R71: Y x X — [0,1] with
membership function R=!(y,z) = R(z,y), for every z € X and y € Y. The
composition of two fuzzy relations R1: X XY — [0,1] and Ry: Y x Z — [0,1]
is defined as (Ry o R2)(w,2) = sup,cy R1(2,y) ® Ra(y,2). A fuzzy relation R is
transitive iff R(x,z) > (Ro R)(z, 2).

Eventually, the trapezoidal (Fig. Bl (a)), the triangular (Fig. B (b)), the L-
function (left-shoulder function, Fig. [ (¢)), and the R-function (right-shoulder
function, Fig. [ (d)) are frequently used to specify membership degrees. For
instance, the left-shoulder function is defined as

1 fz<a
Is(x;a,b) =40 ifz>b (3)
(b—z)/(b—a) ifx € [a,b]

4 Fuzzy Logic and Semantic Web Languages

We have seen in the previous section how to “fuzzyfy” a classical language such
as propositional logic and FOL, namely fuzzy staements are of the form ¢: n,
where ¢ is a statement and n € [0, 1].

The natural extension to SWLs consists then in replacing ¢ with appropriate
expressions belonging to the logical counterparts of SWLs, namely pdf, DLs and
LPs, as we will illustrate next.

4.1 Fuzzy RDFS

In Fuzzy RDFS (see [69] and references therein), triples are annotated with a
degree of truth in [0, 1]. For instance, “Rome is a big city to degree 0.8” can
be represented with (Rome, type, BigCity): 0.8. More formally, fuzzy triples are
expressions of the form 7: n, where 7 is a RDFS triple (the truth value n may
be omitted and, in that case, the value n =1 is assumed).

The interesting point is that from a computational point of view the inference
rules parallel those for “crisp” RDFS: indeed, the rules are of the form

T1: N1, ---,Tkink,{71,~~~,7'k}|_RDFST (4)

T: Q,ni
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Essentially, this rule says that if a classical RDFS triple 7 can be inferred
by applying a classical RDFS inference rule to triples 7,...,7; (denoted
{71,..., 7k} FroFs 7), then the truth degree of 7 will be &), n;.

As a consequence, the rule system is quite easy to implement for current
inference systems. Specifically, as for the crisp case, one may compute the closure
cl(K) of a set of fuzzy triples K, store them in a relational database and thereafter
query the database.

Concerning the query language, SPARQL [55] is the current standard, but a
new version (SPARQL 1.1) is close to be finalised [56]. From a logical point of
view, a SPARQL query may be seen as a Conjunctive Query (CQ), or an union
of them, a well-known notion in database theory [2]. Specifically, an RDF' query
is of the rule-like form

q(z) — Fyp(z,y) , ()

where ¢(x) is the head and Jy.o(x,y) is the body of the query, which is a con-
junction (we use the symbol “,” to denote conjunction in the rule body) of triples
7; (1 <4 < n). x is a vector of variables occurring in the body, called the dis-
tinguished variables, y are so-called non-distinguished variables and are distinct
from the variables in @, each variable occurring in 7; is either a distinguished or
a non-distinguished variable. If clear from the context, the existential quantifi-
cation Jy may be omitted. In a query, built-in triples of the form (s, p, o) are
allowed, where p is a built-in predicate taken from a reserved vocabulary and
having a fized interpretation. Built-in predicates are generalised to any n-ary
predicate p. For convenience, “functional predicates’ﬁ are written as assignments
of the form z:=f(z) and it is assumed that the function f(z) is safe (also non
functional built-in predicate p(z) should be safe as well). A query example is:

q(z,y) — (y,created, x), (y, type, Italian), (z, exhibited At, U f fizi) (6)

having intended meaning to retrieve all the artefacts  created by Italian artists
y, being exhibited at Uffizi Gallery.

Roughly, the answer set of a query ¢ w.r.t. a set of tuples K (denoted
ans(IC, q)) is the set of tuples t such that there exists ¢’ such that the instan-
tiation ¢(¢,t') of the query body is true in the closure of K, i.e., all triples in
(¢, ') are in cl(K).

