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Abstract
A query language for Digital Libraries is presented, which offers access

to documents by structure and sophisticated usage of metadata. The lan-
guage is based on a mathematical model of digital library documents, cen-
tered around a multilevel representation of documents as versions, views
and manifestations. The core of the model is the notion of document
view, which is recursive, and captures the content and structure of a doc-
ument. The metadata representation distinguishes between formats and
specifications, so being able to accommodate different metadata formats,
even for the same document. A query is a logical formula, and its result
are the digital library documents satisfying the user query.

1 Introduction

Current Digital Libraries (DLs) strongly resemble traditional libraries based on
on-line public access catalogs: the only added value offered by DLs is the on-
line availability also of documents [2, 4, 3]. As a consequence, the information
retrieval service offered to DL users boils down to queries expressing very sim-
ple conditions on descriptive metadata. From an information system point of
view, this kind of functionality equates current DLs to pre-database informa-
tion systems and, what is worse, prevents the full exploitation of DL contents,
defeating the huge investments that are necessary to create such contents in the
first place.

Emerging standards and well-consolidated technologies can contribute to
overcome the present state of affair, permitting the realization of DLs offer-
ing information access services that are adequate to user expectations. Three
aspects on which progress is possible are:

– more sophisticated usage of metadata1. A wide range of metadata formats
1throughout the paper, we use the term “metadata” as a synonym of “descriptive meta-

data”.
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exist and are actually employed for describing DL content [1, 13, 16]. Po-
tentially, a DL could store information about the metadata models them-
selves, thus supporting in a principled way the co-existence of more stan-
dards in the same system, and even the exploitation of the metamodel
in querying. For instance: “What are the fields available in the meta-
data format x?”, or “What different formats are supported for a certain
attribute value?”.

– structure-based access. Digital formats highlighting document structure
are available nowadays (e.g. Postscript, PDF), which means that, po-
tentially, all the results obtained for querying structured (e.g. XML) or
semi-structured data, could be put at work in a DL system. For instance:
“What documents have a section titled x?”, or “What documents have a
reference to x in the bibliography?”.

– content-based access. Typically, a DL stores its documents in digital for-
mat, which means that, potentially, all the results obtained in content-
based multimedia information retrieval, could be put at work in a DL
system.

The objective of the present work is to advance the state of the art in DL
systems, by introducing a query language that addresses the first two aspects
introduced above, while being amenable to be extended to the third one. This
query language, which we call “multi-dimensional” as it addresses various di-
mensions of existence of a document, is to be intended as a foundation for DL
systems, in the same sense that first-order predicate calculus is a foundation
for relational database systems. Thus, we are not aiming at user-friendliness or
efficient processing, but rather expressivity. Despite its theoretical nature, this
work is carried out in the context of a project aiming at the implementation of
a DL system [10, 5], as a feasibility study of a novel information access service
that the project will eventually realize.

The paper is structured as follows. The semantic universe of the query lan-
guage is introduced in 3 stages: the document model (Section 2), the metadata
model (Section 3) and the DL model (Section 4). The query language itself is
given in Sections 5 and 6. Finally, Section 7 concludes.

As notational conventions, we will let N stand for the set of natural numbers
and N+ for N−{0}. The set of the first i natural numbers, i.e. {0, 1, . . . , i−1},
will be denoted [i] for short. Given any set A, A? denotes the set of finite
sequences of A’s elements, while |A| stands for the cardinality of set A.

2 The document model

The document model is inspired to the IFLA-FRBR model [16]. It distinguishes
four aspects of a document:

(1) documents, which model the more general aspect of a document, seen
as a distinct intellectual creation. For example, the article “The SOMLib Dig-
ital Library System” by Andreas Rauber and Dieter Mekl, the book “Digital
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Libraries and Electronic Publishing” by William Arms, the lesson “A dynamic
Warehouse for XML Data of the Web” by Serge Abiteboul, the proceeding of
the conference ECDL’99, are all modeled as documents.

