
A Metric Index for
Approximate Text Management

Vlastislav Dohnal
Masaryk University

Brno, Czech Republic
xdohnal@fi.muni.cz

Claudio Gennaro
ISTI-CNR
Pisa, Italy

gennaro@iei.pi.cnr.it

Pavel Zezula
Masaryk University

Brno, Czech Republic
zezula@fi.muni.cz

Abstract

Text collections of data need not only search support for
identical objects, but the approximate matching is even
more important. A suitable metric to such a task is the
edit distance measure. However, the quadratic computa-
tional complexity of edit distance prevents from apply-
ing naive storage organizations, such as the sequential
search, and more sophisticated search structures must
be applied. We have investigated the properties of the
D-index to approximate searching and matching in text
databases. The experiments confirm a very good perfor-
mance for retrieving close objects and sub-linear scala-
bility to process large files. Even the similarity joins can
be performed efficiently.

Key Words:
metric data, similarity search, index structures, similarity
join

1. Introduction

In the proliferation of web-based information systems,
digital collections of text data are probably the most im-
portant sources of information. Contrary to traditional
databases, text collections are not strictly structured and
individual text parts – such as words, sentences, para-
graphs, etc. – can have different significance to differ-
ent individuals. Text strings are also more heterogeneous
and, unfortunately, also more error prone. Consequently,
string processing in databases has become a very fertile
and important area of database research.

The search operation is the most prominent in any
kind of databases, and the text databases are not excep-
tions. Since text is typically represented as a character
string, pairs of strings can be compared and the exact
match decided. However, the longer the strings are the
less significant the exact match is: the text strings can
contain errors of any kind and even the correct strings
may have small differences. This gives a motivation to
a search allowing errors, or approximate search, which
requires a definition of the concept of similarity, as well
as a specification of algorithms to evaluate it.

The problem of correcting misspelled words in
written text is rather old, and the experience reveals that
80% of these errors are corrected allowing just one in-
sertion, deletion, or transposition. But the problem is not
only grammatical, because an incorrect word that is en-
tered in the database cannot be retrieved anymore on the

exact match bases. According to [8], text typically con-
tain about 2% of typing and spelling errors.

There are many application areas for which the ap-
proximate matching is a relevant problem. Nowadays,
virtually all text retrieval (or filtering) systems allow
some extended facilities to recover from errors in text or
patterns. Other text processing applications are spelling
checkers, natural language interfaces, computer tutoring,
and language learning, to name only a few of them.

But there are also applications that consider longer
text units than words. Consider a database of sentences
for which translations to other languages are known.
When a sentence is to be translated, such the database
can suggest a possible translation provided the sentence
or its close approximation already exists in the database.
Another application is the copy detection where the unit
of comparison is the whole document.

The development of Internet services often requires
an integration of heterogeneous sources of data. Such
sources are typically unstructured whereas the intended
services often require structured data. Once again, the
main challenge is to provide consistent and error-free
data, which implies the data cleaning, typically imple-
mented by a sort of similarity join. In order to per-
form such tasks, similarity rules are specified to decide
whether specific pieces of data may actually be the same
things or not. However, when the database is large, the
data cleaning can take a long time, so the processing time
(or the performance) is the most critical factor that can
only be reduced by means of convenient similarity search
indexes.

For two strings of length n and m available in main
memory, there are several dynamic programming algo-
rithms to compute the edit distance of the strings in
O(nm) time and space. Refer to [9] for an excellent
overview of the work and additional references. Index
structures such as Suffix arrays and PAT-arrays allow for
fast searches on strings, but they are difficult to update
in secondary memory. Suffix trees are other classical in-
dexes for strings, but they have unbalanced tree topol-
ogy, which makes the dynamic maintenance in secondary
storage difficult. These structures have also a lot of lim-
itations to properly support the approximate string man-
agement.

The problem of approximate string processing has
recently been studied in [4] in the context of data clean-
ing, that is removing inconsistencies and errors from
large data sets such as occurring in data warehouses. A
technique for building approximate string join capabili-

ties on top of commercial databases has been proposed
in [6]. The core idea of these approaches is to transform
the difficult problem of approximate string matching into
other search problems for which efficient solution ex-
ists. A viable alternative is to explore an application of a
general-purpose metric index, see [1] for a survey, to the
problem of approximate string processing.

