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Abstract. We outline DL-Media, an ontology mediated multimedia information
retrieval system, which combines logic-based retrieval with multimedia feature-
based similarity retrieval. An ontology layer is used to define (in terms of a fuzzy
DLR-Lite like description logic) the relevant abstract concepts and relations of the
application domain, while a content-based multimedia retrieval system is used for
feature-based retrieval.

1 Introduction

Multimedia Information Retrieval (MIR) concerns the retrieval of those multimedia ob-
jects of a collection that are relevant to a user information need.

In this paper we outline DL-MEDIA, an ontology mediated MIR system, which com-
bines logic-based retrieval with multimedia feature-based similarity retrieval. An ontol-
ogy layer is used to define (in terms of a DLR-Lite like description logic) the relevant
abstract concepts and relations of the application domain, while a content-based multi-
media retrieval system is used for feature-based retrieval. We will illustrate its logical
model, its architecture, its representation and query language and the experiments we
conducted.

2 The Logic-based MIR Model in DL-MEDIA

Overall, DL-MEDIA lies in the context of Logic-based Multimedia Information Re-
trieval (LMIR) (see [16] for an extensive overview on LMIR literature. A recent work
is also e.g. [13], see also [14] and [4] for a more complex multimedia ontology model).
In DL-MEDIA, from each multimedia objects o ∈ O (such as pieces of text, images re-
gions, etc.) we automatically extract low-level features such as text index term weights
(object of type text), colour distribution, shape, texture, spatial relationships (object of
type image), mosaiced video-frame sequences and time relationships (object of type
video). Furthermore, each multimedia object o ∈ O may also have associated a meta-
data record in some format. All this data belongs to the multimedia data layer. On top
of it we have the so-called ontology layer in which we define the relevant concepts of
our application domain through which we may retrieve the multimedia objects o ∈ O.
In DL-MEDIA this layer consists of an ontology of concepts defined in a variant of
DLR-Lite like description logic with concrete domains.



3 The DL-MEDIA architecture

The DL-MEDIA architecture has two basic components: the DL-based ontology com-
ponent and the (feature-based) multimedia retrieval component (see Figure 1).

Fig. 1. DL-MEDIA architecture.

The DL-component supports both the definition of the ontology and query answer-
ing. In particular, it provides a logical query and representation language, which is an
extension of the DL language DLR-Lite [8, 19, 18, 20] without negation.

The (feature-based) multimedia retrieval component, supports the retrieval of text
and images based on low-level feature indexing. Specifically, we rely on our MIR sys-
tem MILOS 1. MILOS (Multimedia Content Management System) is a general purpose
software component that supports the storage and content based retrieval of any multi-
media documents whose descriptions are provided by using arbitrary metadata models
represented in XML. MILOS is flexible in the management of documents containing
different types of data and content descriptions; it is efficient and scalable in the stor-
age and content based retrieval of these documents [3, 2, 1]. In addition to support XML
query language standards such as XPath and XQuery, MILOS offers advanced multi-
media search and indexing functionality with new operators that deal with approximate
match and ranking of XML and multimedia data (see the MILOS web page for more
about it). Approximate match of multimedia data is based on metric spaces theory [21].

1 http://milos.isti.cnr.it/



Operationally, a user submits a conceptual query (a conjunctive query) by means of
the DL-component. The DL-component will then use the ontology to reformulate the
initially query into one or several queries to be submitted to MILOS (that acts as a Web
Service), which then provides back the top-k answers for each of the issued queries. The
ranked lists will then be merged into one final result list and displayed to the user.

4 The DL-MEDIA query and representation language

For computational reasons the particular logic DL-MEDIA adopt is based on an exten-
sion of the DLR-Lite [8] Description Logic (DL) [5] without negation. The DL will be
used in order define the relevant abstract concepts and relations of the application do-
main. On the other hand, conjunctive queries will be used to describe the information
need of a user.

The DL-MEDIA logic extends DLR-Lite by enriching it with build-in predicates
allowing to address three categories of retrieval: feature-based, semantic-based and their
combination.

