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Feature Selection for Ordinal Text Classification
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani

Abstract—Ordinal classification (also known as ordinal regression) is a supervised learning task that consists of automatically
determining the implied rating of a data item on a fixed, discrete rating scale. This problem is receiving increased attention from the
sentiment analysis / opinion mining community, due to the importance of automatically rating increasing amounts of product review data
in digital form. As in other supervised learning tasks such as (binary or multiclass) classification, feature selection is needed in order to
improve efficiency and to avoid overfitting. However, while feature selection has been extensively studied for other classification tasks,
is has not for ordinal classification. In this paper we present four novel feature selection metrics that we have specifically devised for
ordinal classification, and test them on two datasets of product review data against three metrics previously known from the literature,
using two learning algorithms from the “support vector regression” tradition. The experimental results show that all four proposed
metrics largely outperform all of the three baseline techniques, on both datasets and for both learning algorithms.

Index Terms—Ordinal regression, ordinal classification, feature selection, product reviews.
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1 INTRODUCTION

T Ext management tasks such as ad hoc text retrieval,
text clustering, and text classification, are usually

tackled by representing the textual documents in vector
form. The resulting vector spaces are always charac-
terized by a high dimensionality (often in the range
of the tens, sometimes hundreds of thousands dimen-
sions), since words (or word stems) are normally used
as features, and since many thousands of them occur
in any reasonably-sized document space. This very high
dimensionality is not very problematic in ad hoc retrieval,
where the basic operation (computing the distance of
two vectors in the vector space) can be performed
quickly, thanks to the sparse nature of the two vectors.
It is instead problematic in other tasks involving super-
vised or unsupervised learning, such as text classification
or clustering.

For instance, in text classification many supervised
learning devices, such as neural networks, do not scale
well to large numbers of features, and even those learn-
ing devices that do scale well have a computational cost
at least linear in the dimensionality of the vector space.
While this negatively impacts on efficiency, effectiveness
suffers too, since if the ratio of the number of training
examples to the number of features is low, overfitting
occurs. For all these reasons, in text managements tasks
involving learning, the high dimensionality of the vector
space may be problematic. Several techniques for reduc-
ing the dimensionality of a vector space for text learning
tasks have been investigated, the main one being feature
selection (FS). This latter consists in identifying a subset
S ⊂ T of the original feature set T such that |S| � |T |
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(ξ = |S|/|T | being called the reduction level) and such that
S reaches the best compromise between (a) the effective-
ness of the resulting classifiers and (b) the efficiency of
the learning process and of the classifiers (which is, of
course, inversely proportional to |S|).

While feature selection mechanisms have been exten-
sively investigated for text classification (see e.g., [2], [3]),
and to a lesser extent for text clustering (see e.g., [4]),
they have not for a related and important text learning
task, namely, ordinal text classification. Ordinal classifica-
tion (OC – also known as ordinal regression) consists in
estimating a target function Φ : X → R which maps each
object xi ∈ X into exactly one of an ordered sequence
(that we here call rankset) R = 〈r1 ≺ . . . ≺ rn〉 of ranks
(aka “scores”, or “labels”, or “classes”), by means of a
function Φ̂ called the classifier1. This problem is somehow
intermediate between single-label classification, in which
R is instead an unordered set, and metric regression, in
which R is instead a continuous, totally ordered set
(typically: the set R of the reals). A key feature of
ordinal regression is also that the “distances” between
consecutive ranks may be different from each other.

OC is of key importance in the social sciences, since
human judgments and evaluations tend to be expressed
on ordinal (i.e., discrete) scales; an example of this is cus-
tomer satisfaction data, where customers may evaluate
a product or service on a scale consisting of the values
Disastrous, Poor, Fair, Good, Excellent.

In this paper we address the problem of feature se-
lection for OC. Here of course we are only interested
in “filter” approaches to FS, i.e., greedy approaches in
which a mathematical function f is applied to each fea-
ture in T in order to compute its expected contribution
to solving the classification task, after which only the
x = |S| top-scoring features are retained [5] (x may be

1. Consistently with most mathematical literature we use the caret
symbol (ˆ) to indicate estimation.



2

a predetermined number or may, more typically, be ex-
pressed as a percentage of |T |). “Wrapper” approaches,
in which entire subsets of x features are evaluated as
a whole through the actual learn-and-classify process,
are instead not feasible in text-related applications, due
to the high dimensionality of the feature space2. We
here present four novel feature selection metrics that we
have specifically devised for ordinal classification, and
thoroughly test them on two datasets of product review
data by using two SVM-based algorithms for ordinal
regression3.