In this article, we use the edit distance to measure
similarity of text strings, and we demonstrate that the D-
index [3] metric structure can perform the similarity (ap-
proximate) search and join operations fast. In Section
2., we define principles of the similarity search in metric
spaces. Performance evaluation for large collections of
the Czech language sentences is reported in Section 3..

2. Metric Space Searching

A convenient way to assess similarity between two ob-
jects is to apply metric functions to decide the close-
ness of the objects as a distance, that is the objects’
dis-similarity. A metric space M = (D; d) is defined
by a domain of objects (elements, points) D and a to-
tal (distance) function d – a non negative (d(x; y) � 0

with d(x; y) = 0 iff x = y) and symmetric (d(x; y) =
d(y; x)) function, which satisfies the triangle inequality
(d(x; y) � d(x; z) + d(z; y), 8x; y; z 2 D).

In general, the problem of indexing in metric spaces
can be defined as follows: given a set X � D in the met-
ric space M, preprocess or structure the elements of X
so that similarity queries can be answered efficiently. For
a query object q 2 D, two fundamental similarity queries
can be defined. A range query retrieves all elements
within distance r to q, that is the set fx 2 X; d(q; x) �
rg. A nearest neighbor query retrieves the h closest el-
ements to q, that is a set R � X such that jRj = h and
8x 2 R; y 2 X � R; d(q; x) � d(q; y). For two sets
A � D; B � D, the similarity join operation retrieves
all pairs (x; y) 2 A � B such that the distance between
x and y is less than or equal to a predefined value k. If
A = B, the operation is called the similarity self-join
– in this article, we only concentrate on this version of
similarity joins.

For the space constraints of this article, we only
consider here the similarity range and self-join opera-
tions. In the following, we introduce the edit distance as
a convenient metric function for comparing text strings.
We also outline the principles of the D-index, which sup-
ports indexing of metric data.

2.1 Edit distance

The edit distance, also known as the Levenshtein dis-
tance, is a distance function which measures similarity
between two text strings. In fact, it computes the mini-
mum number of atomic edit operations needed to trans-
form one string into the other. The atomic operations are
insertion, deletion and replacement of one character.
For illustration, consider the following examples:

� d(’lenght’,’length’)=2 – two replace-
ments of the two last letters, h!t and t!h,

(a)
2ρ

x
v

x
0

x
1

d
m

x
2

1)(
1

=xbps

−=)(
2
xbps

0)(
0

=xbps

d
m 2ρ

Separable

set 4

Separable

set 1

Separable

set 2

Separable

set 3

Exclusion

Set

(b)

Figure 1. The bps split function (a) and the combination
of two bps functions (b).

� d(’sting’,’string’)=1 – one insertion of r,

� d(’application’,’applet’)=6 – one re-
placement of the 5th letter, i!e, two deletions of
the 6th and 7th letters and three deletions of the
three last letters (i; o; n).

The time complexity of algorithms implementing
the edit distance function dedit(x; y) is O(len(x) �
len(y)), that is evaluations of the edit distance function
are high CPU consuming operations. For more details,
see the recent survey [9].

2.2 D-Index

The D-Index is a multi-level metric structure, consisting
of the search-separable buckets at each level. The struc-
ture supports easy insertion and bounded search costs be-
cause at most one bucket needs to be accessed at each
level for range queries up to a predefined value of search
radius �. At the same time, the applied pivot-based strat-
egy significantly reduces the number of distance compu-
tations in accessed buckets. In the following, we pro-
vide a brief overview of the D-Index, more details can be
found in [5] and the full specification, as well as perfor-
mance evaluations, are available in [3].

The partitioning principles of the D-Index are based
on a multiple definition of a mapping function, called the
�-split function, as illustrated in Figure 1a. This function
uses one reference object xv and the medium distance
dm to partition a data set into three subsets. The result of
the following bps function gives a unique identification
of the set to which the object x belongs:

bps(x) =

8
<
:

0 if d(x; xv) � dm � �

1 if d(x; xv) > dm + �

� otherwise

The subset of objects characterized by the symbol ’�’
is called the exclusion set, while the subsets of objects
characterized by the symbols 0 and 1 are the separable
sets, because any range query with radius not larger than
� cannot find qualifying objects in both the subsets.