Once we switch to the fuzzy setting, queries are similar as for the crisp case,
except that fuzzy triples are used in the query body in place of crisp triples. A
special attention is required to the fact that now all answers are graded and,
thus, an order is induced on the answer set. Specifically, a fuzzy query is of the
form

q(x): s — Jy.11: 81,y Tnt Snysi=f(s,2,Y) , (7)

where now additionally s; is the score of triple 7; and the final score s of triple
x is computed according to a user function f applied to variables occurring in
the query body. For instance, the query

q(x): s — (x,type, SportsCar): s1,(x, hasPrice,y),s = s1 - cheap(y) (8)

4 A predicate p(x,y) is functional if for any ¢ there is unique t' for which p(t,t’) is
true.
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where e.g. cheap(y) = 15(20000, 30000)(y), has intended meaning to retrieve all
cheap sports car. Then, any answer is scored according to the product of being
cheap and a sports car.

It is not difficult to see that indeed fuzzy CQs can easily be mapped into SQL
as well. For further details see [69].

Annotation Domains and RDFS. We have seen that fuzzy RDFS extends
triples with an annotation n € [0,1]. Interestingly, we may further generalise
fuzzy RDFS, by allowing a triple being annotated with a value A taken from a so-
called annotation domain [32048/70)%, which allow to deal with several domains
(such as, fuzzy, temporal, provenace) and their combination, in a uniform way.
Formally, let us consider a non-empty set L. Elements in L are our annotation
values. For example, in a fuzzy setting, L = [0, 1], while in a typical temporal
setting, L may be time points or time intervals. In the annotation framework, an
interpretation will map statements to elements of the annotation domain. Now,
an annotation domain for RDFS is an idempotent, commutative semi-ring

‘D = <L7®7®7J_7—|—> )
where @ is T-annihilating [20]. That is, for A, \; € L

@ is idempotent, commutative, associative;

® is commutative and associative;
LeA=NTRA=\1LoA=L, and T®A=T,;

® is distributive over @, i.e.A\1 ® (A2 B A3) = (A1 ® A2) ® (A1 ® A3);

W

It is well-known that there is a natural partial order on any idempotent semi-
ring: an annotation domain D = (L, ®,®, L, T) induces a partial order < over
L defined as:

A1 = Ao ifand only if Ay & Ao = Ag .

The order < is used to express redundant/entailed/subsumed information. For
instance, for temporal intervals, an annotated triple (s,p,o0): [2000,2006] en-
tails (s,p,0): [2003,2004], as [2003,2004] C [2000, 2006] (here, C plays the role
of X).

Remark 1. @ is used to combine information about the same statement. For
instance, in temporal logic, from 7: [2000,2006] and 7: [2003,2008], we infer
7: [2000, 2008], as [2000,2008] = [2000, 2006] U [2003, 2008]; here, U plays the
role of @. In the fuzzy context, from 7: 0.7 and 7: 0.6, we infer 7: 0.7, as 0.7 =
max(0.7,0.6) (here, max plays the role of @).

Remark 2. ® is used to model the “conjunction” of information. In fact, a ®
is a generalisation of boolean conjunction to the many-valued case. In fact, ®
satisfies also that

® The readers familiar with the annotated logic programming framework [39)], will
notice the similarity of the approaches.
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1. ® is bounded: i.e. A1 ® A2 < A1.
2. ® is <-monotone, i.e. for A\{ < Ao, AR A1 AR Ag

For instance, on interval-valued temporal logic, from (a,sc,b): [2000, 2006] and
(b,sc,c): [2003,2008], we will infer (a,sc,c): [2003,2006], as [2003,2006] =
[2000, 2006] N [2003, 2008]; here, N plays the role of 8 In the fuzzy context,
one may chose any t-norm [36/40], e.g.product, and, thus, from (a,sc,b): 0.7 and
(b,sc,c): 0.6, we will infer (a,sc,c): 0.42, as 0.42 = 0.7 - 0.6) (here, - plays the
role of ®).