The paper is organized as follows. In Section 2 we
discuss related work, and in Section 3 we present our
four FS algorithms for OC. Section 4 reports the results
of experiments we have conducted on these methods,
while Section 5 concludes.

2 RELATED WORK

To the best of our knowledge, there are only two pa-
pers [7], [8] that address feature selection for ordinal
regression.

Mukras et al. [8] propose an algorithm, called probabil-
ity redistribution procedure (PRP), that takes as input the
distribution of the feature tk across the ranks (as deriving
from the distribution across the ranks of the training
examples containing tk) and modifies it, according to the
notion that, when tk occurs in (a document belonging
to) a rank rj , it is “also taken to occur”, to a degree
linearly decaying with the distance from rj , in the ranks
close to rj . The modified distribution is then used in
selecting features through a standard application, as in
binary classification, of the information gain function.

Baccianella et al. [7] describe two methods called
minimum variance (here noted V ar) and round robin on
minimum variance (RR(V ar)). The basic idea underlying
V ar is that of measuring the variance of the distribution
of a feature tk across the ranks, and retaining only the
features that have the smallest variance. The intuition
behind V ar is that a feature is useful iff it is capable of
discriminating a small, contiguous portion of the rankset
from the rest, and that features with a small variance are
those which tend to satisfy this property.
RR(V ar) is instead based on the observation (orig-

inally discussed in [9] for binary text classification and
for functions other than V ar) that V ar might select many
features that discriminate well some of the ranks, while
selecting few or no features that discriminate well the
other ranks. In order to solve this problem, in RR(V ar)
one provisionally “assigns” each feature tk to the rank
r(tk) closest to its average rank value (which is the rank
that tk presumably best discriminates), orders for each
rank the features assigned to it, and then has the n ranks

2. Interestingly, the literature on FS for metric regression seems to
have mostly, if not only, investigated “wrapper” approaches [6].

3. The source code of all the techniques discussed in this paper
(both the ones proposed here and the ones from the literature which
we use as baselines) can be downloaded at http://patty.isti.cnr.it/
∼baccianella/FS4OR/sourcecode/.

take turns, according to a “round robin” (RR) policy,
in picking features from the top-most elements of their
rank-specific orderings.

3 FEATURE SELECTION FOR ORDINAL CLAS-
SIFICATION

Let us fix some notation. Let R = 〈r1 ≺ . . . ≺ rn〉
be an ordered sequence of ranks, or rankset. Given any
j ∈ {1, . . . , (n − 1)}, Rj = {r1, . . . , rj} will be called
a prefix of R, and Rj = {rj+1, . . . , rn} will be called
a suffix of R. As mentioned in Section 1, our task is
to estimate (from a training set Tr) a target function
Φ : D → R which assigns each document di ∈ D to
exactly one rank in R by means of a classifier Φ̂, to be
evaluated on a test set Te. Our feature selection methods
will consist of (a) scoring each feature tk ∈ T by means
of a scoring function Score that measures the predicted
utility of tk for the classification process (the higher the
value of Score, the higher the predicted utility), and
(b) given a predetermined reduction level ξ, selecting
the |S| = ξ · |T | features with the highest Score. For
convenience we will often express reduction levels as
percentages, e.g., writing 1% in place of 0.01.

3.1 The Var*IDF method

V ar ∗ IDF is a variant of the V ar method described
in [7]. Recall from Section 2 that V ar is based on the
intuition of retaining the features that minimize the vari-
ance of their distribution across the ranks. For instance,
a feature tk that occurs only in (training documents
belonging to) rank rj has, in the training set, variance
V ar(tk) equal to zero; this feature seems obviously
useful, since its presence in a test document di can be
taken as an indication that di belongs to rj . By the same
token, a feature t1 that occurs 90% of the times in rj
and the remaining 10% in a rank contiguous to rj has
lower variance than a feature t2 that occurs 90% of the
times in rj and the remaining 10% in a rank faraway
from rj . Feature t1 is also more useful than t2 since the
presence of t1 in a test document di tends to indicate
that di belongs to rj or its vicinity, while t2 gives a less
clearcut indication. In sum, we are interested in retaining
features with low variance and discarding ones with
high variance.