More separable sets can be obtained as a combina-
tion of bps functions, where the resulting exclusion set is
the union of the exclusion sets of the original split func-
tions. Furthermore, the new separable sets are obtained
as the intersection of all possible pairs of separable sets
of the original functions. Figure 1b gives an illustration
of this idea for the case of two split functions. The sepa-
rable sets and the exclusion set form the separable buck-
ets and the exclusion bucket of one level of the D-index
structure, respectively.

Naturally, the more separable buckets we have, the
larger the exclusion bucket is. For large exclusion bucket,
the D-index allows an additional level of splitting by ap-
plying a new set of split functions on the exclusion bucket
of the previous level. The exclusion bucket of the last
level forms the exclusion bucket of the whole structure.
The �-split functions of individual levels should be dif-
ferent but they must use the same �. Moreover, by using
different number of split functions (generally decreasing
with the level), the D-Index structure can have different
number of buckets at individual levels. In order to deal
with overflow problems and growing files, buckets are
implemented as elastic buckets and consist of the nec-
essary number of fixed-size blocks (pages) – basic disk
access units.

Due to the mathematical properties of the split func-
tions precisely defined in [3], the range queries up to ra-
dius � are solved by accessing at most one bucket per
level, plus the exclusion bucket of the whole structure.
This can intuitively be comprehended by the fact that
an arbitrary object belonging to a separable bucket is at
distance at least 2� from any object of other separable
bucket of the same level. With additional computational
effort, the D-Index executes range queries of radii greater
than �. The D-index also supports the nearest neighbor(s)
queries.

3. Performance Evaluation

In order to demonstrate suitability of the D-index to the
approximate management of text data, we have used sen-
tences from the Czech language corpus compared by
the edit distance measure. For illustration, see Figure
2 for the edit distance distribution of our data sets. Ob-
serve that the most frequent distance was around 100 and
the longest distance was 500, equal to the length of the
longest sentence. In all experiments, the search costs are
measured in terms of block reads and the number of dis-
tance computations. The basic structure of D-index was
fixed for all tests and consisted of 9 levels and 39 buck-
ets. However, due to the elastic implementation of buck-
ets with a variable number of blocks, we could easily
manage data files of different sizes. In the following,
we report results of our experiments separately for the
similarity range queries and the similarity self-join oper-
ations.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 100 200 300 400 500

Distance

Frequency (%)

Figure 2. Distance distribution for the data set

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500

Radius

 Distance Computations

D-index
Seq

0

200

400

600

800

1000

1200

0 100 200 300 400 500

Radius

 Page Reads

D-index
Seq

Figure 3. Range queries.

3.1 Range Search

All presented cost values are averages obtained by execu-
tion of 50 queries with different query objects (sentences)
and a constant search radius.

The objective of the first group of experiments was
to study the relationship between the search radius (or the
selectivity) and the search costs considering a data set
of constant size. In the second group, we concentrated
on small query radii and by significantly changing the
cardinality of data sets, we studied the scalability of the
query execution.

Selectivity-cost ratio. In order to test the basic proper-
ties of the D-index to search text data, we have consid-
ered a set of 50,000 sentences. Though we have tested all
possible query radii, we have mainly focused on small
radii. That corresponds to the semantically most rele-
vant query specifications – objects that are very close to
a given reference can be interesting. Recall that a range
query returns all objects whose distances from the query
object are within the given query radius.

Figure 3 shows global trends of costs needed to
evaluate range queries, separately for the number of dis-
tance computations and the block reads. As a reference,
the figures also include the costs of the sequential ap-
proach (SEQ) using the exhaustive scan. This does not
depend on query radii so the search costs are constant.
The search costs of the D-index are very low for small
query radii, but for very large radii, the number of dis-
tance computations can become as high as the number
that is needed for the SEQ – all objects must be tested
to solve the query. Notice that the number of disk reads
can even become higher than the number of disk reads
of SEQ, because the average utilization of a block of the

D-index is lower than the average block utilization of the
SEQ. As Figure 3 illustrates, the D-index requires less
page reads than SEQ up to the radius 190 where such
queries return about 80% of the whole database which is
typically to much to be interesting from the search point
of view. Due to the computational complexity of the edit
distance, the page reads are not so significant because
one page read from a disk takes less than one millisecond
while the distance computations between a query object
and objects in only one block can take 15 milliseconds.