(2) document instances, also referred to as versions, which are specific edi-
tions of documents. In fact, a document is recognized through its individ-
ual instances along the time dimension. The preliminary version of the paper
“The SOMLib Digital Library System”, the version submitted to the conference
ECDL’99, the version published on the ECDL’99 proceeding, are examples of
successive editions of the same document.

(3) views, which are specific intellectual expressions of document instances.
A view is one specific intellectual expression of the version of a document. A
view excludes physical aspects that are not integral to the intellectual percep-
tion of a document. A document version is perceived through one or more
views. For example, the original version of the ECDL’99 proceedings might be
disseminated in three different views: (a) a “structured textual view” containing
a “Preface” created by the conference Chair, and the list of papers presented
to the conference, b) a “textual view structured into thematic sessions”, where
each session contains the documents presented during that session, and c) the
“presentation view”, containing the list of the slides presented at the conference.

(4) manifestations, which model the physical formats under which a doc-
ument is disseminated. Example of manifestations are: the MPEG file which
maintains the video recording of the presentation made by Andreas Rauber at
the ECDL ’99 Conference, the AVI file of the same video, the Postscript file of
the paper presented by Andreas Rauber at the ECDL ’99, etc.

2.1 Documents

Each document is modelled, according to the above requirements, mainly as a
sequence of versions, which are drawn from a set V, to be defined next. Formally,
the set of documents, D, is the countable set:

D = {〈n, h, V, v〉 ∈ (N+ ×H× 2V × (N → V)) | v is a bijection from [n] to V }

where, for each document d = 〈nd, hd, Vd, vd〉: (a) nd is the document order;
(b) hd is the document publishing authority, which is the entity responsible for
the document; as authorities play a major role in the definition of document
collections, they are explicitly considered by the model, unlike the (rather large)
number of attributes of documents that the model ignores for reasons of rele-
vance; authorities are drawn form a countable set H; (c) Vd are the document
versions; (d) vd is the document version function, which indexes the document
versions with the first nd natural numbers; vd is required to be total (to make
sure that all indexes have a version), injective and surjective (to make sure that
each version is indexed exactly once).
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2.2 Versions

As a document version is just a finite set of views, we can use the same style
adopted for documents to model the set V,i.e.:

V = {〈n, W 〉 ∈ (N+ × 2W) | |W | = n}.

2.3 Views

The definition of views is more complex, thus it will be developed in stages:
in the first one, we will describe how views are analyzed; in the second stage,
we will provide an informal definition of views, based on the previous analysis;
finally, in the third stage we will give the mathematical definition of the set W.

2.3.1 View analysis

Let us consider the view shown in Figure 1.(a), which is a section titled “Views”,
has an opening text and a couple of subsections, titled “High Views” and “Low
Views”. Regularity can be imposed on this view by analyzing it as shown in
Figure 1.(b), in which the view is seen as an object (the outer box), divided
into two pieces: one, the inner top box, holds content, i.e. the section opening
text; the other, depicted as an oval, holds the section structure, and consisting
in the example of two parts: the section title and the section body (for better
readability these two parts are separated in Figure 1.(b) by a dashed line).
These parts can be analyzed (Figure 1.(c)) in the same way: the title part has
content (the title itself) and no sub-parts; the body part, on the other hand,
has no content but two sub-parts: the two subsections. The same pattern can
finally be applied (Figure 1.(d)) to each subsection.

This example shows that the notion of view is inherently recursive: the basic
elements of the recursion, technically the atomic views, have just content and
no sub-elements, hence no structure (the title part of the previous example is
one such element). All the other views are built by aggregating these elements
into hierarchical structures, and endowing with content each so created view
(e.g. the section in Figure 1).

For simplicity, our model will only consider contents of type text, even
though the extension to other types is possible [14]. As far as structure is
concerned, we consider ordered sets and sequences. The former kind is useful
to model views whose elements are, albeit ordered for formal reasons, to be re-
garded as likewise; this could be the case of a list of references in a paper, which
are in fact order even though their order does not really matter. Sequences are
useful when structure implies order, as for instance amongst the chapters of a
book.

