
A Minimal Deductive System for General Fuzzy RDF

Umberto Straccia

Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy
Email: straccia@isti.cnr.it

TR-ISTI 10 July 2009

Abstract. It is well-knwon that crisp RDF is not suitable to represent vague in-
formation. Fuzzy RDF variants are emerging to overcome to this limitations. In
this work we provide, under a very general semantics, a deductive system for a
salient fragment of fuzzy RDF. We then also show how we may compute the top-k
answers of the union of conjunctive queries in which answers may be scored by
means of a scoring function.

1 Introduction

RDF [17] has become a quite popular Semantic Web representation formalism. The
basic ingredients are triples of the form (s, p, o), such as (tom, likes, tomato), stating
that subject s has property p with value o.

However, under the classical semantics, RDF cannot represent vague information
and, to this purpose, some Fuzzy RDF variants have been proposed [12–14, 21, 22]: es-
sentially they allow to state that a triple is true to some degree, e.g., (tom, likes, tomato)
is true to degree at least 0.9.

Our main goal of this study is to provide, under a very general semantics, a minimal
deductive system for fuzzy RDF, along the lines described by [15]. The advantage is
that, (i) (unlike [12–14, 22]) we abstract from the underlying XML representation; (ii)
the semantics is quite general, i.e. is based on a t-norm [9]; (iii) we get a clear insight of
the supported inference mechanism; and (iv) we concentrate on the main ingredients of
RDF from a reasoning point of view. We then also address the query answering problem
and show how effectively we may compute the top-k answers of the union of conjunctive
queries in which answers may be scored by means of a scoring function.

Related work: The most general work so far and closest to our work is [14], to which
respect we provide additionally a more general semantics, correctness and complete-
ness and complexity results, add the notion of top-k answers of the union of conjunctive
queries in which answers may be scored by means of a scoring function, and show how
to compute the top-k answers. Another related work is [21], which allows to annotate
triples with truth values taken from a finite partial order, while we relay on [0, 1] in-
stead 1. However, we provide some desired inference capabilities not provided by [21],
e.g., from “a sport car is a fast car to degree 0.8” and “a fast car is an expensive car

1 But we can extend the truth space to other truth-spaces as well, provided that we extend the
t-norm and residuated implication accordingly [9].

to degree 0.9” we may infer that “a sport car is an expensive car to degree 0.72” (un-
der product t-norm). Essentially, [21] does not provide a truth combination function to
propagate the truth in such inferences, while we consider t-norm instead. Additionally,
as for [14], the top-k retrieval problem for the union of conjunctive queries is not ad-
dressed.

In the next section, we recall the main aspects of classical RDF as described in [15],
which we extend then to the fuzzy case.

2 Preliminaries

For the sake of our purposes, we will rely on a minimal, but significant RDF fragment,
called ρdf [15], that covers the essential features of RDF. According to [15], ρdf (read
rho-df, the ρ from restricted rdf) is defined as the following subset of the RDFS vocab-
ulary:

ρdf = {sp, sc, type, dom, range} .

Informally, the meaning of a triple (s, p, o) with p ∈ ρdf is:

– (p, sp, q) means that property p is a sub property of property q;
– (c, sc, d) means that class c is a sub class of class d;
– (a, type, b) means that a is of type b;
– (p, dom, c) means that the domain of property p is c;
– (p, range, c) means that the range of property p is c.

Syntax. Assume pairwise disjoint alphabets U (RDF URI references), B (Blank nodes),
and L (Literals). Through the paper we assume U,B, and L fixed, and for simplicity
we will denote unions of these sets simply concatenating their names. We call elements
in UBL terms (denoted t), and elements in B variables (denoted x) 2.

An RDF triple (or RDF atom) is a triple (s, p, o) ∈ UBL × U × UBL. In this
tuple, s is the subject, p is the predicate, and o is the object. An RDF graph (or simply
a graph, or RDF Knowledge Base) is a set of RDF triples τ . A subgraph is a subset of
a graph. The universe of a graph G, denoted by universe(G) is the set of elements in
UBL that occur in the triples of G. The vocabulary of G, denoted by voc(G) is the set
universe(G) ∩UL. A graph is ground if it has no blank nodes, i.e. variables.

In what follows we will need some technical notions. A variable assignment is a
function µ : UBL→ UBL preserving URIs and literals, i.e., µ(t) = t, for all t ∈ UL.
Given a graph G, we define µ(G) = {(µ(s), µ(p), µ(o)) | (s, p, o) ∈ G}. We speak
of a variable assignment µ from G1 to G2, and write µ : G1 → G2, if µ is such that
µ(G1) ⊆ G2.

Semantics. An RDF interpretation I over a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L, P [[·]], C[[·]], ·I〉 ,

where∆R, ∆P , ∆C , ∆L are the interpretations domains of I, and P [[·]], C[[·]], ·I are the
interpretation functions of I. They have to satisfy:

2 All symbols may have upper or lower script.

1. ∆R is a nonempty set of resources, called the domain or universe of I;
2. ∆P is a set of property names (not necessarily disjoint from ∆R);
3. ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource denotes a class

of resources;
4. ∆L ⊆ ∆R, the set of literal values, ∆L contains all plain literals in L ∩ V ;
5. P [[·]] maps each property name p ∈ ∆P into a subset P [[p]] ⊆ ∆R×∆R, i.e. assigns

an extension to each property name;
6. C[[·]] maps each class c ∈ ∆C into a subset C[[c]] ⊆ ∆R, i.e. assigns a set of re-

sources to every resource denoting a class;
7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , i.e. assigns a resource or a

property name to each element of UL in V , and such that ·I is the identity for plain
literals and assigns an element in ∆R to elements in L;

8. ·I maps each variable x ∈ B into a value xI ∈ ∆R, i.e. assigns a resource to each
variable in B.