4.1 DL-MEDIA syntax

DL-MEDIA supports concrete domains with specific predicates on it. The concrete pred-
icates that DL-MEDIA allows are not only relational predicates such as ([i] ≤ 1500)
(e.g. the value of the i-th column is less or equal than 1500), but also similarity pred-
icates such as ([i] simTxt ′logic, image, retrieval′), which given a piece of text x
appearing in the i-th column of a tuple returns the system’s degree (in [0, 1]) of being x
about the keywords ’logic, image, retrieval’.

Formally, a concrete domain in DL-MEDIA is a pair 〈∆D, ΦD〉, where ∆D is an in-
terpretation domain and ΦD is the set of domain predicates d with a predefined arity n
and an interpretation dD:∆n

D → [0, 1] (see also [17]). The list of the specific domain
predicates is presented below.

DL-MEDIA allows to specify the ontology by relying on axioms. Consider an al-
phabet of n-ary relation symbols (denoted R) and an alphabet of unary relations, called
atomic concepts (and denoted A). An axiom is of the form

Rl1 u . . . uRlm v Rr ,

where m ≥ 1, all Rli and Rr have the same arity and where each Rli is a so-called left-
hand relation and Rr is a right-hand relation. They have the following syntax (h ≥ 1):

Rr −→ A | ∃[i1, . . . , ik]R
Rl −→ A | ∃[i1, . . . , ik]R | ∃[i1, . . . , ik]R.(Cond1 u . . . u Condh)
Cond −→ ([i] ≤ v) | ([i] < v) | ([i] ≥ v) | ([i] > v) | ([i] = v) | ([i] 6= v) |

([i] simTxt ′k1, . . . , k
′
n) | ([i] simImg URN)

where A is an atomic concept, R is an n-ary relation with 1 ≤ i1, i2, . . . , ik ≤ n,
1 ≤ i ≤ n and v is a value of the concrete interpretation domain of the appropriate type.

Informally, ∃[i1, . . . , ik]R is the projection of the relationR on the columns i1, . . . , ik
(the order of the indexes matters). Hence, ∃[i1, . . . , ik]R has arity k.



On the other hand, ∃[i1, . . . , ik]R.(Cond1 u . . . u Condl) further restricts the pro-
jection ∃[i1, . . . , ik]R according to the conditions specified in Condi. For instance,
([i] ≤ v) specifies that the values of the i-th column have to be less or equal than the
value v. So, e.g. suppose we have a relation Person(firstname, lastname, age, email, sex)
then

∃[2, 4]Person.(([3] ≥ 25))

corresponds to the set of tuples 〈lastname, email〉 such that the person’s age is equal or
greater than 25. Instead, ([i] simTxt ′k1 . . . k

′
n) evaluates the degree of being the text

of the i-th column similar to the list of keywords k1 . . . kn, while ([i] simImg URN)
returns the system’s degree of being the image identified by the i-th column similar to the
object o identified by the URN (Uniform Resource Name 2). For instance, the following
are axioms:

∃[2, 3]Person v ∃[1, 2]hasAge
∃[2, 4]Person v ∃[1, 2]hasEmail
∃[2, 1, 4]Person.(([3] ≥ 18) u ([5] =′ female′)) v ∃[1, 2, 3]AdultMalePerson

Note that in the last axiom, we require that the age is greater or equal than 18 and the gen-
der is female. This axiom defines the relation AdultMalePerson(lastname, firstname, email).
Examples axioms involving similarity predicates are,

(∃[1]ImageDescr.(([2] simImg urn1))) u (∃[1]Tag.(([2] = sunrise))) v Sunrise On Sea (1)

∃[1]Title.([2] simTxt ′lion′) v Lion (2)

where urn1 identifies the image in Fig. 2. The former axiom (axiom 1) assumes that
we have an ImageDescr relation, whose first column is the application specific image
identifier and the second column contains the image URN. We use also a binary relation
Tag. Then, this axiom (informally) states that an image similar to the image depicted
in Fig. 2 with a tag labelled ’sunrise’ is about a Sunrise On Sea (to a system computed
degree in [0, 1]).
Similarly, in axiom (2) we assume that an image is annotated with a metadata format,

Fig. 2. Sun rise

e.g. MPEG-7, the attribute Title is seen as a binary relation, whose first column is the
identifier of the metadata record, and the second column contains the title (piece of
text) of the annotated image. Then, this axiom (informally) states that an image whose
metadata record contains an attribute Title which is about ’lion’ is about a Lion.