Both structure and content can be enriched. As for the former, we add labels
to views, in order to embody structural information that may be very useful in
querying. Labels can be envisioned in Figures 1.(b)-(d) as tags attached to
ovals; these labels could be SECTION for the oval in Figure 1.(b), TITLE and
BODY for the ovals in Figure 1.(c) (from the top down), and SUBSECTION
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Figure 1: View analysis.

for both the ovals in Figure 1.(d). As for content, in the context of a digital
library, content implies metadata, that is descriptions of content in standard
formats. As there are many metadata formats, it is better to assume that each
view may have several descriptions, in different formats, for its content.

2.3.2 Informal definition of views

Let L be a countable set of labels, and T a disjoint, countable set of content
elements, i.e. text. Also, we will need one more object e, not belonging to any of
the sets introduced so far, to represent the basic structure for building complex
views, i.e. the empty view. Informally, views are defined as follows:

1. the empty view e is a view;

2. if w1, . . . , wk, for k ≥ 1, are views, l ∈ L and t ∈ T , then:

(i) the object having l as label, t as content and the ordered set {w1, . . . , wk}
as structure, is a view;

(ii) the object having l as label, t as content and the sequence 〈w1, . . . , wk〉
as structure, is a view;

3. nothing else is a view.

For instance, the view shown in Figure 1.(a) is represented by the object w ∈ W,
defined as follows, letting t be the opening text of the section, t1 and t2 the
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<?xml version="1.0" standalone="yes"?> <!DOCTYPE SECTION [
<!ELEMENT SECTION (TITLE, BODY)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT BODY (SUBSECTION+)>
<!ELEMENT SUBSECTION (#PCDATA)>

]> <SECTION>
<TITLE> Views </TITLE>
<BODY>
<SUBSECTION> t1 </SUBSECTION>
<SUBSECTION> t2 </SUBSECTION>

</BODY>
</SECTION>

Figure 2: XML serialization of a view.

contents of the two subsections (title included), and using parentheses to enclose
all the elements of a view (i.e. label, content and structure):

w = (SECTION, t, {(TITLE, “V iews”, e),
(BODY, λ, 〈(SUBSECTION, t1, e ),

(SUBSECTION, t2, e ) 〉 ) } ).

Figure 2 shows an XML serialization of w, consisting of a DTD followed
by the actual data. As in XML it is not possible to differentiate sequences and
ordered sets, no bijective mapping between our model and XML exists: different
views may result in the same XML data, thus in translating from XML back
to our model, only views entirely structured as either sequences or ordered sets
can be generated.

2.3.3 Formal definition of views

In order to make the above definition of view precise, we rely on the notions
of constructors and closed sets [11]. Let U be any non-empty set. The view
constructors on U are any two families of functions defined as follows:

AU = {αi : L × T × U i → U | i ∈ N+}
BU = {βi : L × T × U i → U | i ∈ N+}

and satisfying the following conditions, for all i, j ∈ N+, i 6= j: (1) ran(αi) ∩
ran(αj) = ∅, where ran(αi) = {u ∈ U | u = αi(u) for some u ∈ U i}; (2)
ran(βi) ∩ ran(βj) = ∅; (3) ran(αi) ∩ ran(βi) = ∅; (4) αi is injective, that is
for all u,u′ ∈ U i αi(u) = αi(u′) implies u = u′; (5)βi is injective. Taken all
together, these conditions amount to say that the functions in (AU ∪ BU ) are
injective; this guarantees unique readability of views.

Let U be a countably infinite and let B = {e} be a subset of U . The set W
of views is the closure of B under AU and BU , that is:
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1. W contains B;

2. W is closed under AU ∪BU ;

3. if W ′ is a subset of U that is closed under AU ∪BU , then W ⊆W ′.

It can be shown [11] that W exists, is unique, and is given by:

W = B ∪
⋃

R∈(AU∪BU )

R(WnR)

where for each R ∈ (AU ∪BU ), R is nR-ary. W is said to be freely generated by
(AU ∪ BU ) over B, which guarantees uniqueness and existence of the recursive
functions on W to be defined next.