However, we here note that a feature tk that occurs
only once in the entire training set (e.g., in rank rj) is
trivially such that V ar(tk) = 0, but is not useful, since the
fact that it occurs exactly in rj might be due to chance.
The features that we are really interested in are those that
have low variance and high frequency of occurrence (in
the training set), since this high frequency of occurrence
(a) lends statistical robustness to the estimated value of
their variance, and (b) tends to guarantee that the feature
will be encountered often in the test set, and will thus
contribute to the classification of many test documents.
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Fig. 1. Results obtained with three baseline feature selection techniques (coloured dotted lines) and our four novel
techniques (coloured solid lines) on the TripAdvisor-15763 dataset with the ε-SVR learner. Results are evaluated with
MAEM ; lower values are better. “FFS” refers to the full feature set (i.e., ξ = 1), while “Triv” refers to uniform assignment
to the trivial class.

We formalize this by defining

Score(tk) = −(V ar(tk) + ε) ∗ (IDF (tk))a (1)

where (i) IDF is the standard inverse document fre-
quency, defined as IDF (tk) = log |Tr|

#Tr(tk)
(where #Tr(tk)

denotes the number of training documents that contain
feature tk), and (ii) a is a parameter (to be optimized
on a validation set) that allows to fine-tune the relative
contributions of variance and IDF to the product. Note
that, when V ar(tk) = 0, we still have Score(tk) = 0, irre-
spectively of the value of IDF (tk), which is undesirable.
As a result, we smooth V ar(tk) by adding to it a small
value ε prior to multiplying it by IDF (tk).

The x features with the highest Score value are re-
tained while the others are discarded.

3.2 The RR(Var*IDF) method
Similarly to V ar, the V ar ∗ IDF method runs the risk of
exclusively catering for a certain rank and disregarding
the others. If all the retained features mostly occur in
rank rj and its neighbouring ranks, the resulting feature
set will exclusively contain features good at discriminat-
ing rj and its neighbouring ranks from the rest, while

other ranks might not be adequately discriminated by
any of the remaining features.

Similarly to the RR(V ar) method hinted at in Sec-
tion 2, in order to pick the best x features the RR(V ar ∗
IDF ) method thus (i) provisionally “assigns” each fea-
ture tk to the rank closest to the mean of its distribution
across the ranks; (ii) orders, for each rank rj , the features
provisionally assigned to rj in terms of their value of the
Score function of Equation 1, with the highest-scoring
ones at the top of the ordering; and (iii) enforces a
“round robin” policy in which the n ranks take turns
in picking their favourite features from the top-most
elements of their rank-specific orderings, until x features
are picked. In this way, for each rank rj the final set of
selected features contains at least4 the x

n features that
are best at discriminating rj and its neighbouring ranks,
which means that all the ranks in the rankset R are
adequately championed in the final feature set S.

4. The “at least” here means that, since the same feature may be a
top-scoring one for more than one rank, strictly more than x

n
features

per rank may eventually get selected. Similar considerations apply to
the RR(IGOR) and RR(NC ∗ IDF ) techniques to be discussed in
Sections 3.3 and 3.4, where a round robin phase is also present.
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Fig. 2. Same as Figure 1 but on Amazon-83713 instead of on TripAdvisor-15763.

3.3 The RR(IGOR) method

The round robin on information gain for ordinal regression
(RR(IGOR)) method is based on the idea of adapting
information gain, a function routinely employed in feature
selection for binary classification (see e.g. [3]), to ordinal
regression5.

In a binary classification task in which we need to
separate class cj from its complement cj we may perform
feature selection by scoring each feature tk with the
function

IG(tk, cj) = H(cj)−H(cj |tk) =

=
∑

c∈{cj ,cj}

∑
t∈{tk,tk}

P (t, c) log
P (t, c)

P (t)P (c)

where H(·) indicates entropy and H(·|·) indicates con-
ditional entropy. IG(tk, cj) measures the reduction in
the entropy of cj obtained as a result of observing tk,
i.e., measures the information that tk provides on cj ;
for binary classification the x features with the highest
IG(tk, cj) value are thus retained, while the others are
discarded.

5. Any function routinely used for feature selection in binary classi-
fication, such as chi-square or odds ratio, could have been used here
in place of information gain.

RR(IGOR) is based on the idea of viewing ordinal
regression on rankset R = 〈r1 ≺ . . . ≺ rn〉 as the simul-
taneous generation of (n−1) binary classifiers Φ̈j , each of
which is in charge of deciding whether a document be-
longs to (one of the ranks in) prefix Rj = {r1 ≺ . . . ≺ rj}
or to suffix Rj = {rj+1 ≺ . . . ≺ rn}, for j = 1, . . . , (n−1).
For each feature tk we thus compute (n − 1) different
IG(tk, cj) values, by taking cj = r1 ∪ . . . ∪ rj and
cj = rj+1 ∪ . . . ∪ rn, for j = 1, . . . , (n− 1).