2 http://en.wikipedia.org/wiki/Uniform_Resource_Name



A DL-MEDIA ontology O consists of a set of axioms.
Concerning queries, a DL-MEDIA query consists of a conjunctive query of the form

q(x)← R1(z1) ∧ . . . ∧Rl(zl) ,

where q is an n-ary predicate, every Ri is an ni-ary predicate, x is a vector of variables,
and every zi is a vector of constants, or variables. We call q(x) its head and R1(z1) ∧
. . . ,∧Rl(zl) its body. Ri(zi) may also be a concrete unary predicate of the form (z ≤
v), (z < v), (z ≥ v), (z > v), (z = v), (z 6= v), (z simTxt ′k1, . . . , k

′
n), (z simImg URN),

where z is a variable, v is a value of the appropriate concrete domain, ki is a keyword
and URN is an URN. Example queries are:

q(x)←Sunrise On Sea(x)
// find objects about a sunrise on the sea

q(x)←CreatorName(x, y) ∧ (y =′ paolo′) ∧ Title(x, z), (z simTxt ′tour′)
// find images made by Paolo whose title is about ’tour’

q(x)← ImageDescr(x, y) ∧ (y simImg urn2)
// find images similar to a given image identified by urn2

q(x)← ImageObject(x) ∧ isAbout(x, y1) ∧ Car(y1) ∧ isAbout(x, y2) ∧ Racing(y2)
// find image objects about cars racing

We note that a query may also be written as

q(x)←∃yφ(x,y) ,

where φ(x,y) is R1(z1) ∧ . . . ∧ Rl(zl) and no variable in y occurs in x and vice-
versa. Here, x are the so-called distinguished variables, while y are the so-called non
distinguished variables, which are existentially quantified.

For a query atom q, we will write 〈q(c), s〉 to denote that the tuple c is instance of
the query atom q to degree at least s.

4.2 DL-MEDIA semantics

From a semantics point of view, DL-MEDIA is based on mathematical fuzzy logic [12]
because

– the underlying MIR system MILOS is based on fuzzy aggregation operators to com-
bine the similarity degrees among low-level image and textual features; and

– then the DL-component allows for low data-complexity reasoning (LogSpace).

Given a concrete domain 〈∆D, ΦD〉, an interpretation I = 〈∆, ·I〉 consists of a fixed
infinite domain ∆, containing ∆D, and an interpretation function ·I that maps

– every atom A to a function AI :∆→ [0, 1]
– maps an n-ary predicate R to a function RI :∆n → [0, 1]
– constants to elements of ∆ such that aI 6= bI if a 6= b (unique name assumption).



Intuitively, rather than being an expression (e.g. R(c)) either true or false in an interpre-
tation, it has a degree of truth in [0, 1]. So, given a constant c,AI(c) determines to which
degree the individual c is an instance of atom A. Similarly, given an n-tuple of constants
c, RI(c) determines to which degree the tuple c is an instance of the relation R.

We also assume to have one object for each constant, denoting exactly that object. In
other words, we have standard names, and we do not distinguish between the alphabet of
constants and the objects in ∆. Furthermore, we assume that the relations have a typed
signature and the interpretations have to agree on the relation’s type. For instance, the
second argument of the Title relation (see axiom 2) is of type String and any interpreta-
tion function requires that the second argument of TitleI is of type String. To the easy of
presentation, we omit the formalization of this aspect and leave it at the intuitive level.

In the following, we use c to denote an n-tuple of constants, and c[i1, ..., ik] to denote
the i1, . . . , ik-th components of c. For instance, (a, b, c, d)[3, 1, 4] is (c, a, d).

Concerning concrete comparison predicates, the interpretation function ·I has to
satisfy

([i] ≤ v)I(c′) =
{

1 if c′[i] ≤ v
0 otherwise

and similarly for the other comparison constructs, ([i] < v), ([i] ≥ v), ([i] > v) and
([i] = v) | ([i] 6= v).

Concerning the concrete similarity predicates, the interpretation function ·I has to
satisfy

([i] simTxt ′k1, . . . , k
′
n)
I(c′) = simTxtD(c′[i],′ k1, . . . , k

′
n) ∈ [0, 1]

([i] simImg URN)I(c′) = simImgD(c′[i], URN) ∈ [0, 1] .

where simTxtD and simImgD are the textual and image similarity predicates supported
by the underlying MIR system MILOS.