The notion entailment is defined using the idea of satisfaction of a graph under certain
interpretation. Intuitively a ground triple (s, p, o) in an RDF graph G will be true under
the interpretation I if p is interpreted as a property name, s and o are interpreted as
resources, and the interpretation of the pair (s, o) belongs to the extension of the property
assigned to p.

In RDF, blank nodes, i.e. variables, work as existential variables. Intuitively the triple
((x, p, o) with x ∈ B would be true under I if there exists a resource s such that (s, p, o)
is true under I.

Now, let G be a graph over ρdf. An interpretation I is a model of G under ρdf,
denoted I |= G, iff I is an interpretation over the vocabulary ρdf ∪ universe(G) that
satisfies the following conditions:

Simple:
1. for each (s, p, o) ∈ G, pI ∈ ∆P and (sI , oI) ∈ P [[pI]];

Subproperty:
1. P [[spI]] is transitive over ∆P ;
2. if (p, q) ∈ P [[spI]] then p, q ∈ ∆P and P [[p]] ⊆ P [[q]];

Subclass:
1. P [[scI]] is transitive over ∆C ;
2. if (c, d) ∈ P [[scI]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d]];

Typing I:
1. x ∈ C[[c]] iff (x, c) ∈ P [[typeI]];
2. if (p, c) ∈ P [[domI]] and (x, y) ∈ P [[p]] then x ∈ C[[c]];
3. if (p, c) ∈ P [[rangeI]] and (x, y) ∈ P [[p]] then y ∈ C[[c]];

Typing II:
1. For each e ∈ ρdf, eI ∈ ∆P

2. if (p, c) ∈ P [[domI]] then p ∈ ∆P and c ∈ ∆C

3. if (p, c) ∈ P [[rangeI]] then p ∈ ∆P and c ∈ ∆C

4. if (x, c) ∈ P [[typeI]] then c ∈ ∆C

We define G entails H under ρdf, denoted G |= H , iff every model under ρdf of G is
also a model under ρdf of H .

Please note that in [15], P [[spI]] (resp.C[[scI]]) besides being required to be transitive
over∆P (resp.∆C), is also reflexive over∆P (resp.∆C). We omit this requirement and,
thus, do not support inferences such asG |= (a, sp, a) andG |= (a, sc, a), which anyway
are of marginal interest (see [15] for a more in depth discussion on this issue).

Deductive system. In what follows, we recall the sound and complete deductive system
for the fragment of RDF presented in [15]. The system is arranged in groups of rules
that captures the semantic conditions of models. In every rule, A,B,C,X , and Y are
meta-variables representing elements in UBL. An instantiation of a rule is a uniform re-
placement of the metavariables occurring in the triples of the rule by elements of UBL,
such that all the triples obtained after the replacement are well formed RDF triples. The
rules are as follows:

1. Simple:

(a) G
G′ for a map µ : G′ → G (b) G

G′ for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B),(B,sp,C)
(A,sp,C)

(b) (A,sp,B),(X,A,Y)
(X,B,Y)

3. Subclass:

(a) (A,sc,B),(B,sc,C)
(A,sc,C)

(b) (A,sc,B),(X,type,A)
(X,type,B)

4. Typing:

(a) (A,dom,B),(X,A,Y)
(X,type,B)

(b) (A,range,B),(X,A,Y)
(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B),(C,sp,A),(X,C,Y)
(X,type,B)

(b) (A,range,B),(C,sp,A),(X,C,Y)
(Y,type,B)

A proof is defined in the usual way. Let G and H be graphs. Then G ` H iff there is a sequence
of graphs P1, . . . , Pk with P1 = G and Pk = H , and for each j (2 6 j 6 k) one of the following
holds:

1. there exists a map µ : Pj → Pj−1 (rule (1a));
2. Pj ⊆ Pj−1 (rule (1b));
3. there is an instantiation R

R′ of one of the rules (2)(5), such that R ⊆ Pj−1 and Pj = Pj−1 ∪
R′.

The sequence of rules used at each step (plus its instantiation or map), is called a proof
of H from G.

Proposition 1 (Soundness and completeness [15]). The proof system ` is sound and
complete for |=, that is, G ` H iff G |= H .

Let G be a gound graph and τ be a gound triple. The closure of G is defined as

cl(G) = {τ | τ ground and G ` τ} .

Note that the size of the closure of G is O(|G|2) and, thus a naive method to an-
swer whether G |= τ consists in computing cl(G) and check whether τ is included in
cl(G) [15]. [15] provides also an alternative method to test G |= τ that runs in time
O(|G| log |G|).