2.3.4 View selectors

For ordered sets, we want to be able to denote the association between a view
and the members of the ordered set in which the view is structured. Accordingly,
we define the relation among views ε ⊆ W ×W as follows:

ε = {(w,w′) ∈ W2 | for some l ∈ L, t ∈ T , and i, j ∈ N+,

w′ = αi(l, t, w1, . . . , wj−1, w, wj+1, . . . , wi)}
For sequences, we want to be able to select the k-th element of the sequence that
makes up a view structure. Accordingly, we define the function σ : (N+×W) →
W as follows:

σ(k,w) =





w′ if for some l ∈ L, t ∈ T , and i ∈ N+,
w = βi(l, t, w1, . . . , wk−1, w

′, wk+1, . . . , wi)
e otherwise

Finally, we make available a relation that captures view composition regardless
of the constructor. This is the relation among views π ⊆ W ×W:

π = ε ∪ {(w,w′) ∈ W ×W | for some k ∈ N+, w = σ(k, w′)}.

3 The metadata model

In order to develop a model of metadata able to incorporate as many metadata
formats as possible, we look at the area of conceptual modeling [8], and specif-
ically at that of semantic data modeling. The model we are going to propose
next is inspired to a class of models known as object-oriented semantic data
models [12, 15]. The model is divided in two parts: one addressing metadata
formats and the other addressing metadata specifications.

Let us be given two countable sets: S, the classes, and P, the properties.
Informally, a metadata format (MF) is a 4-tuple 〈S, P, def,⇒〉, where:

– S ⊆ S is the finite set of the MF classes;
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Table 1: Properties and their definitions for the Dublin Core format

def(C, P ) = D
Property (C, P ) D
Title (DublinCore, Title) String
Creator (DublinCore, Creator) String
Subject (DublinCore, Subject) SubjectScheme
Description (DublinCore, Description) String
Publisher (DublinCore, Publisher) String
Contributor (DublinCore, Contributor) String
Date (DublinCore, Date) DateScheme
Type (DublinCore, Type) DCMITypeVoc
Format (DublinCore, Format) String
Identifier (DublinCore, Identifier) URI
Source (DublinCore, Source) URI
Language (DublinCore, Language) LanguageScheme
Relation (DublinCore, Relation) URI
Coverage (DublinCore, Coverage) CoverageScheme
Rights (DublinCore, Rights) String

– P ⊆ P is the finite set of the MF properties;

– def : (S × P ) → S is the property definition function;

– ⇒⊆ S × S is the MF subclass relation.

Classes group objects of the same kind, i.e. having the same properties, or at-
tributes. These properties are defined by the partial function def, which assigns
to a class and a property at most one domain, that is the class from which the
property may assume values. The subclass relation models an intuitive gen-
eralization/specialization criterion. Formally, the set of metadata format F is
defined to be:

F ⊆ 2S × 2P × ((S × P) → S)× 2S×S

such that, for all 〈S, P, def,⇒〉 ∈ F : (a) def : (S × P ) → S; (b) (S,⇒) is
a partial order; (c) (structural inheritance) for all c, c′, d ∈ S and p ∈ P, if
def(c, p) = d and ⇒ (c′, c) then there exists d′ ∈ S such that def(c′, p) = d′

and ⇒ (d′, d).
Tables 1 and 2 show a formulation of the Dublin Core as a metadata format

mDC = 〈SDC , PDC , defDC ,⇒DC〉, where: SDC is given by the class DublinCore
and the classes shown in the third column of Table 1; PDC consists of the
properties listed in the first column of Table 1; defDC is defined in the second
and third column of Table 1; ⇒DC is shown in Table 2.

For metadata specifications (MS) we will need a countable set of objects
O. Given a MF m = 〈S, P, def,⇒〉, a metadata specification for m, is a triple
〈O,→, prop〉, where:

8



Table 2: The specialization relation of the DC metadata format

⇒ (C, D) ⇒ (C, D)
C D C D
LCSH SubjectScheme ISO639-2 LanguageScheme
MeSH SubjectScheme RFC1766 LanguageScheme
DDC SubjectScheme DCMIPoint CoverageScheme
LCC SubjectScheme ISO3166 CoverageScheme
UDC SubjectScheme DCMIBox CoverageScheme
DCMIPeriod DateScheme TGN CoverageScheme
W3C-DTF DateScheme DCMIPeriod CoverageScheme

W3C-DTF CoverageScheme

– O ⊆ O is the finite set of MS objects;

– →⊆ O × S is the MS instance relation;

– prop: (O × P ) → O is the property function.