Concerning axioms, as in an interpretation each Rli(c) has a degree of truth, we
have to specify how to combine them to determine the degree of truth of the conjunction
Rl1 u . . . uRlm. Usually, in fuzzy logic one uses a so-called T-norm ⊗ to combine the
truth of “conjunctive” expressions 3 (see [12]). Some typical T-norms are

x⊗ y = min(x, y) Gödel conjunction
x⊗ y = max(x+ y − 1, 0) Łukasiewicz conjunction
x⊗ y = x · y Product conjunction .

In DL-MEDIA, to be compliant with the underlying MILOS system, the T-norm is fixed
to be Gödel conjunction.

Now, the interpretation function ·I has to satisfy: for all c ∈ ∆k and n-ary relation
R:

(∃[i1, . . . , ik]R)I(c) = supc′∈∆n, c′[i1,...,ik]=cR
I(c′)

(∃[i1, . . . , ik]R.(Cond1 u . . . u Condl))I(c) =
supc′∈∆n, c′[i1,...,ik]=c min(RI(c′), Cond1

I(c′), . . . , CondlI(c′))

3 Given truth degrees x and y, the conjunction of x and y is x ⊗ y. ⊗ has to be symmetric,
associative, monotone in its arguments and x⊗ 1 = x.



Some explanation is in place. Consider (∃[i1, . . . , ik]R). Informally, from a classical
semantics point of view, (∃[i1, . . . , ik]R) is the projection of the relation R over the
columns i1, . . . , ik and, thus, corresponds to the set of tuples

{c | ∃c′ ∈ R s.t. c′[i1, . . . , ik] = c} .

Note that for a fixed tuple c there may be several tuples c′ ∈ R such that c′[i1, . . . , ik] =
c. Now, if we switch to fuzzy logic, for a fixed tuple c and interpretation I, each of the
previous mentioned c′ is instance of R to a degree RI(c′). It is usual practice in mathe-
matical fuzzy logic to consider the supremum among these degrees (the existential is in-
terpreted as supremum), which motivates the expression supc′∈∆n, c′[i1,...,ik]=cR

I(c′).
The argument is similar for the ∃[i1, . . . , ik]R.(Cond1 u . . . uCondl) construct except
that we consider also the additional conditions as conjuncts.

Now given an interpretation I, the notion of I is a model of (satisfies) an axiom τ ,
denoted I |= τ , is defined as follows:

I |= Rl1 u . . . uRlm v Rr iff for all c∈∆n,min(Rl1I(c), . . . , RllI(c)) ≤ RrI(c) ,

where we assume that the arity of Rr and all Rli is n.
An interpretation I is a model of (satisfies) an ontologyO iff it satisfies each element

in it.
Concerning queries, an interpretation I is a model of (satisfies) a query q the form

q(x)←∃yφ(x,y), denoted I |= q, iff for all c∈∆n:

qI(c) ≥ sup
c′∈∆×···×∆

φI(c, c′) ,

where φI(c, c′) is obtained from φ(c, c′) by replacing every Ri by RIi , and Gödel con-
junction is used to combine all the truth degrees RIi (c′′) in φI(c, c′). Furthermore, we
say that an interpretation I is a model of (satisfies) 〈q(c), s〉, denoted I |= 〈q(c), s〉, iff
qI(c) ≥ s.

We say O entails q(c) to degree s, denoted O |= 〈q(c), s〉, iff each model I of O is
a model of 〈q(c), s〉. The greatest lower bound of q(c) relative to O is

glb(O, q(c)) = sup{s | O |= 〈q(c), s〉} .

As now each answer to a query has a degree of truth, the basic inference problem that is
of interest in DL-MEDIA is the top-k retrieval problem, formulated as follows. GivenO
and a query with head q(x), retrieve k tuples 〈c, s〉 that instantiate the query predicate q
with maximal degree, and rank them in decreasing order relative to the degree s, denoted

ansk(O, q) = Topk{〈c, s〉 | s = glb(O, q(c))} .

