
A Content–Addressable Network for Similarity Search
in Metric Spaces?

Fabrizio Falchi1, Claudio Gennaro1, and Pavel Zezula2

1 ISTI-CNR
Pisa, Italy

fabrizio.falchi,gennaro@isti.cnr.it
2 Masaryk University
Brno, Czech Republic

zezula@fi.muni.cz

Abstract. In this paper we present a scalable and distributed access structure
for similarity search in metric spaces. The approach is based on the Content–
addressable Network (CAN) paradigm, which provides a Distributed Hash Table
(DHT) abstraction over a Cartesian space. We have extended the CAN structure to
support storage and retrieval of more generic metric space objects. We use pivots
for projecting objects of the metric space in anN -dimensional vector space, and
exploit the CAN organization for distributing the objects among computer nodes
of the structure. We obtain a Peer–to–Peer network, called the MCAN, which
is able to search metric space objects by means of the similarity range queries.
Experiments conducted on our prototype system confirm full scalability of the
approach.

1 Introduction

The proliferation of digital contents such as video, images, or text imposes the use
of access methods for efficiently storing and retrieving this information. The concept
of similarity searching based on relative distances between a query and database ob-
jects has become a solution for a number of application areas, e.g. data mining, signal
processing, geographic databases, information retrieval, or computational biology. This
approach formalizes the problem by the mathematical notion of themetric space[6],
so the data elements are assumed to be objects from a metric space domain where only
pairwise distances between the objects can be determined by respective distance func-
tion.

However, the need to deal with larger and larger, possibly distributed, archives re-
quires an access structure to speedup the retrieval. Unfortunately, the use of single–site
access structures is becoming prohibitive due to the lack of scalability of such systems,
however fast they are. In fact, as the current literature demonstrates, see for example
[8], the response time of access structures for metric spaces is linearly increasing with
the size of the searched file.
? This work was partially supported VICE project (Virtual Communities for Education), funded

by the Italian government, and by DELOS NoE, funded by the European Commission under
FP6 (Sixth Framework Programme).

The approach proposed in this paper is to use a Peer–to–Peer (P2P) structure com-
posed of a network of nodes whose number can vary on the basis of the size of the
data-set. The aim is to maintain the global response time stable as the data-set size
grows. In this respect, the P2P paradigm is quickly gaining in popularity due to their
scalability and self-organizing nature, forming bases for building large-scale similar-
ity search indexes at low costs. However, most of the numerous P2P search techniques
proposed in the recent years have focused on the single-key retrieval [7,11,13].

In particular, we present a distributed storage structure for similarity search in metric
spaces that is based on the original idea of theContent–Addressable Network(CAN)
[11], which is a distributed hash table abstraction over the Cartesian space. Our dis-
tributed storage structure, calledMCAN, is able to index objects of a generic metric
space. The advantage of the metric space approach to the data searching is its “extensi-
bility”, since in this way, we are able to perform theexact match, range, andsimilarity
queries on any collection of metric objects. More in general, our proposal can be seen
as a Scalable and Distributed Data Structure, (SDDS) – original proposal LH* [10] is
intended for the primary key retrieval – which uses the P2P paradigm for the communi-
cation in a Grid-like computing infrastructure. A fundamental property of this paradigm
is that insertion of an object, even if it implies a node split, does not require immediate
update propagation to all network nodes.

The rest of the paper is organized as follows. In Section 2, we summarize the nec-
essary background information. Section 3 presents the MCAN distributed structure and
its functionality. Section 4 reports the results of performance evaluation experiments.
Section 5 concludes the paper and outlines directions for future work.

2 Background

2.1 Content–Addressable Network (CAN)

The CAN is a distributed hash table that uses a function for mapping “keys” onto “val-
ues” in order to assign them a position in the table. In the CAN, the table is composed
of a finite set of individual network nodes. Each node of the network is dynamically
associated with a partition of ad-dimensional Cartesian space. Usually, the Cartesian
space is ad-torus (in the sense that the coordinate space wraps), and is targeted to store
(K,V) pairs, whereK is an identifer of the object andV is a pointer to a copy of the
object. The basic operations of the CAN are insertion, lookup and deletion of respective
(K,V) pairs. In order to be compatible with the metric space, we generically refer to
these pairs as “objects”, and we use the notationX ∈ S, for indicating an objectX of
an arbitrary spaceS of all possible pairs (or objects)X ≡ (K, V).