The objects in O are the entities that are used to represents metadata values. An
object may be a simple value such as a string or a number, or may be complex,
that is endowed with properties, such as dates or any other user-defined object.
The prop function assigns to each object the properties which it is entitled to,
in accordance to the property definitions in def.

There are three conditions that we require on a MS: instantiation, that is
each object must be instance of at least one class; property induction, that is
each property of an object must be induced by an appropriate definition; and
extensional inheritance, that is if an object is an instance of a class, then it is also
instance of all the superclasses of that class. Formally, we will capture these
conditions in two stages. In the first one, the set of metadata specifications
E is defined to be: E ⊆ 2O × 2O×S × ((O × P) → O) such that, for all
〈O,→, prop〉 ∈ E (instantiation): dom(→) = O. In the second stage, the set of
metadata values,M, is defined to beM ⊆ F×E such that, for all (〈S, P, def,⇒
〉, 〈O,→, prop〉) ∈M, the following hold:

– range(→) ⊆ S;

– (property induction) for all o, o′ ∈ O and p ∈ P, prop(o, p) = o′ implies
that there exists classes c, c′ ∈ S such that: → (o, c), def(c, p) = c′ and
→ (o′, c′),

– (extensional inheritance) for all o ∈ O and c, c′ ∈ S, → (o, c) and ⇒ (c, c′)
imply → (o, c′).

A metadata value is thus a pair whose first member is a MF giving the “type”
of the second member, a MS. For instance, a Dublin Core metadata value of
the Joyce’s Ulysses could be the pair (mDC , sDC) where mDC is as given in the
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previous Section and sDC includes one object, ulysses, representing the whole
specification; ulysses is an instance of the class DublinCore (i.e. , the pair
(ulysses,DublinCore) is in →) and as such specifies a value for each of the 15
properties of the DublinCore class, as desired. As mandated by the property
induction principle, each such value must be an instance of the class that the
function def assigns as range of the property.

4 Digital Libraries Information Space

A digital library information space (DLIS) consists of two main things: the
documents and the metadata. Technically, a DLIS δ is a pair δ = (∆, Λ) where
∆ is a document base and Λ is a metadata base.

A document base ∆ is given by ∆ = 〈D,A, r〉 where:

– D ⊆ D is a set of documents satisfying two constraints: (1) no two doc-
uments can share the same version, and (2) no two authorities can have
the same document;

– A ⊆ A is a set of manifestations, where A stands for the set of all mani-
festations;

– r is a relation that associates the views in D with the manifestations in
A. Formally, letting:

VD = ∪d∈DVd and WD = ∪v∈Vd
Wv,

r ⊆ WD × A. We further require r to be injective, so that the same
manifestation cannot be associated to two different views.

Unlike documents, metadata are not independent entities, in that they exist
in order to describe something else. Accordingly, given a document base ∆, a
metadata base Λ for ∆ = 〈D, A, r〉 is given by Λ = 〈F,E, g〉 where:

– F ⊆ F is a set of metadata formats;

– E ⊆ E is a set of metadata specifications;

– g is a function that assigns metadata specifications in E to document
entities in D, according to the metadata formats in F. Formally, letting
ΩD = D ∪ VD ∪WD ∪ A, g : (ΩD × F ) → E such that, for all x ∈ ΩD,
f ∈ F, g(x, f) = e implies (f, e) ∈M.