From a query answering point of view, the DL-MEDIA system extends the DL-Lite/DLR-
Lite reasoning method [8] to the fuzzy case. The algorithm is an extension of the one
described in [8, 19, 18]). Roughly, given a query q(x)← R1(z1) ∧ . . . ∧Rl(zl),



1. by considering O, the user query q is reformulated into a set of conjunctive queries
r(q,O). Informally, the basic idea is that the reformulation procedure closely resem-
bles a top-down resolution procedure for logic programming, where each axiom is
seen as a logic programming rule. For instance, given the query q(x) ← A(x) and
suppose that O contains the axioms B1 v A and B2 v A, then we can reformulate
the query into two queries q(x)← B1(x) and q(x)← B2(x), exactly as it happens
for top-down resolution methods in logic programming;

2. from the set of reformulated queries r(q,O) we remove redundant queries;
3. the reformulated queries q′ ∈ r(q,O) are translated to MILOS queries and evalu-

ated. The query evaluation of each MILOS query returns the top-k answer set for
that query;

4. all the n = |r(q,O)| top-k answer sets have to be merged into the unique top-k
answer set ansk(O, q). As k · n may be large, we apply the Disjunctive Threshold
Algorithm (DTA, see [19] for the details) to merge all the answer sets.

In the appendix we provide a detailed description of the query reformulation procedure.

5 DL-MEDIA at work

A prototype of the DL-MEDIA system has been implemented. The main interface is
shown in Fig. 3.

In the upper pane, the currently loaded ontology component O is shown. Below it
and to the right, the current query is shown (“find a images about sunrises on the sea”,
we also do not report here the concrete syntax of the DL-MEDIA DL).

So far, in DL-MEDIA, given a query, it will be transformed, using the ontology, into
several queries (according to the query reformulation step described above) and then the
conjunctive queries are transformed into appropriate queries (this component is called
wrapper) in order to be submitted to the underlying database and multimedia engine.
To support the query rewriting phase, DL-MEDIA allows also to write schema mapping
rules, which map e.g. a relation nameR into the concrete name of a XML tag (see Fig.4)
and excerpt of the metadata format is shown in Fig.5.

For instance, the execution of the query shown in Fig. 3 produces the ranked list of
images shown in Fig. 6.

Related to each image, we may also access to its metadata, which is in our case an
excerpt of MPEG-7 (the data can be edited by the user as well). We may also select an
image of the result pane and further refine the query to retrieve images similar to the
selected one.

6 Experiments

We conducted an experiment with the DL-MEDIA system. We considered an image set
of around 560.000 images together with their metadata. The data has been provided by
Flickr 4 as a courtesy and for experimental purposes only. In MILOS we have indexed the

4 http://www.flickr.com/.



Fig. 3. DL-MEDIA main interface.

Fig. 4. DL-MEDIA mapping rules.



Fig. 5. Image metadata.

Fig. 6. DL-MEDIA results pane.



images’ low-level features as well as their associated XML metadata. We build an ontol-
ogy with 356 concept definitions, 12 relations. Totally, we have 746 DL-MEDIA axioms.
We build 10 queries to be submitted to the system and measured for each of them

1. the precision at 10, i.e. the percentage of relevant images within the top-10 results.
2. the number of queries generated after the reformulation process (q′ref );
3. the number of reformulated queries after redundancy elimination (qref );
4. the time of the reformulation process (tref );
5. the number of queries effectively submitted to MILOS (qMILOS);
6. the query answering time of MILOS for each submitted query (tMILOS);
7. the time of merging process using the DTA (tDTA);
8. the time needed to visualize the images in the user interface (tImg);
9. the total time from the submission of the initial query to the visualization of the final

result (ttot).

Query Precision q′
ref qref tref qMILOS tMILOS tDTA tImg ttot

Q1 1.0 2 2 0.005 1 0.3 0 0.613 1.045

Q2 0.8 48 48 2.125 1 0.327 0 0.619 3.073

Q3 0.9 3 2 0.018 1 2.396 0 0.617 3.036

Q4 0.8 6 6 0.03 1 0.404 0 0.642 1.147

Q5 0.9 10 6 0.113 1 0.537 0 0.614 1.359

Q6 0.8 10 6 0.254 1 1.268 0 0.86 2.387

Q7 1.0 4 4 0.06 3 15.101 0.004 0.635 15.831

Q8 0.9 522 420 0.531 7 13.620 0.009 0.694 14.895

Q9 0.1 360 288 0.318 20 40.507 0.029 0.801 41.631

Q10 0.9 37 36 0.056 20 36.073 0.018 0.184 36.320
Table 1. Experimental evaluation.