Remark 3. Observe that the distributivity condition is used to guarantee that
e.g. we obtain the same annotation A® (A2 ® Az) = (A1 @ A2) @ (A1 ® A3) of the
triple (a,sc,c) that can be inferred from triples (a,sc,b): A1, (b,sc,c): Ay and
(bysc,c): As.

The use of annotation domains appears to be quite appealing as

1. it applies to several domains, such as the fuzzy domain, the temporal domain,
provenance, trust and any combination of them [3];

2. from an inference point of view, the rules are conceptually the same as for
the fuzzy case: indeed, just replace in Rule [l the values n; with A;, i.e.

Tit AL, oevy Tkt Ak, {T1,.-., Tk} FrROFS T

7 Q. N ©)

3. annotated conjunctive queries are as fuzzy queries, except that now variables
s and s; range over L in place of [0, 1];

4. a query answering procedure is similar as for the fuzzy case: compute the
closure, store it on a relation database and transform an annotated CQ into
a SQL query.

From a computational complexity point of view, it is the same as for crisp RDFS
plus the cost of ®, @& and the scoring function f in the body of a query. A
prototype implementation is available from http://anql.deri.org/|

4.2 Fuzzy OWL

Description Logics. (DLs) [6] are the logical counterpart of the family of OWL
languages. So, to illustrate the basic concepts of fuzzy OWL, it suffices to show
the fuzzy DL case (see [45], for a survey). Briefly, one starts from a classical
DL, and attaches to the basic statements a degree n € [0, 1], similarly as we
did for fuzzy RDFS. As a matter of example, consider the DL ALC (Attributive
Language with Complement), a major DL representative used to introduce new
extensions to DLs: the table below shows its syntax, semantics and provides
examples.

5 As we will see, ® and ® may be more involved.
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Syntax Semantics Example
c,D— T | T(x)

i | L(x)

A | A(z) Human
CnD |C(x)AD(z) Human ™ Male
CUD |C(z)V D(z) Nice U Rich

-C | =C(x) —-Meat
JR.C | Jy.R(z,y) A C(y) Jhas child.Blond
VR.C  Vy.R(z,y) = C(y) Vhas child.Human
cCD Vz.C(z) = D(z) Happy Father C Man M 3has child.Female
a:C C(a) John:Happy Father
(a,b):R R(a,b) (John, Mary):Loves

The upper pane describes how concepts/classes can be formed, while the lower
pane shows the form of statements/formulae a knowledge base may be build
of. Statements of the form C' C D, called, General Inclusion Axioms (GCIs),
dictated that the class C'is a subclass of the class D, a:C' dictates that individual
a is an instance of class C, while (a,b):R states that (a,b) is an instance of the
binary relation R. The definition A = C is used in place of having both A C C'
and C' C A, stating that class A is defined to be equivalent to C.

Fuzzy DLs [68I6445] are then obtained by interpreting the statements as
fuzzy FOL formulae and attaching a weight n to DL statements, yielding fuzzy
DL statements, such as

CCD:n,aC:n and (a,b):R:n.

A notable difference to fuzzy RDFS is that one may use additionally some special
constructs to enhance the expressivity of fuzzy DLs [I2IT5IT6/60], these include

— fuzzy modifiers applied to concepts, such as

NiceVeryEzxpensiveltem = Nice Mvery(Ezpensiveltem)

defining the class of nice and very expensive items, where Nice and
Expensiveltem are classes/concepts and very is a linear modifier, such as
In(x,0.7,0.3);

— the possibility of defining fuzzy concrete concepts [60], i.e. concepts hav-
ing a specific fuzzy membership function, e.g., allowing a definition for
FEzxpensiveltem

FExpensiveltem = Item M dhasPrice. HighPrice
HighPrice = rs(100, 200)

— various forms of concept aggregations [15] using so-called Aggregation Op-
erators (AOs). These are mathematical functions that are used to combine
information [71]. The arithmetic mean, the weighted sum, the median and,
more generally Ordered Weighted Averaging (OWA) [75] are the most well-
known AOQOs. For instance,

Hotel M (0.3 - Cheap + 0.5 - CloseToVenue + 0.2 - Com fortable) C GoodHotel  (10)
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may be used to define a sufficient condition for a good hotel as a weighted sum
of being cheap, close to the venue and comfortable (Cheap, CloseToVenue
and Com fortable are classes here).