Similarly to the RR(V ar∗IDF ) method of Section 3.2,
in order to pick the best x features we (i) sort, for each
of the (n− 1) binary classifiers Φ̈j above, the features in
decreasing order of their IG(tk, cj) value; and (ii) enforce
a round robin policy in which the (n − 1) classifiers Φ̈j
above take turns, for at least x

n−1 rounds, in picking their
favourite features from the top-most elements of their
classifier-specific orderings. In this way, for each classi-
fier Φ̈j the final set of selected features contains the x

(n−1)
features that are best at discriminating the rankset prefix
Rj from the rankset suffix Rj , which means that all the
classifiers Φ̈j of rankset R are adequately championed in
the final feature set S.

Of course the intuition here is that, if test document
di belongs to rank rj , classifiers Φ̈1, . . . , Φ̈j−1 will be
represented in S by features that indicate di to belong to
their corresponding rankset suffixes R1, . . . , Rj−1, while
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Fig. 3. Same as Figure 1 but with the SVOR learner instead of with the ε-SVR learner.

classifiers Φ̈j , . . . , Φ̈n−1 will be represented in S by fea-
tures that indicate di to belong to their corresponding
rankset prefixes Rj , . . . , Rn−1.

3.4 The RR(NC*IDF) method
A problem with the methods we have proposed up to
now, and with the ones mentioned in Section 2, is that
none of them depends on (i.e., optimizes) the specific
evaluation measure chosen for evaluating ordinal regres-
sion. The RR(NC ∗ IDF ) method tries to address this
shortcoming by including the chosen evaluation measure
as a parameter, and directly optimizing it.

Assume that E is the chosen evaluation measure,
and that E(Φ̂, di) represents the error that classifier Φ̂
makes in classifying di. For example, if Φ̂(di) = r1,
Φ(di) = r2 and E is absolute error (see Section 4.1.2),
then E(Φ̂, di) = |r1 − r2|. Let us define the negative
correlation of a feature tk with a rank rj in the training
set Tr as

NCTr(tk, rj) =

∑
{di∈Tr | tk∈di}

E(Φ̃j , di)

|{di ∈ Tr | tk ∈ di}|
(2)

where Φ̃j is the “trivial” classifier that assigns all docu-
ments to the same rank rj . In other words, NCTr(tk, rj)
measures how bad an indicator of membership in rank

rj feature tk is, where “bad” is defined in terms of the
chosen error measure; in fact, NCTr(tk, rj) is equal to
zero (the best possible value) when, by trivially classi-
fying under rj all training examples that contain tk, the
error E that we would make amounts to zero.

It would now be tempting to define Score(tk, rj) as
−NCTr(tk, rj), i.e., as the opposite of the negative cor-
relation between tk and rank rj , since −NCTr(tk, R(tk))
measures how well tk identifies rj . While this is in
principle reasonable, for the same reasons as outlined
in Section 3.1 we need to compensate for the fact that
NC does not pay attention to frequency-of-occurrence
considerations; this method might thus select features
whose estimates are not statistically robust.

This leads us to defining the Score of a feature tk with
respect to rank rj as

Score(tk, rj) = −(NCTr(tk, rj) + ε) ∗ (IDF (tk))a (3)

where the ε and a parameters serve the same purpose as
in Equation 1. Similarly to what happens in the RR(V ar∗
IDF ) and RR(IGOR) methods, in order to select the
best x features we now apply a round robin policy in
which each rank rj is allowed to pick the (at least) x

n
features with the best Score(tk, rj), so that each rank in
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Fig. 4. Same as Figure 1 but on Amazon-83713 instead of on TripAdvisor-15763 and with the SVOR learner instead
of with the ε-SVR learner.

Dataset |Tr| |Te| 1 Star 2 Stars 3 Stars 4 Stars 5 Stars
TripAdvisor-15763 10,508 5,255 3.9% 7.2% 9.4% 34.5% 45.0%

Amazon-83713 20,000 63,713 16.2% 7.9% 9.1% 23.2% 43.6%
TABLE 1

Main characteristics of the two datasets used in this paper; the last five columns indicate the fraction of documents
that have a given number of “stars”.

the rankset is well catered for by the final set of features6.