Searching for typing errors or duplicates results in
range queries with small radii and the D-index solves
these types of queries very efficiently. The following ta-
ble shows the average numbers of page reads and dis-
tance computations needed by the D-index structure to
evaluate queries of small radii. Due to the pivot-based
strategy applied to the D-index, only some objects of ac-
cessed pages have to be examined and distances to them
computed, this technique saves a lot of distance compu-
tations.

Radius #pages #dist
1 2.74 29.08
2 6.34 83.34
3 14.88 201.38
4 30.64 411.60

Searching for objects within the distance 1 to a
query object takes less than 3 page reads and 29 dis-
tance computations – such queries are solved in 9 mil-
liseconds. A range query with radius r = 4 is solved us-
ing 411 distance computations, which is less than 1% of
the sequential scan (it needs 50,000 computations), and
30 page reads, which is about 2.5% of all pages – all ob-
jects are stored in 1192 pages. But even queries with radii
4 take at average about 0.125 seconds. This is in a sharp
contrast with 16 seconds of the SEQ access method.

We have also compared the costs for the execution
of the successful and unsuccessful exact match queries,
i.e. executing queries with radius 0 separately for query
objects present and not present in the database. The fol-
lowing table shows the average results for 50 different
queries of both types.

Exact match #pages #dist
successful 1.14 12.42

unsuccessful 0.46 11.38

On average, the D-index needs 0.46 page reads for
answering the unsuccessful exact match query and 1.14
page reads for successful query. This means that the D-
index typically needs only 1 (rarely 2) block access to
evaluate the exact match queries. Due to the construction
of D-index, the absence of the searched object can even
be inferred from the D-index structure, so in many cases
no block access is needed for the unsuccessful search.
The distance computations are mostly due to the evalua-
tion of split functions, i.e. strictly related to the D-index
structure. Provided the (chosen) reference objects of split
functions are short sentences, the costs of such distance
computations can be significantly reduced.

0

500

1000

1500

2000

2500

1 2 3 4 5 6

Data Set Size (x 50,000)

 Distance Computations

r=1
r=2
r=3
r=4

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6

Data Set Size (x 50,000)

 Page Reads

r=1
r=2
r=3
r=4

Figure 4. Range search scalability.

Scalability. To analyze the range search scalability of
D-index, we have considered collections of sentences
ranging from 50,000 to 300,000 elements. We have con-
ducted tests to see how the costs for range queries (from
r = 1 to r = 4) grow with the size of the data set. The
obtained results are reported in graphs in Figure 4, where
individual curves correspond to different query radii.

¿From the figure we can see that the search costs
scale up with slightly sub-linear trends. This is a very
desirable feature that guarantees the applicability of the
D-index not only on small data sets but also on large col-
lections of data.

As the following table demonstrates, the search
scale up for exact match queries, both successful and
unsuccessful, is more or less constant, i.e. the D-index
needs nearly the same number of distance computations
and page reads for different data set sizes.

Data Size #pages #dist
50,000 1.14 12.42

100,000 1.22 13.04
150,000 1.30 13.58
200,000 1.38 13.90
250,000 1.58 14.58
300,000 1.60 14.78

This is an important property because an efficient
exact match is needed in dynamic files where new objects
are inserted and old objects deleted – specific object in-
stances are usually located through exact match queries.

3.2 Similarity Self-join

The implementation of the similarity joins is not an easy
task. The traditional hash joins and sort merge joins do
not carry over easily to the similarity join problem, as
the join predicate makes the use of a distance threshold
which requires an evaluation of a distance function be-
tween pairs of objects. The main problem is that there
is no ordering of objects in a metric space. The naive
algorithm strictly follows the definition of similarity join
and computes the Cartesian product between two sets
to decide the pairs of objects that must be checked on
the threshold k. This algorithm has the time complex-
ity O(N2), where N = jX j. A more efficient imple-
mentation, called the nested loops, uses the symmetric
property of metric distance functions for pruning some

pairs. The time complexity is O(
N �(N�1)

2
). More so-

phisticated methods use pre-filtering strategies to discard
dissimilar pairs without actually computing distances be-
tween them. Such pre-filtering rules can save many use-
less (and expensive) distance computations and make al-
gorithms more efficient. The pre-filtering rules are typ-
ically based on a simplified or an approximate distance
measure, which is much cheaper to compute.