Query Answering. For the sake of our purpose, we get inspired by [6] 3 and we assume
that a RDF graph G is ground and closed, i.e., G is closed under the application of the
rules (2)-(5). Then a conjunctive query is a Datalog-like rule of the form

q(x)← ∃y.τ1, . . . , τn

where n > 1, τ1, . . . , τn are triples, x is a vector of variables occurring in τ1, . . . , τn,
called the distinguished variables, y are so-called non-distinguished variables and are
distinct from the variables in x, each variable occurring in τi is either a distinguished
variable or a non-distinguished variable. If clear from the context, we may omit the
exitential quantification ∃y. For instance, the query

q(x, y)← (x, creates, y), (x, type,Flemish), (x, paints, y), (y, exhibited ,Uffizi)

has intended meaning to retrieve all the artifacts x created by Flemish artists y, being
exhibited at Uffizi Gallery.

We will also write a query as

q(x)← ∃y.ϕ(x,y) ,

where ϕ(x,y) is τ1, . . . , τn. Furthermore, q(x) is called the head of the query, while
∃y.ϕ(x,y) is is called the body of the query.

Finally, a disjunctive query (or, union of conjunctive queries) q is, as usual, a finite
set of conjunctive queries in which all the rules have the same head.

Given a graph G, a query q(x) ← ∃y.ϕ(x,y), and a vector t of terms in UL, we
say that q(t) is entailed by G, denoted G |= q(t), iff in any model I of G, there is a
vector t′ of terms in UL such that I is a model of ϕ(t, t′). If G |= q(t) then t is called
an answer to q. For a disjunctive query q = {q1, . . . , qm}, we say that q(t) is entailed
by G, denoted G |= q(t), iff G |= qi(t) for some qi ∈ q. The answer set of q w.r.t. G is
defined as

ans(G,q) = {t | G |= q(t)} .

A simple method to determine ans(G,q) is as follows. Compute the closure cl(G) of
G and store it into a database, e.g., using the method [1]. It is easily verified that any
disjunctive query can be mapped into union of SQL queries over the underlying database
schema. Hence, ans(G,q) is determined by issuing these SQL queries to the database.

3 Fuzzy RDF

We now present fuzzy RDF in its general form, by extending [12–14]. To do so and
to make the paper self-contained, we first recall basic notions of mathematical fuzzy
logic [9].

3.1 Preliminaries: Mathematical Fuzzy Logic

In mathematical fuzzy logics, the convention prescribing that a statement is either true
or false is changed and is a matter of degree taken from a truth space S, usually [0, 1] (in
that case we speak bout Mathematical Fuzzy Logic [9]) or { 0

n ,
1
n , . . . ,

n
n} for an integer

3 Note that [15] does not address conjunctive query answering.

n> 1. Often S may be also a complete lattice or a bilattice [3, 5] (often used in logic
programming [4]). In the sequel, we assume S = [0, 1]. This degree is called degree of
truth of the statement φ in the interpretation I.

In the illustrative fuzzy logic that we consider in this section, fuzzy statements have
the form φ[n], where n∈ [0, 1] [8, 9] and φ is a statement, which encodes that the degree
of truth of φ is at least n. For example, ripe tomato[0.9] says that we have a rather
ripe tomato (the degree of truth of ripe tomato is at least 0.9). Semantically, a fuzzy
interpretation I maps each basic statement pi into [0, 1] and is then extended inductively
to all statements as follows:

I(φ ∧ ψ) = I(φ)⊗ I(ψ) I(φ ∨ ψ) = I(φ)⊕ I(ψ),
I(φ→ ψ) = I(φ)⇒ I(ψ) I(¬φ) = 	I(φ) ,
I(∃x.φ(x)) = supc∈∆I I(φ(c)) I(∀x.φ(x)) = infc∈∆I I(φ(c))

(1)

where ⊗, ⊕,⇒, and 	 are so-called combination functions, namely, triangular norms
(or t-norms), triangular co-norms (or s-norms), implication functions, and negation
functions, respectively, which extend the classical Boolean conjunction, disjunction, im-
plication, and negation, respectively, to the fuzzy case.

Several t-norms, s-norms, implication functions, and negation functions have been
given in the literature. An important aspect of such functions is that they satisfy some
properties that one expects to hold for the connectives; see Tables 1 and 2. Note that in
Table 1, the two properties Tautology and Contradiction follow from Identity, Commuta-
tivity, and Monotonicity. Usually, the implication function⇒ is defined as r-implication,
that is, a⇒ b = sup {c | a⊗ c 6 b}.

Some t-norms, s-norms, implication functions, and negation functions of various
fuzzy logics are shown in Table 3 [9]. In fuzzy logic, one usually distinguishes three dif-
ferent logics, namely, Łukasiewicz, Gödel, and Product logic; the popular Zadeh logic is
a sublogic of Łukasiewicz logic as, min(x, y) = x ∧ (x ⇒ y) and max(x, y) = (x ⇒
y) ⇒ y. Some salient properties of these logics are shown in Table 4. For more prop-
erties, see especially [9, 16]. Note also, that a fuzzy logic having all properties shown
in Table 4, collapses to boolean logic, i.e. the truth-set can be {0, 1} only. Also note
that the importance of these three logics is due the fact that any t-norm can be ob-
tained as a combination of Łukasiewicz, Gödel, and Product t-norm. The implication
x ⇒ y = max(1 − x, y) is called Kleene-Dienes implication in the fuzzy logic liter-
ature. Note that we have the following inferences: Let a > n and a ⇒ b > m. Then,
under Kleene-Dienes implication, we infer that “if n > 1 −m then b > m”. More im-
portantly, to what concerns our paper, is that under an r-implication relative to a t-norm
⊗, we have that

from a > n and a⇒ b > m, we infer b > n⊗m . (2)

To see this, as a > n and a ⇒ b = sup {c | a ⊗ c 6 b} = c̄ > m it follows that
b > a⊗ c̄ > n⊗m. In a similar way, under an r-implication relative to a t-norm ⊗, we
have that

from a⇒ b > n and b⇒ c > m, we infer that a⇒ c > n⊗m . (3)

As we will see later on, these are the main inference patterns we will rely on in this
paper.