3.5 A note on rank distance

As remarked in the introduction, the distances between
consecutive ranks are not always equal. This may be
the case, e.g., when a rankset consists of ranks Poor,
Good, Very Good, Excellent, since it might be argued

6. The version of the RR(NC ∗ IDF ) method that was originally
presented in the earlier version of this paper [1] was slightly different
from the one presented here, in that it included an intermediate step
in which feature tk was assigned to the rank R(tk) that was least
negatively correlated with it. We have now removed this step since it
did not allow tk to be picked, in the round robin phase, for a rank rj
different from R(tk), which penalized rj , since tk was not necessarily
picked for R(tk). As a result, the current version of the method is
simpler and (as the experiments have shown) more effective than the
previous version.

that the distance between Poor and Good is higher than
the distance between Very Good and Excellent. Note that
all our FS functions, with the exception of RR(IGOR),
allow bringing to bear these distances in the feature se-
lection phase. In fact, V ar∗IDF and RR(V ar∗IDF ) are
inherently sensitive to these distances because variance
is; and RR(NC∗IDF ) is also sensitive to them, since one
only needs to plug these distances into the E measure
used to define negative correlation.

4 EXPERIMENTS

4.1 Experimental setting

4.1.1 The datasets
We have tested the proposed measures on two different
datasets, whose characteristics are reported in Table 1.
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Fig. 5. Close-up on the results obtained with four novel feature selection techniques on the TripAdvisor-15763 dataset
with the ε-SVR learner. “FFS” refers to the full feature set (i.e., ξ = 1).

The first is the TripAdvisor-15763 dataset built by
Baccianella et al. [7], consisting of 15,763 hotel reviews
from the TripAdvisor Web site7. We use the same split
between training and test documents as in [7], resulting
in 10,508 documents used for training and 5,255 for test;
the training set contains 36,670 unique words. From the
10,508 training documents we have randomly picked
3,941 documents to be used as a validation set for
parameter optimization.

The second dataset is what we here call Amazon-
83713, consisting of 83,713 product reviews from the
Amazon Web site; Amazon-83713 is actually a small
subset of the Amazon dataset (consisting of more than
5 million reviews) originally built by Jindal and Liu for
spam review detection purposes [10], and contains all
the reviews in the sections MP3, USB, GPS, Wireless
802.11, Digital Camera, and Mobile Phone. We
have randomly picked 20,000 documents to be used
for training, and use the remaining 63,713 documents
for test; the training set contains 138,964 unique words.
From the 20,000 training documents we have randomly
selected 4,000 documents to be used as a validation set.
To the best of our knowledge, Amazon-83713 is now the

7. The dataset is available for download from http://patty.isti.cnr.
it/∼baccianella/reviewdata/

largest dataset ever used in the literature on ordinal text
classification.

Both datasets consist of reviews scored on a scale from
1 to 5 “stars”; both datasets are highly imbalanced (see
Table 1), with positive and very positive reviews by far
outnumbering negative and very negative reviews.

4.1.2 Evaluation measures

As our main evaluation measure we use the macroav-
eraged mean absolute error (MAEM ) measure proposed
in [11], and defined as

MAEM (Φ̂, T e) =
1

n

n∑
j=1

1

|Tej |
∑

di∈Tej

|Φ̂(di)− Φ(di)| (4)

where Tej denotes the set of test documents whose true
rank is rj and the “M” superscript indicates “macroav-
eraging”. As argued in [11], the advantage of MAEM

over “standard” mean absolute error (defined as

MAEµ(Φ̂, T e) =
1

|Te|
∑
di∈Te

|Φ̂(di)− Φ(di)| (5)

where the “µ” superscript stands for “microaveraging”)
is that it is robust to rank imbalance (which is useful,
given the above-mentioned imbalanced nature of our
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Fig. 6. Same as Figure 5 but on Amazon-83713 instead of on TripAdvisor-15763.

datasets) while coinciding with MAEµ on perfectly bal-
anced datasets (i.e., datasets with exactly the same num-
ber of test documents for each rank). For completeness
we have computed, additionally to MAEM , also MAEµ

results for all our experiments.

4.1.3 Learning algorithms
We have tested our methods with two different SVM-
based learning algorithms for ordinal regression: ε-SVR
[12], originally devised for linear regression and which
we have adapted to solve ordinal regression problems,
and SVOR [13], which was specifically devised for solv-
ing ordinal regression.
ε-support vector regression (ε-SVR), is the original for-

mulation of support vector regression as proposed in
[12]; we have used the implementation from the freely
available LibSvm library8. ε-SVR can be adapted to the
case of ordinal regression by (a) mapping the rankset
onto a set of consecutive natural numbers (in our case
we have simply mapped the sequence [1 Star, . . . , 5
Stars] onto the sequence [1, . . . , 5]), and (b) rounding the
real-valued output of the classifier to the nearest natural
number in the sequence.