From a decision procedure point of view, one may proceed similarly as for the
best entailment degree problem for fuzzy propositional logic. That is, the decision
procedure consists of a set of inference rules that generate a set of in-equations
(that depend on the t-norm and fuzzy concept constructors) that have to be
solved by an operational research solver (see, e.g. [I4I60]). An informal rule
example is as follows:

“If individual a is instance of the class intersection Cy M C2 to degree greater
or equal to Zg:C4y M CQE, then a is instance of C; (i = 1,2) to degree greater
or equal to T.Cp where additionally the following in-equation holds:

Ta.0i MOy < Ta:0y @TqCy

Note that for Zadeh Logic and Lukasiewicz Logic a MILP solver is enough to
determine whether the set of in-equations has a solution or not.

However, recently there have been some unexpected surprises [7U8[9122]. [9]
shows that ALC with GCIs (i) does not have the finite model property under
Lukasiewicz Logic or Product Logic, contrary to the classical case; (ii) illustrates
that some algorithms are neither complete not correct; and (%) shows some
interesting conditions under which decidability is still guaranteed. [7J§] show
that knowledge base satisfiability is an undecidable problem for Product Logic.
The same holds for Lukasiewicz Logic as well [22]. In case the truth-space is
finite and defined a priori, decidability is guaranteed (see, e.g. [I3UTTI59]).

Some fuzzy DLs solvers are: fuzzyDL [12], Fire [57], GURDL [32], De-
Lorean [10], GERDS [33], and YADLR [41]. There is also a proposal to use
OWL 2 itself to represent fuzzy ontologies [16]. More precisely, [16] identifies the
syntactic differences that a fuzzy ontology language has to cope with, and shows
how to encode them using OWL 2 annotation properties. The use of annotation
properties makes possible (i) to use current OWL 2 editors for fuzzy ontology
representation, (1) that OWL 2 reasoners discard the fuzzy part of a fuzzy on-
tology, producing almost the same results as if it would not exist; and (i) an
implementation is provided as a Protégé plug-in.

Eventually, as for RDFS, the notion of conjunctive query straightforwardly
extends to DLs and to fuzzy DLs as well: in the classical DL case, a query is of
the form (compare to Eq. (@)

q(x) — Jy.p(x,y) , (11)

where now ¢(x, y) is a conjunction of unary and binary predicates. For instance,
the DL analogue of the RDFS query (@) is

q(z,y) — Created(y, ), Italian(y), Exhibited At(x,uf fizi) . (12)

7 As for the fuzzy propositional case, for a fuzzy DL formula ¢ we consider a variable
4 with intended meaning: the degree of truth of ¢ is greater or equal to x4.
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Similarly, a fuzzy DL query is of the form (compare to Eq. ()
q(@): s — Jy.Ar: s1,...,An: sn,s:=f(s,z,y) , (13)

where now A; is either an unary or binary predicate. For instance, the fuzzy DL
analogue of the RDFS query (8) is

q(z): s « SportsCar(z): s1, HasPrice(z,y), s:=s1 - cheap(y) . (14)

Annotation Domains and OWL. The generalisation of fuzzy OWL to the
case in which an annotation n € [0, 1] is replaced with an annotation value A
taken from an annotation domain proceeds as for RDFS, except that now the
annotation domain has the form of a complete lattice [63].

From a computational complexity point of view, similar results hold as for
the [0,1] case [I7II863]. While [63] provides a decidability result in case the
lattice is finite, [17] further improves the decidability result by characterising
the computational complexity of KB satisfiability problem for ALC with GCIs
over finite lattices being EXPTIME-complete, as for the crisp variant, while [18]
shows that the KB satisfiability problem for ALC with GCIs over non finite
lattices is undecidable.