Table 1. Properties for t-norms and s-norms.
Axiom Name T-norm S-norm
Tautology / Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b 6 c, then a⊗ b 6 a⊗ c if b 6 c, then a⊕ b 6 a⊕ c

Table 2. Properties for implication and negation functions.
Axiom Name Implication Function Negation Function
Tautology / Contradiction 0⇒ b = 1, a⇒ 1 = 1, 1⇒ 0 = 0 	 0 = 1, 	 1 = 0
Antitonicity if a 6 b, then a⇒ c > b⇒ c if a 6 b, then	 a > 	 b
Monotonicity if b 6 c, then a⇒ b 6 a⇒ c

Table 3. Combination functions of various fuzzy logics.
Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic

a⊗ b max(a+ b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b max(a, b)

a⇒ b min(1− a+ b, 1)

(
1 if a 6 b

b otherwise
min(1, b/a) max(1− a, b)

	 a 1− a

(
1 if a = 0

0 otherwise

(
1 if a = 0

0 otherwise
1− a

Table 4. Some additional properties of combination functions of various fuzzy logics.
Property Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic

x⊗	 x = 0 + + + −
x⊕	 x = 1 + − − −
x⊗ x = x − + − +
x⊕ x = x − + − +
		 x = x + − − +

x⇒ y = 	 x⊕ y + − − +
	 (x⇒ y) = x⊗	 y + − − +
	 (x⊗ y) = 	 x⊕	 y + + + +
	 (x⊕ y) = 	 x⊗	 y + + + +

Note that implication functions and t-norms are also used to define the degree of
subsumption between fuzzy sets and the composition of two (binary) fuzzy relations. A
fuzzy set R over a countable crisp set X is a function R : X → [0, 1]. The degree of
subsumption between two fuzzy sets A and B, denoted A v B, is defined as

inf
x∈X

A(x)⇒ B(x) , (4)

where ⇒ is an implication function. Note that in First-Order-Logic terms, A is a sub-
class of B may be seen as the formula

∀x.A(x)⇒ B(x) ,

and, as in fuzzy logic ∀ is the inf , we get equation above. Together with (2), these are
the two major notions we need later on.

Note that if A(x) 6 B(x), for all x∈ [0, 1], then A v B evaluates to 1. Of course,
A v B may evaluate to a value v ∈ (0, 1) as well. A (binary) fuzzy relation R over
two countable crisp sets X and Y is a function R : X × Y → [0, 1]. The composition
of two fuzzy relations R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1] is defined as

(R1 ◦ R2)(x, z) = supy∈Y R1(x, y) ⊗ R2(y, z). A fuzzy relation R is transitive iff
R(x, z) > (R ◦R)(x, z).

A fuzzy interpretation I satisfies a fuzzy statement φ[n] or I is a model of φ[n],
denoted I |=φ[n], iff I(φ) > l. The notions of satisfiability and logical consequence are
defined in the standard way. We say φ[n] is a tight logical consequence of a set of fuzzy
statements KB iff n is the infimum of I(φ) subject to all models I of KB . Notice
that the latter is equivalent to n= sup {r |KB |=φ[r]}. We refer the reader to [7–9] for
reasoning algorithms for fuzzy propositional and First-Order Logics.

3.2 Generalized Fuzzy RDF

We are ready now to extend the notions introduced in the previous section to fuzzy RDF.
We start with the syntax and then define the semantics.

Syntax. A fuzzy RDF triple is an expression τ [n], where τ is a triple and n ∈ [0, 1].
The intended semantics is that the degree of truth of τ is not less than n. For instance,
(audiTT , type,SportCar)[0.8] is a fuzzy triple, intending that AudiTT is almost a sport
car. In a fuzzy triple τ [n], the truth value n may be omitted and, in that case, the value
n = 1 is assumed. A fuzzy RDF graph G̃ (or simply a fuzzy graph, or fuzzy RDF
Knowledge Base) is a set of fuzzy RDF triples τ̃ . The notions of universe of a graph G̃,
the vocabulary of G̃, ground graph and variable assignment are as for the crisp case.
Without loss of generality we may assume that there are not two fuzzy triples τ [n] and
τ [m] in a fuzzy graph G̃. If this is the case, we may just remove the fuzzy triple with the
lower score.