ΩD collects all the entities to which metadata can be attached: documents
(in D), their versions (in VD), the views of these versions (in WD) and the
manifestations in the DLIS. g(x, f) gives the metadata specification, e, assigned
to an element x in ΩD for a given metadata format f ∈ F. The condition that
(f, e) be in M guarantees that e is a specification in the appropriate format f.
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Table 3: Syntax and semantics of document predicate symbols

Predicate sym. Semantics
Document (δ, ϕ) |= Document(d) iff d ∈ D
Version (δ, ϕ) |= Version(v) iff v ∈ VD

View (δ, ϕ) |= View(w) iff w ∈ WD

Manifestation (δ, ϕ) |= Manifestation(a) iff a ∈ A
HasAuthority (δ, ϕ) |= HasAuthority(d, h) iff d = 〈n, h, V, v〉 ∈ D
HasVersion (δ, ϕ) |= HasVersion(d, v) iff

d = 〈n, h, V, v〉 ∈ D and v ∈ V
HasView (δ, ϕ) |= HasView(v, w) iff v = 〈m,W 〉 ∈ VD and w ∈ W
HasManifest (δ, ϕ) |= HasManifest(w, a) iff w ∈ WD and (w, a) ∈ r

5 The query language

This section presents a language for querying digital libraries. For reasons of
space, familiarity with first-order syntax is assumed.

5.1 Sorts and semantic structure

A many-sorted logic is the most appropriate tool to take advantage at the syn-
tactic level of the structure of the semantic universe. Thus, our sorts are the
sets which have been defined in the previous part of the paper. For each of these
sort, we will have in the language: (a) a countable set of constants, which are
intended to be names for the objects in the sort; (b) a countable set of variables,
which are intended to range over the objects in the sort; and (c) an existential
quantifier, which will be denoted by subscripting the symbol ∃ by the sort name;
thus, for instance, the existential quantifier for metadata formats will be ∃F .
The intuitive reading of (∃Fx), where x is a variable of sort F , is “there exists
a metadata format x”.

The language has no function symbols, and several predicate symbols, which
are illustrated below, categorized by the dimension of DLIS objects they refer
to. In order to introduce these symbols and their semantics we fix the semantic
structure of the language, that is the class of mathematical objects which will
be used to assign meaning to queries. A denotation function is a bijection,
mapping each constant symbol of each sort to an object of the corresponding
set. On keeping with simplicity, amongst the denotation functions, we chose as
the denotation function ϕ of our semantics, the one which equates the query
language and the metalanguage ; so, since we have used throughout the paper
the (meta)symbol d to denote a generic document, we will use the constant d
to denote the same document in queries, i.e. ϕ(d) = d. A DLIS structure is a
pair (δ, ϕ), where δ is a DLIS. Notice that the function ϕ does not change from
structure to structure.
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Table 4: Syntax and semantics of structure predicate symbols

Predicate s. Semantics
In (δ, ϕ) |= In(w, w’) iff w, w′ ∈ WD and (w, w′) ∈ ε
Of (δ, ϕ) |= Of(w, n, w’) iff w,w′ ∈ WD and w = σ(n,w′)
PartOf (δ, ϕ) |= PartOf(w, w’) iff w,w′ ∈ WD and (w, w′) ∈ π
Root Root(w) iff View(w) ∧ ¬(∃Wx)PartOf(w, x)
Leaf Leaf(w) iff View(w) ∧ ¬(∃Wx)PartOf(x, w)
HasParent HasParent(w,w’) iff PartOf(w, w’)
HasChild HasChild(w,w’) iff PartOf(w’, w)
HasAncestor (δ, ϕ) |= HasAncestor(w, w’) iff w, w′ ∈ WD and (w, w′) ∈ π∗

HasDescendant (δ, ϕ) |= HasDescendant(w, w’) iff w, w′ ∈ WD and (w′, w) ∈ π∗

IsLabelled (δ, ϕ) |= IsLabelled(w, l) iff w ∈ WD and for some i ∈ N+,
w = αi(l, t, w1, . . . , wi) or w = βi(l, t, w1, . . . , wi)