4.3 Fuzzy RIF

The foundation of the core part of RIF is Datalog [72], i.e. a Logic Programming
Language (LP) [43]. In LP, the management of imperfect information has at-
tracted the attention of many researchers and numerous frameworks have been
proposed. Addressing all of them is almost impossible, due to both the large num-
ber of works published in this field (early works date back to early 80-ties [54])
and the different approaches proposed.

Basically [43], a Datalog program P is made out by a set of rules and a set
of facts. Facts are ground atoms of the form P(c¢). On the other hand rules are
similar as conjunctive DL queries and are of the form

A(x) — 3y.o(z,y) ,

where now ¢(x,y) is a conjunction of n-ary predicates. In Datalog it is further
assumed that no fact predicate may occur in a rule head (facts are the so-called
extensional database, while rules are the intentional database). A query is a
rule and the answer set of a query ¢ w.r.t. a set K of facts and rules (denoted
ans(IC, q)) is the set of tuples ¢ such that there exists ¢’ such that the instantiation
(¢, t') of the query body is true in minimal model of K, which is guaranteed to
exists.

As pointed out, there are several proposals for fuzzy Datalog (see [68] for an
extensive list). However, a sufficiently general form is obtained in case facts are
graded with n € [0,1], i.e. facts are of the form P(c): n and rules generalise
fuzzy DL queries (compare to Eq. (I3))): i.e., a fuzzy rule is of the form

A(x): s — Jy.Ar: s1,...,An: Sn,s:=f(s,2,y) , (15)
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where now A; is an n-ary predicate. For instance, the fuzzy GCI in Eq. (I0), can
be expressed easily as the fuzzy rule

GoodHotel(x): s < Hotel(z), Cheap(z): si, CloseToVenue(x): sz,
Comfortable(z): s3,s:= 0.3-51+0.5-52+0.2-s3 (16)

A fuzzy query is a fuzzy rule and, informally, the fuzzy answer set is the ordered
set of weighted tuples (¢, s) such that all the fuzzy atoms in the rule body are
true in the minimal model and s is the result of the scoring function f applied to
its arguments. The existence of a minimal is guaranteed if the scoring functions
in the query and in the rule bodies are monotone [68].

We conclude by saying that most works deal with logic programs without
negation and some may provide some technique to answer queries in a top-down
manner, as e.g. [243942[7361]. Deciding whether a wighted tuple (¢, s) is the
answer set is undecidable in general, though is decidable if the truth space is
finite and fixed a priory, as then the minimal model is finite.

Another rising problem is the problem to compute the top-k ranked answers
to a query, without computing the score of all answers. This allows to answer
queries such as “find the top-k closest hotels to the conference location”. Solutions
to this problem can be found in [44J66/67].

Annotation Domains and RIF. The generalisation of fuzzy RIF to the case
in which an annotation n € [0,1] is replaced with an annotation value A taken
from an annotation domain is straightforward and proceeds as for RDFS. From
a computational complexity point of view, similarly to the fuzzy case, deciding
whether a wighted tuple (¢, \) is the answer set is undecidable in general, though
is decidable if the annotation domain is finite.

5 Conclusions

We have provided a “crash course” through the realm of Semantic Web Lan-
guages, their fuzzy variants and their generalisation to annotation domains, by
illustrating the basics of these languages, some issues, and related them to the
logical formalisms on which they are based.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: Sw-store: a vertically parti-
tioned dbms for semantic web data management. VLDB J. 18(2), 385-406 (2009)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ.
Co., Reading (1995)

3. Zimmermann, A.P.A., Lopes, N., Straccia, U.: A general framework for represent-
ing, reasoning and querying with annotated semantic web data. Technical report,
Computing Research Repository (2011), Available as CoRR technical report, at
http://arxiv.org/abs/1103.1255


http://arxiv.org/abs/1103.1255

18

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

U. Straccia

Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. Journal of Artificial Intelligence Research 36, 1-69 (2009)