From the formal point of view, we can define the mapping function of the CAN as:

G : S → PN , (1)

wherePN is an hyper–rectangle ofRN defined as:

PN = [0, D1]× [0, D2]× . . .× [0, DN] , (2)

with Di denoting thei− th side length of the CAN structure.

The principle of the CAN is to divide the hyper-rectanglePN in a finite number
of distinct rectangular zones, each of them associated to one and only one node of the
network. The nodes are responsible for storing and searching of objects covered by
their zone. Moreover, each node is aware of the nodes that cover adjacent zones, i.e.,
its neighbors. More precisely, for anN -dimensional space, two zones are neighbors if
their sides overlap alongN − 1 dimensions and are adjacent along one dimension.

The basic operation in CAN is a lookup(key) function, which returns the corre-
sponding “value” (the IP address of the node, for instance) for the given “key” (the
coordinates of the point). This is useful for insertion, deletion, and retrieval purposes.
The search starts from an arbitrary node of the CAN structure, and proceeds by routing a
message towards its destination by simple greedy forwarding to the neighbor with coor-
dinates closest to the destination coordinates. In general, if we divide thePN uniformly
in n zones, each node maintains2N neighbors. Furthermore, the average routing path
length is given by(N/4)n(1/N).

2.2 Metric Spaces

The mathematical metric space is a pairM = (D, d), whereD is thedomainof objects
andd is thedistance functionable to compute distances between any pair of objects
fromD. It is typically assumed that the smaller the distance, the closer or moresimilar
the objects are. For any distinct objectsX,Y, Z ∈ D, the distance must satisfy the
following properties:

d(X, X) = 0 reflexivity
d(X, Y) > 0 strict positiveness
d(X, Y) = d(Y, X) symmetry
d(X, Y) ≤ d(X, Z) + d(Z, Y) triangle inequality

2.3 Pivot-Based Filtering

In general, the pivot-based algorithms can be viewed as a mappingF from the origi-
nal metric spaceM = (D, d) to aN -dimensional vector space with theL∞ distance.
The mapping assumes a setT = {P1, P2, . . . PN} of objects fromD, called pivots,
and for each database objectO, the mapping determines its characteristic (feature) vec-
tor asF (O) = (d(O, P1), d(O, P2), . . . d(O, PN)). We obtain a new metric space as
MN (RN , d∞). At search time, we compute for a query objectQ the query feature vec-
tor F (Q) = (d(Q,P1), d(Q,P2), . . . d(Q,PN)) and discard for the search radiusr an
objectO if

d∞(F (O), F (Q)) > r (3)

In other words, the objectO can be discarded if for some pivotPi,

| d(Q,Pi)− d(O,Pi) |> r (4)

Due to the triangle inequality, the mappingF is contractive, that is all discarded objects
do not belong to the result set. However, some not-discarded objects may not be relevant
and must be verified through the original distance functiond(·). For more details, see
for example [4].

3 MCAN

The basic idea of our approach is to extend the CAN architecture in order to manage
objectsX of a generic metric spaceM = (D, d). However, in metric spaces it is not
possible to exploit any knowledge of coordinate information, and only distances be-
tween objects can be computed. To cope with this problem, we use the pivots paradigm
for mapping the objects of the metric space to anN dimensional vector space. In partic-
ular, letP1, . . . , PN be the number of pivots selected from the metric data-set, we map
an objectO ∈ D, by means of the functionF () (introduced in the previous section)
defined as:

F (O) : D → RN = (d(O, P1), d(O, P2), . . . d(O, PN)) (5)

This virtual coordinate space is used to store the objectO in the MCAN structure,
specifically in the node that owns the zone where the pointF (O) lies. Note that, the
coordinate space of the MCAN is not Cartesian since a distance between two objects in
MCAN is evaluated by means of theL∞ distance (instead of the Euclidean distance).
Routing in MCAN works in the same manner as for the original CAN structures. An
MCAN node maintains a coordinate routing table that holds the IP address and virtual
coordinate zones of each of its immediate neighbors in the coordinate space.