SVOR [13] consists instead in a newer algorithm that
tackles the ordinal regression problem without using

8. http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

any a priori information on the ranks, and by finding
n − 1 thresholds that divide the real-valued line into
n consecutive intervals corresponding to the r ordered
ranks. The authors propose two different variants: the
first (nicknamed SVOREX, for “Support Vector Ordinal
Regression with EXplicit constraints”) takes into account
only the training examples of adjacent ranks in order to
determine the thresholds, while the second (SVORIM,
for “Support Vector Ordinal Regression with IMplicit
constraints”) takes into account all the training examples
from all of the ranks. Given that the authors have
experimentally shown SVORIM to outperform SVOREX,
the former (in the implementation available from the
authors of [13]9) is the variant we have adopted for our
experiments.

Both learning algorithms use the sequential minimal
optimization algorithm for SVMs [14], and both map
the solution on the real-valued line. The main difference
between them is the use of a priori information. In fact,
when using ε-SVR the user needs to explicitly specify a
mapping of the rankset onto a sequence of naturals and
to set the thresholds between these latter, while SVOR
automatically derives all the needed information from
the training set.

We have optimized the γ and C parameters of both

9. http://www.gatsby.ucl.ac.uk/∼chuwei/svor.htm
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Fig. 7. Same as Figure 5 but with the SVOR learner instead of with the ε-SVR learner.

learners on the validation sets described in Section 4.1.1;
the validation has been carried out with the full feature
set (ξ = 1), and the values which have proven optimal
have later been used for all reduction levels. The γ
parameter has been optimized by testing all values from
2−15 to 23 with step 2 in the exponent, while the C
parameter has been optimized by testing all values from
2−11 to 29 also with step 2 in the exponent; these ranges
and steps are the ones recommended by the creators of
LibSvm in the “readme” file.

4.1.4 Baselines

For all our experiments we have used three different
baseline methods: the first is the PRP method of [8],
while the second and third are the V ar and RR(V ar)
methods of [7] (see Section 2 for details).

We also draw comparisons with the “trivial baseline”,
i.e., with the method that consists in trivially assigning
all test documents to the “trivial class”, defined as
follows. For a given (binary, ordinal, or other) classi-
fication problem a trivial classifier Φ̃j may be defined
as a classifier that assigns all documents to the same
class rj ; accordingly, the trivial class r̃ may be defined
as the class that minimizes the chosen error measure
E on the training set Tr across all trivial classifiers,
i.e., r̃ = arg minrj∈RE(Φ̃j , T r). [11] shows that for both

MAEM and MAEµ the trivial class Φ̃k need not be
the majority class, as instead happens for single-label
classification when Hamming distance (aka “error rate”)
is the chosen error measure. For instance, for both
the TripAdvisor-15763 and Amazon-83713 datasets, 4
Stars is the trivial class for MAEµ, since we obtain
lower MAEµ (MAEµ = 0.805 for TripAdvisor-15763
and MAEµ = 1.171 for Amazon-83713) in assigning
all training documents 4 Stars than by assigning all
of them 5 Stars, which is the majority class. [11] also
shows that the trivial class(es) for MAEM are always
the middle class rn+1

2
(when there is an odd number

of classes) or the middle classes rbn+1
2 c

and rdn+1
2 e

. In
both the TripAdvisor-15763 and Amazon-83713 datasets
there is a single middle class, 3 Stars, which is then
the trivial class (uniform assignment to the trivial class
yields MAEM = 1.200 for both datasets).

4.1.5 Experimental protocol

As a vectorial representation, after stop word removal
(and no stemming) we use standard bag-of words with
cosine-normalized tfidf weighting. Note that, as dis-
cussed in detail in [7], bag-of words is certainly not the
optimal method for generating the internal representa-
tions of product reviews: two expressions such as “A
great hotel in a horrible town!” and “A horrible hotel
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in a great town!” would receive identical bag-of-words
representations, while expressing opposite evaluations of
the hotel being reviewed. The reason why in this paper
we have chosen bag-of-words (instead of the more com-
plex and linguistically richer representations we have
championed in [7]) is to guarantee easier replicability
by other researchers of the results presented here.