Semantics. The fuzzy semantics is derived directly from the crisp one, where now the
extensions functions are not sets anymore, but are functions assigning a truth in [0, 1].
So, let ⊗ be a t-norm and let⇒ be its r-implication. A fuzzy RDF interpretation I over
a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L, P [[·]], C[[·]], ·I〉 ,

where∆R, ∆P , ∆C , ∆L are the interpretations domains of I, and P [[·]], C[[·]], ·I are the
interpretation functions of I. They have to satisfy:

1. ∆R is a nonempty set of resources, called the domain or universe of I;
2. ∆P is a set of property names (not necessarily disjoint from ∆R);
3. ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource denotes a class

of resources;
4. ∆L ⊆ ∆R, the set of literal values, ∆L contains all plain literals in L ∩ V ;
5. P [[·]] maps each property name p ∈ ∆P into a partial function P [[p]] : ∆R ×∆R →

[0, 1], i.e. assigns a degree to each pair of resources, denoting the degree of being
the pair an instance of the property p;

6. C[[·]] maps each class c ∈ ∆C into a partial functionC[[c]] : ∆R → [0, 1], i.e. assigns
a degree to every resource, denoting the degree of being the resource an instance of
the class c;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , i.e. assigns a resource or a
property name to each element of UL in V , and such that ·I is the identity for plain
literals and assigns an element in ∆R to elements in L;

8. ·I maps each variable x ∈ B into a value xI ∈ ∆R, i.e. assigns a resource to each
variable in B.

Note that the only difference so far relies on points 5. and 6., in which the extension
function become now fuzzy membership functions. Note also that C[[·]] (resp. P [[·]]) is a
partial function and, thus, is not defined on all arguments. Alternatively, we may define
it to be a total function. We use the former formulation to distinguish the case where a
tuple t may be an answer to a query, even though the score is 0, from the case where
a tuple is not retrieved, since it does not satisfy the query conditions. In particular, if a
triple does not belong to a fuzzy graph, then its truth is assumed to be undefined, while if
C[[·]] (resp. P [[·]]) is total, then its truth of this triple would be 0, which is a small though
fundamental difference. Please note that both [14, 21] rely on total interpretations. We
prefer the partial semantics approach as we believe it is better suited for applications, as
it is more “database-like” in query answering. For instance, suppose we are looking for
a second-hand car, which is cheap and not too old, where cheap and old are functions
of the price and age, respectively, and the cheapness and oldness scores are aggregated
via weighted linear combination. Then under total semantics one may retrieve a car with
non zero score, despite its age is unknown (the tuple relating the car to its age is not in
the graph and, thus, the degree of oldness is 0, but there may be a tuple dictating the
price of the car), while under partial semantics, this car will not be retrieved (as it would
happen for a top-k database engine or using e.g. SPARQL [18] in which the scoring
component of the query is omitted).

The notion entailment is defined using the idea of satisfaction of a graph under cer-
tain interpretation. Intuitively a ground fuzzy triple (s, p, o)[n] in a fuzzy RDF graph
G̃ will be satisfied under the interpretation I if p is interpreted as a property name, s
and o are interpreted as resources, and the interpretation of the pair (s, o) belongs to the
extension of the property assigned to p to degree not less than n.

Now, let G̃ be a fuzzy graph over ρdf. A fuzzy interpretation I is a model of G̃
under ρdf, denoted I |= G̃, iff I is a fuzzy interpretation over the vocabulary ρdf ∪
universe(G̃) that satisfies the following conditions:

Simple:
1. for each (s, p, o)[n] ∈ G, pI ∈ ∆P and P [[pI]](sI , oI) > n;

Subproperty:
1. P [[spI]] is transitive over ∆P ;
2. if P [[spI]](p, q) is defined then p, q ∈ ∆P and

P [[spI]](p, q) = inf
(x,y)∈∆R×∆R

P [[p]](x, y)⇒ P [[q]](x, y) ;

Subclass:
1. P [[scI]] is transitive over ∆C ;
2. if P [[scI]](c, d) is defined then c, d ∈ ∆C and

P [[scI]](c, d) = inf
x∈∆R

C[[c]](x)⇒ C[[d]](x) ;

Typing I:
1. C[[c]](x) = P [[typeI]](x, c);
2. if P [[domI]](p, c) is defined then

P [[domI]](p, c) = inf
(x,y)∈∆R×∆R

P [[p]](x, y)⇒ C[[c]](x) ;

3. if P [[rangeI]](p, c) is defined then

P [[rangeI]](p, c) = inf
(x,y)∈∆R×∆R

P [[p]](x, y)⇒ C[[c]](y) ;

Typing II:
1. For each e ∈ ρdf, eI ∈ ∆P

2. if P [[domI]](p, c) is defined then p ∈ ∆P and c ∈ ∆C

3. if ∈ P [[rangeI]](p, c) is defined then p ∈ ∆P and c ∈ ∆C

4. if P [[typeI]](x, c) is defined then c ∈ ∆C

Some explanations about the above definitions are in place. To do so, let us keep in mind
Eq. (4). At first, let us explain condition 2 of the subclass condition. In the crisp case
if c is a sub-class of d then we impose that C[[c]] ⊆ C[[d]]. The fuzzyfication of this
subsumption condition yields the degree of subsumption and, thus, using Eq. (4), we
get immediately

P [[scI]](c, d) = inf
x∈∆R

C[[c]](x)⇒ C[[d]](x) .

i.e., P [[scI]](c, d) is evaluated as the degree of subsumption between class c and class
d. In First-Order-Logic terms, we recall that c is a sub-class of d may be seen as the
formula

∀x.c(x)⇒ d(x) ,

and, thus, as in fuzzy logic ∀ is the inf , we get equation above. The argument for the
sub-property condition is similar. Concerning condition 2 of Typing I, we may write the
condition that property p has domain c in First-Order-Logic as

∀x∀y.p(x, y)⇒ c(x) ,

which then gives us immediately the condition

P [[domI]](p, c) = inf
(x,y)∈∆R×∆R

P [[p]](x, y)⇒ C[[c]](x) .