3.1 Notation

In this section we provide a number of definitions required to present our results. We use
the capital letter for indicating metric space objectsX ∈ D, the overline small letter for
denoting the corresponding vector in the coordinate spacex ∈ RN , andxi for represent-
ing the values of itsi-th coordinate. Moreover, we denote a node of MCAN by the bold
symboln. Since there is no possibility of confusion, we use the same symbold(.) for in-
dicating the distance between metric objects and for indicating theL∞ distance between
the corresponding point in the coordinate space, e.g.,d(x, y) = d∞(F (X), F (Y)),
wherex = F (X) andy = F (Y). As we already explained, the MCAN is contractive,
therefored(x, y) ≤ d(X, Y) always holds.

Each noden maintains its region information referred asn.R. Moreover, since the
regionn.R is an hyper–rectangle it can be uniquely identified by its vertex closer to the
origin, denoted asn.R.x = (n.R.x1, n.R.x2, . . . , n.R.xN), and by the lengths of the
relative sides, i.e.,n.R.l1, n.R.l2, . . . , n.R.lN . More precisely, the regionn.R is defined
as follows

n.R = {∀x ∈ RN | ∀ i, n.xi ≤ xi < n.xi + n.li}
The noden also maintains the set of the neighbor nodes’ informationn.M = {m1, . . . , mh}.

Given a pointx = F (X), the predicateX ∈ n allows us to check if the correspond-
ing pointx lies is in the zone maintained by the noden. More formally:

X ∈ n ⇔ x ∈ n.R

A range query of radiusr and centered in the objectC is denoted asQ = (c, r). The
predicateQ ∩ n allows to check if the query regionQ intersects the zone associated

with n. Note that, the range query in theL∞ space is given by an hypercube of side2r
centered inc.

We can now introduce the formal definition of anN -dimensional MCAN struc-
ture, referred as MCANN , which is composed of a set ofk (k > 0) network nodes
{n1, . . . , nk} such as:

1. ∀ i, j | i 6= j ni.R ∩ nj .R = ∅
2. PN =

⋃k
i=1 ni.R

3. n ∈ m.M ⇔
∃k | 1 ≤ k ≤ N, (n.R.xk + n.R.lk = m.R.xk) ∨ (m.R.xk + m.R.lk = n.R.xk),
∀w 6= k [n.R.xw, n.R.xw + n.R.lw[∩[m.R.xw, m.R.xw + m.R.lw[6= ∅

In the definition, Point 1. states that the zones covered by the network nodes do not
overlap. Point 2. states that the union of the zones cover the whole MCANN spacePN

(there are no holes). Finally, Point 3. declares the condition for a network noden to be
a neighbor ofm (as explained in Section 2).

3.2 Construction

An important feature of the CAN structures is its capability to dynamically adapt to
data-set size changes. As we will see in the experimental evaluation, we are interested
in preserving the scalability of the MCAN, which means that we want to maintain stable
the response time of the queries. Since the size of the space allocated to store objects
in each node is limited, when a node exceeds its limit it splits by sending a subset of
its objects to a free node and by assigning its part of original region. Note that, limiting
the storage space, and then the number of objects each node can maintain, we limit
also the number of distance computations a node have to evaluate during a range query
computation.

It is important to observe that in some cases we might want to use all the nodes avail-
able in the network. Previous work like [11] have studied this possibility in a generic
CAN structure by allowing a node to split even if it does not exceed it storage space.
Obviously, such methodology can also be applied in our MCAN. On the other hand,
in a P2P environment, we would like to let the nodes the possibility to freely join and
leave the network, without damaging it. As explained in [11], this is possible with a
CAN, which even provides some fault-tolerance capabilities [12].

Since the pivots needed to be determined before the insertion starts, we assume a
characteristic subset of the indexed data-set (about 500 objects) is known at the begin-
ning. In the MCAN, we use the Incremental Selection algorithm described in [4].