5.2 Predicate symbols

Table 3 shows syntax and semantics of the predicate symbols for querying the
various entities of a document and their relationships. The first column of
the table gives the symbol, while the second gives its semantics. Semantics is
defined relatively to a DLIS structure, and is given by the conditions that make
an assertion involving the predicate symbol true in the DLIS structure. For
instance, the assertion Document(d) turns out to be true in a DLIS structure
(δ, ϕ) just in case the document d, which is the object denoted by the name d,
is in the set of documents D, which is part of the document base ∆, which is in
turn part of the DLIS δ. By the same semantics, the assertion (∃Dx)Document(x)
reads as “there exists an object of sort D that is a document” and is true in a
DLIS structure just in case the set D is not empty. If we remove the existential
quantifier, we obtain the open formula Document(x) so called because in it the
variable x is free, i.e. not bound to any quantifier. The last formula denotes
all the objects u in the domain of interpretation whose names would make the
formula true, if used in place of x. More simply, we say that the object u (a
document, in the present case), satisfies the query. Thus, the above formula is
satisfied by all the documents in the DLIS.

The usage of free variables is essential for querying. Since each free variable
“returns” an object, one uses one free variable for each object desired in the
answer to a query. Thus, in oder to retrieve all the documents and their versions,
the following formula must be used HasVersion(x, y).

5.3 Structural predicate symbols

Table 4 shows the set of predicate symbols for specifying conditions on view
structure. These symbols are divided into three sets. From the top down, we
have:
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Table 5: Syntax and semantics of metadata predicate symbols

Predicate s. Semantics
HasMetadata (δ, ϕ) |= HasMetadata(b,f,e) iff g(b, f) = e
HasClass (δ, ϕ) |= HasClass(f,c) iff f = 〈S, P, def,⇒〉 ∈ F and c ∈ S
HasProperty (δ, ϕ) |= HasProperty(f,p) iff f = 〈S, P, def,⇒〉 ∈ F and p ∈ P
HasDef (δ, ϕ) |= HasDef(f,c,p,d) iff

f = 〈S, P, def,⇒〉 ∈ F and def(c, p) = d
IsA (δ, ϕ) |= IsA(f,c,d) iff f = 〈S, P, def,⇒〉 ∈ F and (c, d) ∈⇒
HasObject (δ, ϕ) |= HasObject(e,o) iff e = 〈O,→, prop〉 ∈ E and o ∈ O
Instance (δ, ϕ) |= Instance(e,o,c) iff e = 〈O,→, prop〉 ∈ E and (o, c) ∈→
Prop (δ, ϕ) |= Prop(e,o,p,o’) iff

e = 〈O,→, prop〉 ∈ E and prop(o, p) = o′

– The predicate symbols addressing the structure of a view; thus, in order
to state that the desired view is the 3rd component of a known view w,
one uses the formula Of(x, 3, w).

– The symbols allowing to “navigate” a view structure on the basis of the
parent-child relationship. Notice that the ancestor and descendant rela-
tionships are the transitive closure of the parent and child relationships,
respectively, and this fact is captured semantically by using the transitive
closure of the relation π, denoted π∗.

– A special symbol to exploit labels as node markers. For instance, by
combining the last two sets of symbols, one can request a chapter with a
figure by means of the formula

IsLabelled(x, Chapter)∧((∃Wy)HasAncestor(y, x)∧IsLabelled(y, Figure))

It has already been pointed out that there exists a strong relation between
views and XML data. At query level, this relation can be exploited in two
ways: one would be to serialize views as shown in Section 2.3.2 and query them
by using any of the several languages that are being studied for XML, such as
XQUery [7]. The other way would be to import in our query language significant
portions of XML query languages, making them specialized sub-languages; a
good candidate for this role would be [6], a language for addressing parts of an
XML document which could be cast in the model ontology.

5.4 Metadata predicate symbols

Table 5 illustrates the predicate symbols for querying metadata. These can be
divided in 3 sets:

– the symbol HasMetadata, which links a document entity in Ω to its meta-
data values;
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– the symbols for querying metadata formats, which are: (a) HasClass,
which is true of a format and a class if the latter is part of the former;
(b) HasProperty, which does the same for properties; (c) HasDef, which
mirrors property definitions; and (d) IsA, which permits to query the
subclass hierarchy of a given format:

– the symbols for querying metadata specifications, which are the remaining
symbols in the Table, and whose role is perfectly analogous to those of the
previous set of symbols.