The argument for condition 3 of Typing I is similar. We define G̃ entails H̃ under ρdf,
denoted G̃ |= H̃ , iff every fuzzy model under ρdf of G̃ is also a model under ρdf of H̃ .

As for the crisp case, it can be shown that any fuzzy graph is consistent, i.e. has a
model.

Proposition 2 (Consistency). Any fuzzy RDF graph has a model.

Therefore, unlike [21], we do not have to care about consistency checking.

Deductive system. In what follows, we present a sound and complete deductive system
for our fuzzy RDF fragment. As we will see, it is an extension of the one we have
seen for the crisp case. Indeed, for each crisp rule (except for group 1, which remains
identical) there is a fuzzy analogue. The rules are as follows 4:

1. Simple:

(a) G̃

G̃′
for a map µ : G̃′ → G̃ (b) G

G′ for G̃′ ⊆ G̃

4 An excerpt of them has been provided in [19]

2. Subproperty:

(a)
(A, sp, B)[n],(B, sp, C)[m]

(A, sp, C)[n⊗m]
(b)

(A, sp, B)[n],(X,A, Y)[m]
(X,B, Y)[n⊗m]

3. Subclass:

(a)
(A, sc, B)[n],(B, sc, C)[m]

(A, sc, C)[n⊗m]
(b)

(A, sc, B)[n],(X, type, A)[m]
(X, type, B)[n⊗m]

4. Typing:

(a)
(A, dom, B)[n],(X,A, Y)[m]

(X, type, B)[n⊗m]
(b)

(A, range, B)[n],(X,A, Y)[m]
(Y, type, B)[n⊗m]

5. Implicit Typing:

(a)
(A, dom, B)[n],(C, sp, A)[m],(X,C, Y)[r]

(X, type, B)[n⊗m⊗ r]

(b)
(A, range, B)[n],(C, sp, A)[m],(X,C, Y)[r]

(Y, type, B)[n⊗m⊗ r]

It suffices to explain the rules of the sub-class category, as all the rules of categories 2-5
follow the same schema. To do so, consider inference schemas (2) and (3).

Consider the rule
(A, sc, B)[n], (B, sc, C)[m]

(A, sc, C)[n⊗m]
.

Let us show that the rule is sound, i.e. for a fuzzy interpretation I, if I |= (A, sc, B)[n]
and I |= (B, sc, C)[m] then I |= (A, sc, C)[n⊗m]. Indeed,

1. As P [[scI]] is transitive over ∆C , we have that

P [[scI]](AI , CI) > P [[scI]](AI , BI)⊗ P [[scI]](BI , CI) .

2. As I |= (A, sc, B)[n], it follows that

P [[scI]](AI , BI) = inf
x∈∆R

C[[AI]](x)⇒ C[[BI]](x) > n ;

3. As I |= (B, sc, C)[n], it follows that

P [[scI]](BI , CI) = inf
x∈∆R

C[[BI]](x)⇒ C[[CI]](x) > m ;

4. From 1-3, it follows immediately that

P [[spI]](AI , CI) > n⊗m

and, thus I |= (A, sc, C)[n⊗m].

As next, let us show that
(A, sc, B)[n], (X, type, A)[m]

(X, type, B)[n⊗m]

is correct.

1. As I |= (A, sc, B)[n], it follows that

P [[scI]](AI , BI) = inf
x∈∆R

C[[AI]](x)⇒ C[[BI]](x) > n ;

2. As I |= (X, type, A)[m], it follows that

P [[typeI]](XI , AI) > m ;

3. But C[[AI]](XI) = P [[typeI]](XI , AI) and, thus, from 2. we get

C[[AI]](XI) > m .

4. Consider XI ∈ ∆R. As 1. holds for all x ∈ ∆R, we have that

C[[AI]](XI)⇒ C[[BI]](x) > n .

5. By schema (2) and point 3. and 4., we get

C[[BI]]((XI) > n⊗m .

6. But, P [[typeI]](XI , BI) = C[[BI]](XI) and, thus, by 5. we get

P [[typeI]](XI , BI) > n⊗m

and, thus I |= (X, type, B)[n⊗m].

The notion of proof is as for the crisp case and we have:

Proposition 3 (Soundness and completeness). For fuzzy RDF, the proof system ` is
sound and complete for |=, that is, G̃ ` H̃ iff G̃ |= H̃ .

Query Answering. We extend the notion of conjunctive query to the case in which a
scoring function can be specified to score the answers similarly as in [11] (see also [20]).