3.3 Insertion

An insert operation can start in any node of the MCAN. It starts by mapping the inserted
objectX to the virtual coordinate space using functionF (), then it checks ifx = F (X)
lies in the zone maintained by the noden itself (i.e. X ∈ n). If this is not the case,
the node has to forward the insertion request. From this point, the insertion proceeds
with the greedy routing algorithm used for standard CAN structures: the inserting node

forwards the insertion operation to the neighbor node which is closer to the pointx by
using theL∞ distance. The objective is to find the noden for whichX ∈ n, minimizing
the number of messages. Ifx lies in the region maintained by the receiving node, the
objectX is stored there, otherwise a neighbor node is selected with the same technique
and the insert operation is forwarded again until the objectX is inserted.

The nodem which stores the objectX must reply to the node who started the insert
operation. If the nodem exceeds its capacity it is split. Eventually, the objectX is
inserted inm or in the new allocated node.

3.4 Split

In MCAN, we apply a balanced split, that is the resulting regions contain practically
the same amount of data (object occupancy). During this process, the splitting node
will just request a node from a free node list to join the network, and one half of the
data, in terms of occupancy, is reallocated there.

If we definen1 as the splitting node,n1.R as the old region,n1.R
′ as the new one

andn2 as the new node, the split regions must satisfy the following equations:

n1.R
′ ∪ n2.R = n1.R , n1.R

′ ∩ n2.R = 0

Moreover, to respect these constrains, we create the new two regions by dividing the
original one along one coordinate of the space. Therefore, the new regions,n1.R

′ and
n2.R, must satisfy the following two equations:

n1.R
′.xs = n1.R.xs, n2.R.xs = n1.R.xs + n1.R

′.ls, n2.R.ls = n1.R.ls − n1.R
′.ls

Note that that we only have to choses and n1.R
′.ls. In order to decides, for each

dimensioni we findn1.R
′.li that divide the objects into two halves. To avoid regions

with small sides we choses as the dimensioni for which |n1.R
′.li − n1.R.li/2| is

minimum.
After the splitting process, the noden1 sends a message to all its neighbors inform-

ing them about the update of its region. To those neighbors, which are also neighbors
of n2, it sends also information about the new node. The new node is informed byn1

about its neighbors that are a subset of then1 neighbors. At the end,n1 can discard
information about the nodes that no more are its neighbors.

3.5 Range Query

A range query operation can start at any MCAN node. As shown in Figure 1, for a
given query object and range radius, there is a certain number of nodes whose regions
intersect the query region (which is an hypercubeQ = (c, r) as defined in Section 3.1).
Obviously, only the intersecting nodes must process the range query operation. The
requesting node maps the query object in the virtual coordinate space using the function
F (). Then it checks if it is involved in the range query operation (when it intersectsQ).
If the node is not involved in the query, it forwards the range query operation to the
neighbor node that is closest to regionQ, using theL∞ distance. This operation is
performed in a similar way as described for the insert operation.

Fig. 1.Example of range query in a two dimensional space. The darker square is the query region,
while the brighter rectangles correspond to the involved nodes.

When a node that is involved in the range query is reached by the query request, it
forwards it to each neighbor that is also involved and then it starts processing the range
query over its local data-set. During the range query execution inside a single node, a
local access structure can also be used. In this paper, we used the same pivots chosen to
define the MCAN space to reduce the number of distance evaluations performed inside
a single node. Using the pivot-based filtering, we are able to significantly reduce the
number of distance evaluations inside the nodes. In a more sophisticated implementa-
tion of MCAN, each node could have its own local data structure to efficiently search
inside a single node.

In order to allow the requesting node to know when all the nodes involved in the
query have finished to work, the MCAN proceeds as follows:

– A node involved in the range query:
• it receives the range query requestQ = (c, r) and a (possibly empty) list of the

nodes already involved in the query (which we refer to asINL),
• it forwards the query request to its neighbors involved in the query which are

not included inINL adding them to the list and sending the newINL* to them,
• it computes the query over its local data,
• it replies with a message containing its result set (if any) and theINL* .

– The requesting node as it receives the reply messages, updates a local list of the
involved nodes in the query, and marks the ones that have already answered.