Baader, F., Brandt, S., Lutz, C.: Pushing the ££ envelope. In: Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005),
pp. 364-369. Morgan-Kaufmann Publishers, Edinburgh (2005)

. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):

Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, Cambridge (2003)

. Baader, F., Penaloza, R.: Are fuzzy description logics with general concept inclusion

axioms decidable? In: Proceedings of 2011 IEEE International Conference on Fuzzy
Systems (Fuzz-IEEE 2011). IEEE Press, Los Alamitos (to appear, 2011)

. Baader, F., Penaloza, R.: Gcis make reasoning in fuzzy dl with the product t-norm

undecidable. In: Proceedings of the 24th International Workshop on Description
Logics (DL 2011), CEUR Electronic Workshop Proceedings (to appear, 2011)

. Bobillo, F., Bou, F., Straccia, U.: On the failure of the finite model property in

some fuzzy description logics. Fuzzy Sets and Systems 172(1), 1-12 (2011)
Bobillo, F., Delgado, M., Gémez-Romero, J.: Delorean: A reasoner for fuzzy OWL
1.1. In: Proceedings of the 4th International Workshop on Uncertainty Reason-
ing for the Semantic Web (URSW 2008), CEUR Workshop Proceedings, vol. 423
(October 2008)

Bobillo, F., Delgado, M., Gémez-Romero, J., Straccia, U.: Fuzzy description logics
under gédel semantics. International Journal of Approximate Reasoning 50(3), 494—
514 (2009)

Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner.
In: 2008 International Conference on Fuzzy Systems (FUZZ 2008), pp. 923-930.
IEEE Computer Society, Los Alamitos (2008)

Bobillo, F., Straccia, U.: Towards a crisp representation of fuzzy description logics
under Lukasiewicz semantics. In: An, A., Matwin, S., Ras, Z.W., Slezak, D. (eds.)
Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 309-318. Springer,
Heidelberg (2008)

Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and
datatypes. Fuzzy Sets and Systems 160(23), 3382-3402 (2009)

Bobillo, F., Straccia, U.: Aggregations operators and fuzzy owl 2. In: 2011 Inter-
national Conference on Fuzzy Systems (FUZZ 2011). IEEE Computer Society, Los
Alamitos (2011)

Bobillo, F., Straccia, U.: Fuzzy ontology representation using owl 2. International
Journal of Approximate Reasoning (2011)

Borgwardt, S., Pefialoza, R.: Description logics over lattices with multi-valued on-
tologies. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, IJCAI 2011 (to appear, 2011)

Borgwardt, S., Penaloza, R.: Fuzzy ontologies over lattices with t-norms. In: Pro-
ceedings of the 24th International Workshop on Description Logics (DL 2011),
CEUR Electronic Workshop Proceedings (to appear, 2011)

Brickley, D., Guha, R.V.. RDF  Vocabulary  Description  Lan-
guage 1.0: RDF  Schema. W3C Recommendation, W3C (2004),
http://www.w3.org/TR/rdf-schema/

Buneman, P., Kostylev, E.: Annotation algebras for rdfs. In: The Second In-
ternational Workshop on the role of Semantic Web in Provenance Management
(SWPM 2010), CEUR Workshop Proceedings (2010)


http://www.w3.org/TR/rdf-schema/

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

Fuzzy Logic and Semantic Web Languages 19

Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable rea-
soning and efficient query answering in description logics: The dl-lite family. Journal
of Automated Reasoning 39(3), 385-429 (2007)

Cerami, M., Straccia, U.: Undecidability of KB satisfiability for - ALC with GCIs
(July 2011) (Unpublished Manuscript)

Cuenca-Grau, B., Horrocks, 1., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler,
U.: OWL 2: The next step for OWL. Journal of Web Semantics 6(4), 309-322 (2008)
Damiésio, C.V., Medina, J., Ojeda Aciego, M.: A tabulation proof procedure for
residuated logic programming. In: Proceedings of the 6th European Conference on
Artificial Intelligence, ECAI 2004 (2004)