For the sake of our purpose, we assume that a fuzzy RDF graph G̃ is ground and
closed, i.e., G̃ is closed under the application of the rules (2)-(5). Then a fuzzy conjunc-
tive query extends a crisp query and is of the form

q(x)[s]← ∃y.τ1[s1], . . . , τn[sn], s = f(s1, . . . , sn, p1(z1), . . . , ph(zh))

where additionally

1. zi are tuples of terms in UL or variables in x or y;
2. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple tj in UL a score
pj(tj) ∈ [0, 1]m. Such predicates are called expensive predicates in [2] as the score
is not pre-computed off-line, but is computed on query execution. We require that
an n-ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p′

such that m < n and p = p′. Informally, all parameters are needed in the definition
of p;

3. f is a scoring function f : ([0, 1])n+h → [0, 1], which combines the scores si of the
n triples and the h fuzzy predicates into an overall score to be assigned to the rule
head. We assume that f is monotone, that is, for each v,v′ ∈ ([0, 1])n+h such that
v 6 v′, it holds f(v) 6 f(v′), where (v1, . . . , vn+h) 6 (v′1, . . . , v

′
n+h) iff vi 6 v′i

for all i;
4. the scoring variables s and si are distinct from those in x and y and s is distinct

from each si.

We may omit si and in that case si = 1 is assumed. s = f(s1, . . . , sn, p1(z1), . . . , ph(zh))
is called the scoring atom. We may also omit the scoring atom and in that case s = 1 is
assumed. For instance, the query

q(x)[s]← (x, type,SportCar)[s1], (x, hasPrice, y), s = s1 · cheap(y)

where e.g. cheap(p) = max(0, 1 − p
12000), has intended meaning to retrieve all cheap

sports car. Any answer is scored according to the product of being cheap and a sports
car.

The notion of disjunctive query is as for the crisp case. We will also write a query as

q(x)[s]← ∃y.ϕ(x,y)[s] ,

whereϕ(x,y) is τ1[s1], . . . , τn[sn], s = f(s, p1(z1), . . . , ph(zh)) and s = 〈s1, . . . , sn〉.
Consider a fuzzy graph G̃, a query q(x)[s] ← ∃y.ϕ(x,y)[s], a vector t of terms in

UL and s ∈ [0, 1]. We say that q(t)[s] is entailed by G̃, denoted G̃ |= q(t)[s], iff in any
model I of G̃, there is a vector t′ of terms in UL, a vector s of scores in [0, 1] such that
I is a model of ϕ(t, t′)[s] (the scoring atom is satisfied iff s is the value of the evaluation
of the score combination function). The definition is extended to a disjunctive query as
for the crisp case.

We say that s is tight iff s = sup{s′ | G̃ |= q(t)[s′]}. If G̃ |= q(t)[s] and s is tight
then t[s] is called an answer to q w.r.t. G̃. The answer set, ans(G̃,q) of q w.r.t. G̃, is
defined as the set of answers to q w.r.t. G̃.

As now each answer to a query has a degree of truth (i.e. score), the basic inference
problem that is of interest in is the top-k retrieval problem, formulated as follows.

Top-k Retrieval. Given a fuzzy graph G̃, and a disjunctive query q, retrieve k answers
t[s] with maximal scores and rank them in decreasing order relative to the score s,
denoted

ansk(G̃,q) = Topk ans(G̃,q) .

Next, we describe a method to determine ansk(G̃,q). So, let G̃ be a ground fuzzy graph.
similarly to the crisp case, the closure of G̃ is defined as

cl(G̃) = {τ [n] | τ ground, G̃ ` τ [n] and n is tight} . 5

Note that by definition of cl(G̃), there cannot bet two fuzzy triples τ [n] and τ [m] in
cl(G̃) such that n < m. The closure cl(G̃) can be computed by repeatedly applying the
fuzzy inference rules together with the redundancy elimination rule below:

– Redundancy Elimination Rule (RER):

τ [n], τ [m]
remove τ [n] if n < m

Essentially, each time we generate a tuple τ , we keep the one involving τ with high-
est degree. This rule is necessary in order to guarantee the termination of the closure
computation in case of cyclic graphs, such as e.g.

(A, sc, B)[n], (B, sc, C)[n], (C, sc, A)[n]

5 Note that rule (Simple a) is not required to compute the closure.

where the t-norm is e.g. product. Without (RER), we may generate an infinite sequence
of fuzzy triples (A, sc, A)[n3k] (k = 1, 2, . . .) and, thus, do not terminate. Please note
that with (RER), only (X, sc, X)[n3] ∈ cl(G̃), where X ∈ {A,B,C}.

Now, under the above closure computation, we have, as for the crisp case [15]:

Proposition 4 (Size of Closure).

1. The size of the closure of G̃ is O(|G̃|2).
2. The size of the closure of G̃ is in the worst case no smaller than Ω(|G̃|2).

Therefore, a method to determine ansk(G̃,q) is as follows.

1. Compute the closure cl(G̃) of G̃ and store it into a database that supports top-k
retrieval (e.g., RankSQL [10] 6).

2. It can be verified that any fuzzy disjunctive query can be mapped into union of top-k
SQL queries [10] over the underlying database schema.

3. Hence, ansk(G̃,q) is determined by issuing these top-k SQL queries to the database.

4 Summary and Outlook

We have presented fuzzy RDF under a generalized semantics based on t-norms and its
r-implication. We provided a minimal deductive system, top-k fuzzy disjunctive queries
and showed how these can be answered by relying on the closure computation and state
of the art top-k database engines. An implementation is under development, where fuzzy
triples are stored as RDF triples using reification and, thus, no change to RDF is required.
We follow the method [1] to store the closure in the database.