– The requesting node will know that the operation is terminated when all nodes of
the local list will have replied (i.e., when all the nodes of the list have been marked).
The result set of the query is given by union of the result sets of the replying nodes.

Note that, the first node involved in the query receives an emptyINL. Another im-
portant observation is that with this scheme we do not guarantee that a node does not
receive multiple requests for the same query. However, this is not a problem since each
distinct query is associated with a unique identifier, so that a node ignores multiple
requests.

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

n Objects

n
 N

o
d

es

Vector Dataset Text Dataset

Fig. 2. Number of nodes for increasing data-
set size.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

n Objects

lo
ad

 f
ac

to
r

Vector Dataset Text Dataset

Fig. 3. Average number of objects per node
for the MCAN3 and for increasing data-set
size.

4 Performance Evaluation

In this section we present a preliminary experimental evaluation of MCAN. The metric
data-sets used are: 100,000 of 45-dimensional vectors of color features extracted from
images; 100,000 Czech sentences of length between 20 and 300 characters. Vectors
are compared by the Euclidean distance measure while for sentences we use the Edit
distance.

We analyze the behavior of the structure in different dimensional spaces: from 1–
d (i.e., involving one pivot), to 5–d space (i.e., involving five pivots). As already ex-
plained, we use the pivots also to reduce the number of distance computations during
the query evaluation on individual nodes. However, independently of the number of di-
mensionsN used by MCANN , we always generate 10 pivots in the experiments and
we use the firstN pivots for creating the MCANN zones. Moreover, all 10 pivots are
used for filtering during a range query execution internally in nodes.

To study the scalability of the system, we fix the storage space available for each
node and then, starting from a single server, we add objects into the system. When a
server reaches its storage space limit, it splits. The limit was chosen in a way that after
all the 100,000 objects have been inserted, the MCANN is composed of around 100
nodes. The node from which an insert operation or a range query starts is randomly
selected. Moreover, in order to study the scalability of the system we perform a range
query operations every 5,000 insertions.

In Figure 2, we report the number of nodes in the system as the data-set grows, for
the MCAN3 case (the other cases are very similar). Note from these experiments that,
the number of nodes exhibit a stepwise behavior. This is due to the fact that the objects
are randomly ordered, therefore the nodes are filled uniformly and then they tend to split
at the same time. This is particularly evident for the vector data-set, where the objects
have a fixed size, while the size of objects of the text data-set (strings) is variable.

In Figure 3, we report the average load factor for both data-sets. We define the
load factor as the total number of objects stored in the MCAN structure divided by the
capacity of storage available on all nodes. As can be seen in the figure, the values are
always between 0.5 and 1. This is always guaranteed, because when a node is split, half

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

n Nodes

n
u

m
b

er
 o

f
h

o
p

s

d1 d2 d3

d4 d5

Fig. 4. Average number of hops for differ-
ent dimensions as the number of nodes grows
(vector data-set).

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

n Nodes

n
u

m
b

er
 o

f
h

o
p

s

d1 d2 d3

d4 d5

Fig. 5. Average number of hops for differ-
ent dimensions as the number of nodes grows
(text data-set).

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

n Nodes

n
u

m
b

er
 o

f
n

ei
g

h
b

o
rs

d1 d2 d3

d4 d5

Fig. 6. Average number of neighbors for dif-
ferent dimensions as the number of nodes
grows (vector data-set).

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

n Nodes

n
u

m
b

er
 o

f
n

ei
g

h
b

o
rs

d1 d2 d3

d4 d5

Fig. 7. Average number of neighbors for dif-
ferent dimensions as the number of nodes
grows.

of the objects are migrated to the new node, therefore the node occupation cannot be
less than 50%.

In Figures 4 and 5, we report the average number of hops an insert operation travels,
starting form a random node. The number of hops is strictly correlated to the average
number of neighbors each node has: the more the neighbors, the less the hops. In Figures
6 and 7, we report the average number of neighbors as a function of the total number
of nodes for different space dimensionality. Comparing the number of hops with the
number of neighbors, we can see that a good choice for the space dimensionality could
beN = 3. In fact, by using more than 3 dimensions we do not reduce significantly the
number of hops but significantly increase the number of neighbors and correspondingly
the complexity of choosing next node in forwarding.