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Computing Surveys 33(3), 374-425 (2001)
Description Logics Web Site, http://dl.kr.org

Dubois, D., Prade, H.: Can we enforce full compositionality in uncertainty calculi?
In: Proc. of the 12th Nat. Conf. on Artificial Intelligence (AAAT 1994), Seattle,
Washington, pp. 149-154 (1994)

Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued
logics: A clarification. Annals of Mathematics and Artificial Intelligence 32(1-4),
35-66 (2001)

Elkan, C.: The paradoxical success of fuzzy logic. In: Proc. of the 11th Nat. Conf.
on Artificial Intelligence (AAAI 1993), pp. 698-703 (1993)

Grosof, B.N., Horrocks, 1., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: Proceedings of the Twelfth In-
ternational Conference on World Wide Web, pp. 48-57. ACM Press, New York
(2003)

Guarino, N., Poli, R.: Formal ontology in conceptual analysis and knowledge repre-
sentation. International Journal of Human and Computer Studies 43(5/6), 625640
(1995)

Haarslev, V., Pai, H.-I., Shiri, N.: Optimizing tableau reasoning in alc extended
with uncertainty. In: Proceedings of the 2007 International Workshop on Descrip-
tion Logics, DL 2007 (2007)

Habiballa, H.: Resolution strategies for fuzzy description logic. In: Proceedings
of the 5th Conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT 2007), vol. 2, pp. 27-36 (2007)

Héahnle, R.: Many-valued logics and mixed integer programming. Annals of Math-
ematics and Artificial Intelligence 3,4(12), 231-264 (1994)

Hihnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.)
Handbook of Philosophical Logic, 2nd edn., vol. 2. Kluwer, Dordrecht (2001)
H4jek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

Tanni, G., Krennwallner, T., Martello, A., Polleres, A.: A rule system for querying
persistent rdfs data. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath,
T., Hyvonen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC
2009. LNCS, vol. 5554, pp. 857-862. Springer, Heidelberg (2009)

Kifer, M., Lausen, G., Wu, J.: Logical foundations of Object-Oriented and frame-
based languages. Journal of the ACM 42(4), 741-843 (1995)

Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming
and its applications. Journal of Logic Programming 12, 335-367 (1992)

Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic - Studia
Logica Library. Kluwer Academic Publishers, Dordrecht (2000)


http://dl.kr.org

20

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

U. Straccia

Konstantopoulos, S., Apostolikas, G.: Fuzzy-dl reasoning over unknown fuzzy de-
grees. In: Proceedings of the 2007 OTM Confederated International Conference on
On the Move to Meaningful Internet Systems, OTM 2007, vol. Part II, pp. 1312—
1318. Springer, Heidelberg (2007)

Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with
uncertainty. IEEE Transactions on Knowledge and Data Engineering 13(4), 554—
570 (2001)

Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under
vagueness for the semantic web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM
2007. LNCS (LNATI), vol. 4772, pp. 16-30. Springer, Heidelberg (2007)
Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics 6, 291-308 (2008)

Marin, D.: A formalization of rdf. Technical Report TR/DCC-2006-8, Deptartment
of Computer Science, Universidad de Chile (2004),
http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf

Murtioz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for rdf. In: Franconi,
E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53-67. Springer,
Heidelberg (2007)

Straccia, U., Lopes, N., Polleres, A., Zimmermann, A.: Anql: Spargling up an-
notated rdf. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L.,
Pan, J.Z., Horrocks, 1., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp.
518-533. Springer, Heidelberg (2010)

OWL Web Ontology Language overview, W3C (2004),
http://www.w3.org/TR/owl-features/

OWL 2 Web Ontology Language Document Overview, W3C (2009),
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

Papadimitriou, C.H.: Computational Complexity. Addison Wesley Publ. Co., Read-
ing (1994)