In order to demonstrate how the D-index can be
used for the similarity self-join, we assume the data
set X � D organized by this structure and apply
the search strategy as follows: for 8x 2 X , perform
range query(x; k).

Join-cost ratio. To analyze basic properties of the D-
index to process similarity self-joins, we have conducted
our experiments on a set of 50,000 sentences. Though
this approach can be applied to any threshold k, we have
mainly concentrated on small k, which are used in the
data cleaning area. The following table shows costs of
similarity self-join queries with different k.

k #pages #dist
1 13,257 794,866
2 91,850 1,746,877
3 331,310 4,073,230
4 760,291 9,122,964

As expected, the number of distance computations (or
the processing costs in general) increases quite fast with
growing k. However, the nested loops algorithm (NL) is
much more expensive. For k = 4, the NL algorithm is
137 times slower, and for k = 1, the NL algorithm uses
even 1500 times more distance computations. In this re-
spect, the performance of our approach is quite compara-
ble to the approximate string join algorithm proposed in
[6]. This approach is based on segmenting strings into q-
grams and introduces an additional overhead for building
lists of q-grams. However, the reported search speedup
with respect to NL, is practically the same.

Another recent paper [4] proposes the neighbor-
hood join algorithm (NJ), which uses the difference of
lengths of compared strings (abs(jxj � jyj)) as the sim-
plified distance function for the pre-filtering rule. The
authors of [4] have tested NJ algorithm on bibliographic
strings with k equal to 15% of the maximum distance.
The NJ has saved from 33% to 72% of distance computa-
tions with respect to the NL algorithm, depending on the
distance distribution. In order to contrast such approach
with our technique, we have also set k to the 15% of the
maximum distance of our data set, specifically k = 35.
For this case, our algorithm saved 70% of distance com-
putations.

Note that the experiments in [6] and [4] were con-
ducted on data sets of comparable sizes, but quite shorter
strings, which makes the problem of similarity joins eas-
ier. We can conclude that the implementation of the self-
join through the general index structure, D-index, is very
competitive to the specialized algorithms for strings.

Scalability. Considering the web-based dimension of
data, scalability is probably the most important issue to

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1 2 3 4 5 6

Size in objects (x50,000)

Distace computations

k=1
k=2
k=3
k=4

nested loops
10000

100000

1e+06

1e+07

1e+08

1 2 3 4 5 6

Size in objects (x50,000)

Page reads

k=1
k=2
k=3
k=4

Figure 5. Join queries.

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6

Size in objects (x50,000)

Speed up (s)

k=1
k=2
k=3
k=4

Figure 6. Join speed-up.

investigate. In the elementary case, it is necessary to in-
vestigate what happens with the performance when the
size of data doubles. We have experimentally investi-
gated the behavior of the D-index on data sets with sizes
from 50,000 to 300,000 objects (sentences). Figure 5
presents results for k = 1; 2; 3 and 4. Considering k = 1,
the number of distance computations has increased only
15 times when the data set was enlarged 6 times (from
50,000 to 300,000 objects). Though this is not linear,
it is in a sharp contrast with the nested loops algorithm,
which performed 36 times more slowly. For k = 4, the
results are not so promising, the execution has consumed
30 times more distance computations but it was still bet-
ter than the nested loops algorithm. In [4], the authors
have executed experiments on two different sizes of the
same data and their NJ specialized algorithm deteriorated
about 35 times while the data set has been enlarged 5
times only.

Figure 6 reports the speed-up, s, which is defined
as

s =
N �(N � 1)

2�n
;

where N is the number of objects stored in the D-index
and n is the number of distance evaluations needed by
our algorithm. In fact, the speed-up says how many times
our algorithm is faster than the NL algorithm. The fig-
ure demonstrates that the speedup never deteriorates with
growing files and for very low values of k, it actually
grows quite fast. For higher values of k, the speedup is
not so high, and for k � 3 it is practically constant with
respect to the data set size. This implies that similarity
self-join with the D-index is also suitable for large and

growing data sets.
We have observed the same trends both for distance

computations and page reads. But as explained before,
the page reads aren’t so important compared to the dis-
tance computations.