4.1 Range Query

For the performance evaluation of range queries, we selected 100 random objects from
the data-set and for each of them we performed 8 different range queries every 5,000

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20000 40000 60000 80000 100000

n Objects

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 in

vo
lv

ed

0.0 250.0 500.0 750.0 1000.0

1250.0 1500.0 1750.0 2000.0

Fig. 8. Percentage of nodes involved in the
range query as function of the data-set size
for different radii (vector data-set).

0

0,1

0,2

0,3

0,4

0,5

0,6

0 20000 40000 60000 80000 100000

n Objects

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 in

vo
lv

ed

0.0 5.0 10.0 15.0 20.0

25.0 30.0 35.0 40.0

Fig. 9. Percentage of nodes involved in the
range query as function of the data-set size
for different radii (text data-set).

insert operations. Due to lack of space, we do not report the average result set size
for the different query radii, since they are linear to the data-set size. However, the
heaviest range queries return around 3% of the objects for both vector and text data-sets.
Note that, these results are independent from the type of access structure but depend on
specific characteristics of the given data-sets.

In Figures 8 and 9 we report the average percentage of nodes involved during a range
query operation for different radii as the data-set size grows. Observe that the bigger is
the radius of the range query, the more are the nodes involved in the query evaluation.
In a naive distributed system we could randomly distribute the objects among the nodes
but in this case we would always involve all the nodes even for small radii.

For simple operations like the exact match, the standard CAN has been proved to
be scalable. MCAN extends CAN by allowing similarity operations over generic metric
space data-sets. In this scenario, we must be able to perform more complex operations
such as similarity range queries. To preserve scalability also for such operations, we
need more nodes as the complexity of the query grows. This aspect is evident in the
plot of Figures 8 and 9, where the percentage of nodes involved for a small radius is
smaller then the ones we obtains for greater radii. Note that, for a given range query,
the percentage of nodes involved is almost constant. In fact, for a given range query
the number of results is linearly dependent on the number of objects in the data-set and
then the number of nodes involved is proportional to the number of results.

To study the complexity of the range queries, we use the number of distance com-
putations. However, for the case of the edit distance (i.e., the Czech-sentences data-set)
we must consider the fact that the complexity of a single distance computation is not
constant but it’s proportional to the string lengths. In this case we decided to use the
equivalent complexity of the edit distancedefined asL(a)L(b)/(L)2, wherea, b are
two strings evaluated with the edit distance,L(.) is the length of the string, andµ(L) is
the average length of the strings of the data-set.

In Figures 10 and 11, we report the average complexity of the range query opera-
tions as function of the number of equivalent distance computations of the most stressed
node. This quantity measures in a way theintraquery parallelismas the parallel re-

0

200

400

600

800

1000

1200

1400

1600

0 20000 40000 60000 80000 100000

n Objects

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0.0 250.0 500.0 750.0 1000.0

1250.0 1500.0 1750.0 2000.0

Fig. 10. Average number of distances evalu-
ated by the most stressed node for each query
and for different query range (vector data-
set).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20000 40000 60000 80000 100000

n Objects

eq
u

iv
al

en
t

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0.0 5.0 10.0 15.0 20.0

25.0 30.0 35.0 40.0

Fig. 11. Average number of equivalent dis-
tances evaluated by the most stressed node for
each query and for different query range (text
data-set).

sponse time of a range query, if we neglect the message latency. In fact, the requesting
node will have to wait the answer of all the involved nodes and then the response time
of the query will be proportional to the number of distance computations of the most
stressed node. Obviously this quantity is upper bounded by the capacity of the nodes of
the MCAN. However, our experiments show that for most of the ranges, the intraquery
parallelism remains quite lower than this upper bound, which, for example, in the case
of the vector data-set is 1,542.