The results are shown in Table 1 below (time is measures in seconds). Let’s comment
some points. The number of queries generated after query reformulation varies signif-
icantly and depends both on the structure of the ontology and the concepts involved in
the original query. For instance, a query about African animals formulated as

q8(x)← Animal(x) ∧Africa(x)

will be reformulated into several queries involving the sub-concepts of both Animal and
Africa, which in our case is quite large. Also interesting is that, e.g. for query 8, we may
remove more than 100 queries from r(q8,O) by a simple query subsumption test check
(see appendix). Besides the possibility to have large query reformulation sets, the query
reformulation time is quite low (less than 0.5 seconds). Also negligible is the time spent
by the DTA merging algorithm. The MILOS response time is quite reasonable once we
submit one query only (the answer is provided within some seconds). Clearly, as we
submit the queries sequentially to the MILOS system, the total time sums up. Of course,
an improvement may be expected once we submit the queries to MILOS in parallel. This
part is under development as a joint activity with the MILOS development group. Also



note that effective number of queries qMILOS may not coincide with qref =, as we do
not submit queries to MILOS, which involve abstract concepts only as they do not have
a translation into a MILOS query (for instance, the query q8, which despite belonging to
the set of reformulated queries r(q8,O) is not submitted, while the reformulated query
q81(x)← Tag(x, animal) ∧ Tag(x, africa) is). Also, if we have already retrieved 10
images with score 1.0, we stop the MILOS query submission phase.

From a qualitative point of view of the retrieved images, the precision is satisfactory,
though more extensive experiments are needed to asses the effectiveness of the DL-
MEDIA system. Worth noting is query 9

q9(x)← Europe(x) ∧Africa(x)

in which we considered as relevant one image only, which dealt with a postcard sent
from Johannesburg (South Africa) to Norwich (UK).

7 Conclusions

In this work, we have outlined the DL-MEDIA system, i.e. an ontology mediated mul-
timedia retrieval system. Main features (so far) of DL-MEDIA are that: (i) it uses an
extension of DLR-Lite(D) like language as query and ontology representation language;
(ii) it supports feature-based queries, semantic-based queries and their combination; and
(iii) is promisingly scalable.

There are several points, which we are further investigating:

– so far, we consider all reformulated queries as equal relevant in response to infor-
mation need. However, it seems reasonable to assume that the more specific the
reformulated query becomes the less relevant may be its answers.

– multithreading of reformulated queries
– from a language point of view, we would like to extend it by using rules on top of

axioms and adding more concrete predicates.

Currently we are investigating how to scale both to a DL-component with 103 concepts
and to a MIR component indexing 106 images.

A Query answering in DL-MEDIA

At first, the input query q is reformulated into a set of conjunctive queries r(q,O), by
using O only. After having submitted the queries in r(q,O) to MILOS, we merge the
returned ranked lists using the DTA. The DTA is exactly the same as in [19] so we do
not report it here, and restrict the presentation to the query reformulation step only.
Query reformulation. The query reformulation step is adapted from [8, 19, 18] to our
case and is as follows.

We say that a variable in a conjunctive query is bound if it corresponds to either a
distinguished variable or a shared variable, i.e., a variable occurring at least twice in the
query body, or a constant, while we say that a variable is unbound if it corresponds to a
non-distinguished non-shared variable (as usual, we use the symbol “ ” to represent non-
distinguished non-shared variables). Note that an expression ∃[i1, . . . , ik]R can be seen



as the Relation R(x), where the variables in position i1, . . . , ik are unbound. We write
also R( , . . . , , xi1 , . . . , xik , , . . . , ) to denote the relation R(x) in which all variables
except those in position i1, . . . , ik are unbound. Given a vector of variables x, and a
condition Cond occurring in the left-hand side of an axiom then Cond(x) is defined as
follows:

([i] ≤ v)(x) = (xi ≤ v)
([i] < v)(x) = (xi < v)
([i] ≥ v)(x) = (xi ≥ v)
([i] > v)(x) = (xi > v)
([i] = v)(x) = (xi = v)
([i] 6= v)(x) = (xi 6= v)

([i] simTxt ′k1, . . . , k
′
n)(x) = (xi simTxt ′k1, . . . , k

′
n)

([i] simImg URN)(x) = (xi simImg URN) .