Concerning future research: so far, we considered the closure of the graph (of quadratic
size) to be stored into a database and then we submit top-k SQL queries to it. While one
may think of extending the method described in [15] to check entailment for ground
fuzzy tuples in O(|G̃| log |G̃|), it remains to see whether similar methods exists to de-
termine the top-k answers. To this end we are looking to the techniques developed for
top-k query answering in fuzzy logic programming (see, e.g. [11, 20]).

Another topic concerns the extension and mapping of SPARQL to fuzzy disjunctive
queries.

References

1. Daniel J. Abadi, Adam Marcus 0002, Samuel Madden, and Kate Hollenbach. Sw-store: a
vertically partitioned dbms for semantic web data management. VLDB J., 18(2):385–406,
2009.

2. Kevin Chen-Chuan Chang and Seung won Hwang. Minimal probing: Supporting expensive
predicates for top-k queries. In SIGMOD Conference, pages 346–357, 2002.

3. M. C. Fitting. Bilattices are nice things. In Conference on Self-Reference, pages –, Copen-
hagen, Denmark, 2002.

6 But, e.g., Postgres http://www.postgresql.org/, MonetDB http://monetdb.
cwi.nl/ may work as well.

4. M. C. Fitting. Fixpoint semantics for logic programming - a survey. Theoretical Computer
Science, 21(3):25–51, 2002.

5. Matthew L. Ginsberg. Multi-valued logics: a uniform approach to reasoning in artificial
intelligence. Computational Intelligence, 4:265–316, 1988.

6. Claudio Gutierrez, Carlos Hurtado, and Alberto O. Mendelzon. Foundations of semantic
web databases. In Proceedings of the 23st ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems (PODS-04), pages –. ACM Press, 2004.

7. Reiner Hähnle. Many-valued logics and mixed integer programming. Annals of Mathematics
and Artificial Intelligence, 3,4(12):231–264, 1994.

8. Reiner Hähnle. Advanced many-valued logics. In Dov M. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, 2nd Edition, volume 2. Kluwer, Dordrecht, Holland, 2001.

9. Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.
10. Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song. RankSQL: query

algebra and optimization for relational top-k queries. In Proceedings of the 2005 ACM SIG-
MOD International Conference on Management of Data (SIGMOD-05), pages 131–142, New
York, NY, USA, 2005. ACM Press.

11. Thomas Lukasiewicz and Umberto Straccia. Top-k retrieval in description logic programs
under vagueness for the semantic web. In Proceedings of the 1st International Conference on
Scalable Uncertainty Management (SUM-07), number 4772 in Lecture Notes in Computer
Science, pages 16–30. Springer Verlag, 2007.

12. Mauro Mazzieri. A fuzzy rdf semantics to represent trust metadata. In Proceedings of the 1st
Italian Semantic Web Workshop: Semantic Web Applications and Perspectives (SWAP 2004),
2004.

13. Mauro Mazzieri and Aldo Franco Dragoni. A fuzzy semantics for semantic web languages.
In Proceedings of the Proceedings of the ISWC Workshop on Uncertainty Reasoning for the
Semantic Web (URSW-05). CEUR Workshop Proceedings, 2005.

14. Mauro Mazzieri and Aldo Franco Dragoni. A fuzzy semantics for the resource description
framework. In Uncertainty Reasoning for the Semantic Web I, ISWC International Work-
shops, URSW 2005-2007, Revised Selected and Invited Papers, number 5327 in Lecture Notes
in Computer Science, pages 244–261. Springer Verlag, 2008.

15. Sergio Muñoz, Jorge Pérez, and Claudio Gutiérrez. Minimal deductive systems for rdf. In 4th
European Semantic Web Conference (ESWC-07), number 4519 in Lecture Notes in Computer
Science, pages 53–67. Springer Verlag, 2007.

16. Vilém Novák. Which logic is the real fuzzy logic? Fuzzy Sets and Systems, pages 635–641,
2005.

17. RDF. http://www.w3.org/RDF/.
18. SPARQL. http://www.w3.org/TR/rdf-sparql-query/.
19. Umberto Straccia. Basic concepts and techniques for managing uncertainty and vagueness in

semantic web languages. In Reasoning Web, 4th International Summer School, 2007. Invited
Lecture.

20. Umberto Straccia. Managing uncertainty and vagueness in description logics, logic programs
and description logic programs. In Reasoning Web, 4th International Summer School, Tuto-
rial Lectures, number 5224 in Lecture Notes in Computer Science, pages 54–103. Springer
Verlag, 2008.

21. Octavian Udrea, Diego Reforgiato Recupero, and V. S. Subrahmanian. Annotated rdf. In The
Semantic Web: Research and Applications, 3rd European Semantic Web Conference, ESWC
2006, number 4011 in Lecture Notes in Computer Science, pages 487–501. Springer Verlag,
2006.

22. Vaneková V., Bella J., Gurský P., and Horváth T. Fuzzy rdf in the semantic web: Deduction
and induction. In Proceedings of Workshop on Data Analysis (WDA 2005), 2005.