5 Related Work and Conclusions

There have been several recent attempts to propose distributed structures for multi-
dimensional or vector-based data. The MAAN structure [5] use locality preserving
hashing to support multi-attribute and range queries under the Chord protocol. The kd-
trees and space-filling curves have been used by Prasanna, Yang and Garcia-Molina in
[9] to support multi-dimensional range queries in P2P environments. A P2P system for
information retrieval based on the vector space model and the latent semantic indexing
together with the CAN P2P protocol has been proposed by Tang, Xu and Dwarkadas
[14]. The problem of vector-based similarity search in P2P Data Networks has nicely
been formalized by Banaei-Kashani and Shahabi [1] as the family of Small-World based
Access Methods, SWAM. So far, the only native metric-based distributed data structure
is the GHT* [2,3].

To the best of our knowledge, the MCAN structure is the first attempt to bridge
Content–Addressable Networks and the capabilities of metric space indexing. MCAN
is based on the concept of choosing pivots to map objects of a generic metric space in a
multidimensional vector space of the MCAN. Since the mapping is contractive, 100%
recall for queries processed by the MCAN is guaranteed.

The results summarized in Figures 8 and 9 should be considered as the first attempt
to also demonstrate theinterquery parallelismability of MCAN. In fact, if on the one
hand it is important to guarantee fast response time to individual queries, on the other

hand the query should not involve the whole network, because other queries can be
issued in the network at the same time, and not active nodes can simultaneously start
evaluating them. Obviously, queries with large radii need more computational resources
than small queries, but typically, there is always sufficient space for other queries to run.
Also observe that the computational load on nodes activated by a query is not the same
and on some nodes the load is really minor. We are planning to fully investigate this
issue in the near future.

Further future directions include the implementation of the Nearest Neighbor queries,
more sophisticated leaving and join policies, and transaction management.

References

1. F. Banaei-Kashani and C. Shahabi. Swam: a family of access methods for similarity-search
in peer-to-peer data networks. InCIKM ’04: Proceedings of the Thirteenth ACM conference
on Information and knowledge management, pages 304–313. ACM Press, 2004.

2. M. Batko, C. Gennaro, and P. Zezula. A scalable nearest neighbor search in p2p systems. In
Proc. of the the 2nd International Workshop on Databases, Information Systems and Peer-
to-Peer Computing, Lecture Notes in Computer Science, August 2004. To appear.

3. M. Batko, C. Gennaro, and P. Zezula. Scalable similarity search in metric spaces. InProc.
of the DELOS Workshop on Digital Library Architectures: Peer-to-Peer, Grid, and Service-
Orientation, pages 213–224, June 2004.

4. B. Bustos, G. Navarro, and E. Chvez. Pivot selection techniques for proximity searching in
metric spaces. InProc. of SCCC01, pages 33–40, 2001.

5. M. Cai, M. Frank, J. Chen, and P. Szekely. Maan: A multi-attribute addressable network for
grid information services. InGRID ’03: Proceedings of the Fourth International Workshop
on Grid Computing, page 184, Washington, DC, USA, 2003. IEEE Computer Society.

6. E. Chvez, G. Navarro, R. Baeza-Yates, and J. L. Marroqun. Searching in metric spaces.ACM
Comput. Surv., 33(3):273–321, 2001.

7. R. Devine. Design and implementation of DDH: A distributed dynamic hashing algorithm.
In FODO, pages 101–114, 1993.

8. V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance searching index for
metric data sets.Multimedia Tools and Applications, 21(1):9–13, 2003.

9. P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all: multi-dimensional
queries in p2p systems. InWebDB ’04: Proceedings of the 7th International Workshop on
the Web and Databases, pages 19–24, New York, NY, USA, 2004. ACM Press.

10. W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* — a scalable, distributed data structure.
ACM Transactions on Database Systems, 21(4):480–525, 1996.

11. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content address-
able network. InProc. of ACM SIGCOMM 2001, pages 161–172, 2001.

12. J. Saia, A. Fiat, S. D. Gribble, A. R. Karlin, and S. Saroiu. Dynamically fault-tolerant content
addressable networks. InIPTPS, pages 270–279, 2002.

13. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable Peer-
To-Peer lookup service for internet applications. InProc. of the 2001 ACM SIGCOMM
Conference, pages 149–160, 2001.

14. C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-organizing
semantic overlay networks, 2002.