We have run all our experiments for all the 100 re-
duction levels ξ ∈ {0.001, 0.01, 0.02, 0.03, . . . , 0.99}. For
the V ar ∗ IDF , RR(V ar ∗ IDF ) and RR(NC ∗ IDF )
methods we have set the smoothing parameter ε to 0.1.
For the same methods we have (individually for each
method) optimized the a parameter on the validation
sets described in Section 4.1.1 and then re-trained the
optimized classifier on the full training set (i.e., including
the validation set). During validation, all integer values
in the range [1,20] were tested (values smaller than 1 had
already shown a dramatic deterioration in effectiveness,
and were thus not investigated in detail), and the best
value for a given method was retained. For all three
methods this optimization was performed with ξ = 0.10
(since this is a “paradigmatic” reduction level in much
of the literature on feature selection for text classifica-
tion), and the value that proved optimal was chosen
for all feature reduction levels; previous experiments

on the validation set had shown anyway that in all
cases the chosen parameter value was optimal for any
ξ ∈ [0.001, 0.20].

For RR(NC ∗IDF ), the E error measure was taken to
be |Φ̂(di)−Φ(di)| (i.e., absolute error), given that it is the
document-level analogue of both MAEM and MAEµ.

4.2 Results

The results of our experiments are displayed in Figures 1
to 2, in which the effectiveness of each feature selection
policy is plotted as a function of the tested reduction
level. The two horizontal lines indicate the effectiveness
(measured via MAEM ) obtained (a) by using the full
feature set (ξ = 1), or (b) by assigning all test documents
to the trivial class.

The first observation that comes natural by observing
Figures 1 to 2 is that the three baselines are dramati-
cally inferior to the four novel techniques proposed in
this paper, except for a few isolated cases (e.g., bad
performance of RR(NC ∗ IDF ) on Amazon-83713 with
SVOR and with ξ < .30). PRP is somehow comparable
with our novel techniques for very aggressive reduction
levels (e.g., ξ = 0.01), but is drastically inferior to them
for all other reduction levels, even underperforming,
on Amazon-83713, the trivial baseline in the range ξ ∈
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MAEM
.01 1.200 1.466 1.213 0.898 0.845 0.817 0.856 0.863
.10 1.200 1.424 1.234 1.248 0.741 0.747 0.753 0.767

MAEµ
.01 0.988 1.027 1.251 0.656 0.644 0.621 0.640 0.643
.10 0.988 0.978 0.949 0.831 0.605 0.597 0.618 0.620

TABLE 2
Performance of different feature selection functions at two representative reduction levels (.01 and .10), as averaged

across the two different datasets and the two different learners used in this paper. Boldface indicates the best
performer.

[0.05, 0.70] with both learners (it performs somehow bet-
ter, bust still worse than our four proposed techniques,
on TripAdvisor-15763). V ar is, instead, comparable with
our techniques for the less aggressive reduction levels
(i.e., ξ ∈ [0.4, 1.0]), but it yields very bad results for the
more aggressive ones, even below the trivial baseline
if ξ ∈ [0.001, 0.15]; this is likely due to the fact that
the top-scoring features for the V ar method (i.e., the
only ones that get selected when the reduction level is
very aggressive) are features with very low frequency
of occurrence (some of them maybe occurring in a sin-
gle training document), while when the reduction level
is less aggressive also “good” features (i.e., with low
variance and high frequency of occurrence) are selected.
RR(V ar) performs instead uniformly worse than the
proposed techniques for all reduction levels and on both
datasets. On a marginal note, it should be noted that
for the more aggressive levels of reduction RR(V ar)
performs better than V ar; this is likely due to the fact
that the round robin step is very important when the
features are few, since its presence allows each rank to
be represented by at least some features that are highly
discriminative for it.

From now on we will thus largely ignore the three
baseline techniques and focus on discussing our four
novel techniques and their differences. In order to do
this we will analyze Figures 5 to 8, which present the
same results of Figures 1 to 4, respectively, in close-up
view, zooming-in on our four techniques.

A second observation is that our proposed techniques
are fairly stable across ξ ∈ [0.05, 1.0], and deteriorate,
sometimes rapidly, only for the very aggressive levels,
i.e., for ξ ∈ [0.001, 0.05]). This is especially evident on the
Amazon-83713 dataset (by far the larger of the two), for
both learners. This is in stark contrast with the instability

of the baselines; e.g., as noted above, both PRP and V ar
perform reasonably well for some reduction levels but
disastrously for others.