Thus, in order to know the fields available in the metadata format f one
uses the formula:

(∃Cxc)(∃Cxd)HasDef(f, xc, x, xd),

while for the classes that are in the metadata formats associated to a certain
known document d, one uses the formula:

(∃Fxf )(∃Exe)HasMetadata(d, xf , xe) ∧ HasClass(xf , x).

For the range of the property date in the same metadata formats of the previous
formula:

(∃Fxf )(∃Exe)(∃Cxc)HasMetadata(d, xf , xe) ∧ HasDef(xf , xc, date, x).

In the same context, the specializations of the class author can be found by:

(∃Fxf )(∃Exe)HasMetadata(d, xf , xe) ∧ IsA(xf , x, author).

As far as querying metadata specifications, the following formula returns the
views that have the field Creator of the Dublin Core metadata format equal to
“John Doe”:

(∃Fxf )(∃Exe)(∃Oxo)View(x) ∧ HasMetadata(x, xf , xe) ∧
HasClass(xf , DublinCore)∧

Prop(xe, xo, Creator, JohnDoe).

6 Querying Digital Libraries

For organizational reasons, the documents in a DLIS are organized in collections,
which are virtual subsets of the document base, collecting documents on the
basis of their authorities. Collections are defined via a special kind of queries,
called collection definition predicates (CDPs). A CDP is a formula of the query
language, having the form:

(HasAuthority(x, a1) ∨ . . . ∨ HasAuthority(x, an)) ∧ φ(x)

for n ≥ 1, where φ(x) is a query having x as only free variable and including only
metadata predicate symbols. In practice, a CDP denotes a set of documents
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in the document base, namely those having as authority one of a1, . . . , an, and
satisfying the query φ(x).

An extended DLIS is a tuple Γ = (δ,Φ1(x), . . . , Φk(x)) where δ is a DLIS and
Φ1(x), . . . , Φk(x) are CDPs, for k ≥ 0. A query to an extended DLIS Γ is given
by (Υ, Ψ(x1, . . . , xm)), where Υ is a (possibly empty) subset of the collections
in Γ, the target of the query, and Ψ(x1, . . . , xm) is a formula of the previously
introduced language whose only free variables are x1, . . . , xm, for m ≥ 1. The
predicate of a query (Υ, Ψ(x1, . . . , xm)) is the formula Ξ(x, x1, . . . , xm) given by

(
∨

ψ(x)∈Υ

ψ(x)) ∧Ψ(x1, . . . , xm).

In practice, the predicate of the query is the formula that denotes all the doc-
uments x belonging to anyone of the target collections (as required by the first
disjunction of the above formula), and satisfying Ψ(x1, . . . , xm). In case Υ is
empty, the semantics of the language guarantees that all the documents in the
document bases are considered.

The result set of a query (Υ, Ψ(x1, . . . , xm)) to the extended DLIS Γ =
(δ,Φ1, . . . , Φk), is the set of (m + 1)-tuples 〈u0, u1, . . . , um〉 that satisfy the
query predicate Ξ(x, x1, . . . , xm), that is:

(δ, ϕ) |= Ξ(u, u1, . . . , um).

7 Conclusions and future work

The presented query facility permits structure- and sophisticate metadata-based
document retrieval, and as such advances current DL models. In order to arrive
at a precise definition of this query facility, a mathematical model of Digital
Libraries has been developed, and used to assign meaning to user queries. This
level of precision makes the language universally available, implementable and,
also important, extensible with more capability, notably content-based access.

As already pointed out, this work, albeit of a foundational nature, is carried
out within a project, aiming at the development of a DL system. We plan
to implement a significant fragment of the language presented. Specifically, our
work programme is to cut down the expressivity of the language down to a subset
of first-order logic, which is powerful enough to express all significant queries but
also simpler from the computational point of view. The idea is to partition the
language presented here into a set of sub-languages, each addressing a different
dimension of documents, and use the general framework of logic for combining
these sub-languages. In this respect, the inclusion of content-based retrieval in
the language presents no conceptual problem, as a logical framework supporting
this kind of functionality has already been developed [14]. An architecture for
implementing the language is described in [9].
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