RDF Semantics, W3C (2004), http://www.w3.org/TR/rdf-mt/

Rule Interchange Format (RIF), W3C (2011),
http://www.w3.org/2001/sw/wiki/RIF

Shapiro, E.Y.: Logic programs with uncertainties: A tool for implementing rule-
based systems. In: Proceedings of the 8th International Joint Conference on Arti-
ficial Intelligence (IJCAI 1983), pp. 529-532 (1983)

SPARQL, http://www.w3.org/TR/rdf-sparql-query/

SPARQL, http://www.w3.org/TR/sparqlil-query/

Stoilos, G., Simou, N., Stamou, G., Kollias, S.: Uncertainty and the semantic web.
IEEE Intelligent Systems 21(5), 84-87 (2006)

Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research 14, 137-166 (2001)

Straccia, U.: Transforming fuzzy description logics into classical description logics.
In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385-399.
Springer, Heidelberg (2004)

Straccia, U.: Description logics with fuzzy concrete domains. In: Bachus, F.,
Jaakkola, T. (eds.) 21st Conference on Uncertainty in Artificial Intelligence (UAI
2005), pp. 559-567. AUAI Press, Edinburgh (2005)

Straccia, U.: Uncertainty management in logic programming: Simple and effective
top-down query answering. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES
2005. LNCS (LNAI), vol. 3682, pp. 753-760. Springer, Heidelberg (2005)


http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/2001/sw/wiki/RIF
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.
73.
74.
75.

76.

Fuzzy Logic and Semantic Web Languages 21

Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proceedings of the
11th International Conference on Information Processing and Managment of Un-
certainty in Knowledge-Based Systems (IPMU 2006), pp. 2238-2245. E.D.K, Paris
(2006)

Straccia, U.: Description logics over lattices. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 14(1), 1-16 (2006)

Straccia, U.: A fuzzy description logic for the semantic web. In: Sanchez, E. (ed.)
Fuzzy Logic and the Semantic Web, Capturing Intelligence. ch.4, pp. 73-90. Else-
vier, Amsterdam (2006)

Straccia, U.: Fuzzy description logic programs. In: Proceedings of the 11th Inter-
national Conference on Information Processing and Managment of Uncertainty in
Knowledge-Based Systems (IPMU 2006), pp. 1818-1825. E.D.K, Paris (2006)
Straccia, U.: Towards top-k query answering in deductive databases. In: Proceed-
ings of the 2006 IEEE International Conference on Systems, Man and Cybernetics
(SMC 2006), pp. 4873-4879. IEEE, Los Alamitos (2006)

Straccia, U.: Towards vague query answering in logic programming for logic-based
information retrieval. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J.,
Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 125-134. Springer,
Heidelberg (2007)

Straccia, U.: Managing uncertainty and vagueness in description logics, logic pro-
grams and description logic programs. In: Baroglio, C., Bonatti, P.A., Matuszyriski,
J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224,
pp. 54-103. Springer, Heidelberg (2008)

Straccia, U.: A minimal deductive system for general fuzzy RDF. In: Polleres,
A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 166-181. Springer, Heidelberg
(2009)

Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A general framework for rep-
resenting and reasoning with annotated semantic web data. In: Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010),
pp. 1437-1442. AAAI Press, Menlo Park (2010)

Torra, V., Narukawa, Y.: Information Fusion and Aggregation Operators. In: Cog-
nitive Technologies. Springer, Heidelberg (2007)

Ullman, J.D.: Principles of Database and Knowledge Base Systems, vol. 1,2. Com-
puter Science Press, Potomac (1989)

Vojtés, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124, 361-370 (2001)
XML, W3C, http://www.w3.org/XML/

Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Trans. Syst. Man Cybern. 18, 183-190 (1988)

Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338-353 (1965)


http://www.w3.org/XML/

	Fuzzy Logic, Annotation Domains and Semantic Web Languages
	Introduction
	Semantic Web Languages: Overview
	Mathematical Fuzzy Logic Basics
	Fuzzy Logic and Semantic Web Languages
	Fuzzy RDFS
	Fuzzy OWL
	Fuzzy RIF

	Conclusions
	References