4. Conclusions

Approximate string matching in text databases is an im-
portant search operation and the edit distance is a con-
venient way how such approximation can be specified.
However, due to the quadratic computational complex-
ity of the edit distance, the execution costs are high on
large files, and indexing techniques must be applied. We
have observed by experiments that a sequential similarity
range search on 50,000 sentences takes about 16 seconds.
But to perform the nested loop similarity self-join algo-
rithm on the same file would take 25,000 times more,
which is about 4 days and 15 hours.

We have applied the D-index, a metric index struc-
ture, and we have performed numerous experiments to
analyze its search properties. Whenever possible, we
have also contrasted our results with recent specialized
proposals for approximate string processing. In general,
we can conclude that the application of the D-index is
never worse in performance than the specialized tech-
niques. The D-index is strictly sub-linear for all mean-
ingful search requests, that is search queries retrieving
relatively small subsets of the searched data sets. The D-
index is extremely efficient for small query radii where
practically on-line response time is guaranteed. The im-
portant feature is that the D-index scales up well to pro-
cessing large files and experiments reveal even slightly
sub-linear scale up for similarity range queries. Though
the scale up for the similarity self-join processing is not
linear, it is still better than the scale up reported for the
specialized techniques.

In principle, any metric index structure can be used
to implement our algorithm of the similarity join. Our
choice of the D-index is based on an earlier comparison
of index structures summarized in [3]. Besides the D-
index, the authors also studied the performance of the
M-Tree [2] and a sequential organization – according to
[1], other metric index structures do not support disk stor-
age and keep objects only in the main memory. Presented
experiments reveal that for small range query radii, typi-
cal for similarity join operations, the D-index performs at
least 6 times faster than the M-Tree, and it is much more
faster than the sequential scan. We plan to systematically
investigate this issue in the near future.

We have conducted our experiments on sentences.
However, it is easy to imagine that also text units of dif-
ferent granularity, such as individual words or paragraphs
with words as string symbols, can be handled in a simi-
lar way. However, the main advantage of the D-index is
that it can also perform similar operations on other metric
data. As suggested in [7], where the problem of similar-
ity join on XML structures is investigated, metric indexes
could be applied for approximate matching of tree struc-
tures. We consider this challenge as our second major
future research direction.

References

[1] E. Chavez, G. Navarro, R. Baeza-Yates, and J. Mar-
roquin: Searching in Metric Spaces. ACM Comput-
ing Surveys, 33(3):273-321, 2001.

[2] P. Ciaccia, M. Patella, and P. Zezula: M-tree: An Ef-
ficient Access Method for Similarity Search in Met-
ric Spaces. Proceedings of the 23rd VLDB Confer-
ence, pp. 426-435, 1997.

[3] V. Dohnal, C. Gennaro, P. Savino, P. Zezula: D-
Index: Distance Searching Index for Metric Data
Sets. To appear in Multimedia Tools and Applica-
tions, Kluwer, 2002.

[4] H. Galhardas, D. Florescu,D. Shasha, E. Simon,
and C.A. Saita: Declarative Data Cleaning: Lan-
guage, Model, and Algorithms. Proceedings of the
27th VLDB Conference, Rome, Italy, 2001, pp. 371-
380.

[5] C. Gennaro, P. Savino, and P. Zezula: Similarity
Search in Metric Databases through Hashing. Pro-
ceedings of ACM Multimedia 2001 Workshops, Oc-
tober 2001, Ottawa, Canada, pp. 1-5.

[6] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava: Approximate
String Joins in a Database (Almost) for Free. Pro-
ceedings of the 27th VLDB Conference, Rome, Italy,
2001, pp. 491-500.

[7] S. Guha, H.V. Jagadish, N. Koudas, D. Srivastava,
and T. Yu: Approximate XML Joins. Proceedings of
ACM SIGMOD 2002 to appear.

[8] K. Kukich: Techniques for automatically correct-
ing words in text. ACM Computing Surveys, 1992,
24(4):377-439.

[9] G. Navaro: A guided tour to approximate string
matching. ACM Computing Surveys, 2001, 33(1):31-
88.