An axiom τ is applicable to an atom A(x) in a query body, if τ has A in its right-hand
side, while τ is applicable to an atom R( , . . . , , xi1 , . . . , xik , , . . . , ) in a query body,
if the right-hand side of τ is ∃[i1, . . . , ik]R. We indicate with gr(g; τ) the expression
obtained from the atom or relation g by applying the inclusion axiom τ .

Specifically,

– if g = A(x) and τ is Rl1 u . . . u Rlm v A then gr(g; τ) is C1(x) ∧ . . . ∧ Cm(x),
where for each t ∈ {1, . . . ,m},
• if Rlt = At then Ct(x) = At(x);
• if Rlt = ∃[j]R then Ct(x) = ∃z1, . . . , zl.Rt(z), where l is the cardinality of R

and z = 〈z1, . . . , zj−1, x, zj+1, . . . , zl〉;
• if Rlt = ∃[i]R.(Cond1 u . . . u Condh) then Ct(x) = ∃z1, . . . , zl.Rt(z) ∧
Cond1(z) ∧ . . . ∧ Condh(z), where z = 〈z1, . . . , zj−1, x, zj+1, . . . , zl〉 and l
is the cardinality of R.

– if g = R( , . . . , , xi1 , . . . , xik , , . . . , ) and τ is Rl1 u . . . uRlm v ∃[i1, . . . , ik]R
then gr(g; τ) is C1(xi1 , . . . , xik) ∧ . . . ∧ Cm(xi1 , . . . , xik), where for each t ∈
{1, . . . ,m},

• if Rlt = At and k = 1 then Ct(xi1 , . . . , xik) = At(xi1 , . . . , xik);
• if Rlt = ∃[j1, . . . , jk]R then Ct(xi1 , . . . , xik) = ∃z1, . . . , zl.Rt(z), where l is

the cardinality of R and z is such that the variables in position j1, . . . , jk are
xi1 , . . . , xik ;

• if Rlt = ∃[j1, . . . , jk]R.(Cond1 u . . . u Condh) then Ct(xi1 , . . . , xik) =
∃z1, . . . , zl.Rt(z) ∧ Cond1(z) ∧ . . . ∧ Condh(z), where l is the cardinality
of R and z is such that the variables in position j1, . . . , jk are xi1 , . . . , xik .

We are now ready to present the query reformulation algorithm. Given a query q and a
set of axioms O, the algorithm reformulates q in terms of a set of conjunctive queries
r(q,O), which then can be evaluated over the facts A. In the algorithm, q[g/g′] denotes
the query obtained from q by replacing the atom g with a new atom g′. At step 8, for each



Algorithm 1 QueryRef(q,O)
Input: A query q, DL-MEDIA axiomsO.
Output: Set of reformulated conjunctive queries r(q,O).
1: r(q,O) := {q}
2: repeat
3: S = r(q,O)
4: for all q ∈ S do
5: for all g ∈ q do
6: if τ ∈ O is applicable to g then
7: r(q,O) := r(q,O) ∪ {q[g/gr(g, τ)]}
8: for all g1, g2 ∈ q do
9: if g1 and g2 unify then
10: r(q,O) := r(q,O) ∪ {κ(reduce(q, g1, g2))}
11: until S = r(q,O)
12: r(q,O) := removeSubs(r(q,O))
13: return r(q,O)

pair of atoms g1, g2 that unify, the algorithm computes the query q′ = reduce(q, g1, g2),
by applying to q the most general unifier between g1 and g2 5.

Due to the unification, variables that were bound in q may become unbound in q′.
Hence, inclusion axioms that were not applicable to atoms of q, may become applicable
to atoms of q′ (in the next executions of step (5)). Function κ applied to q′ replaces with

each unbound variable in q′. Finally, in step 12 we remove from the set of queries
r(q,O), those which are already subsumed in r(q,O), in the sense that we remove q1
from r(q,O) if there is a q2 ∈ r(q,O) and a variable substitution θ such that for each
predicate P (z2) occurring in the rule body of q2 there is a predicate P (z1) occurring in
the rule body of q1 such that P (z2) = P (z1)θ. This concludes the query reformulation
step.
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