For ξ ∈ [0.05, 1.0] the accuracy is, for each of our
four techniques, more or less comparable to the accuracy
obtained with the full feature set (i.e., with no feature
selection). The full feature set tends to be, although by
a very small margin, the best choice in the TripAdvisor-
15763 dataset, while the situation is less clearcut in the
much larger Amazon-83713 dataset, with the proposed
techniques slightly underperforming the full feature set
for ξ ∈ [0.3, 1.0], and outperforming it for ξ ∈ [0.01, 0.3].
This latter is very good news, since it indicates that
one can reduce the feature set by an order of magni-
tude (with the ensuing benefits in terms of training-
time and – especially important – testing-time efficiency)
and obtain an accuracy equal or even slightly superior
(roughly a 10% improvement, in the best cases) to that
obtainable with the full feature set. Incidentally, this
is clearly reminiscent of the results obtained by Yang
and Pedersen, who, in their seminal paper on feature
selection for binary text classification [3], showed that
the best feature selection techniques could allow exactly
that (i.e., an improvement in effectiveness of about 10%
when the size of the feature set is reduced by one order
of (ξ = .10), which was the reduction level at which the
best performance was obtained).
RR(NC ∗ IDF ) even marginally outperforms the full

feature set when the size of the feature set is reduced by
two orders of magnitude (ξ = .01), and only marginally
underperforms it when the reduction is by three orders
of magnitude (ξ = .001), regardless of the learner used;
we think this is a striking performance.

It is not easy instead to decide which of the four tech-
niques we have proposed is the best, since none of them
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consistently outperforms the others regardless of dataset
and learner. For instance, for ξ < .40 RR(NC ∗IDF ) has
a strangely bad performance on TripAdvisor-15763 when
SVOR is used, but it performs very well when ε-SVR is
used or when Amazon-83713 is the dataset. And on the
Amazon-83713 dataset, when using ε-SVR, RR(IGOR)
is clearly the best when ξ ∈ [0.10, 0.70], while when
ξ ∈ [0.001, 0.10] the best performer is RR(NC ∗ IDF ). In
order to get a clearer sense of the relative merits of these
four techniques, in Table 2 we report the performance
of all the techniques discussed for two representative
reduction levels (.01 and .10), averaged across the two
datasets and the two learners used. The results reported
show that, when MAEM is used as the evaluation
measure, RR(V ar ∗ IDF ) is clearly the best performer
for ξ = .01, and is close to being the best performer also
for ξ = .01 (where RR(V ar ∗ IDF ) outperforms it by a
narrow margin).

Finally, note that we have evaluated all the experi-
ments reported here also according to the MAEµ mea-
sure; we do not report these results for reasons of space,
and because (as fully argued in ) we believe MAEM to
more faithfully represent what a user wants from an or-
dinal regression device10. Suffice it to say that the MAEµ

results substantially confirm the MAEM results, with the
difference that our FS functions manage to outperform
the full feature set (ξ = 1) even more frequently than
with MAEM .

5 CONCLUSIONS

In this paper we have proposed four novel feature
selection techniques for ordinal classification, and we
have tested them against three baseline techniques from
the literature on two datasets of product review data; one
of these datasets is the largest dataset of product review
data ever tested for ordinal classification purposes, and
is being presented here for the first time.

The experiments, that we have carried out with thor-
ough parameter optimization and for an extensive range
of reduction levels, have clearly shown that all our four
techniques are clearly superior to all three baselines, on
both datasets. The experiments on the Amazon-83713
dataset (by far the larger of the two) seem to indicate
that all techniques deliver a fairly stable performance
across the range [0.05,1.0] of reduction levels, and that
performance tends to peak close to the 0.10 level; this
indicates that it is viable to downsize the feature set by
one order of magnitude while at the same time retaining,
and sometimes even moderately improving upon, the
effectiveness delivered by the full feature set.

10. A spreadsheet with detailed figures for all the 28 × 100 experi-
ments conducted, along with large-size versions of all the plots, for
both MAEM and MAEµ, can be downloaded at http://patty.isti.
cnr.it/∼baccianella/FS4OR/. Note that the results obtained with the
techniques involving a round-robin step with the ε-SVR package are
different from the analogous results presented in the earlier version of
this paper [1] because of a bug in our software that we detected after
[1] had gone to print. The bug had the consequence that fewer features
than actually declared were being selected by the techniques.

ACKNOWLEDGMENTS

We thank Nitin Jindal and Bing Liu for kindly sharing
with us their “Amazon” dataset, and Salvatore Ruggieri
for an important pointer to the literature.

REFERENCES
[1] S. Baccianella, A. Esuli, and F. Sebastiani, “Feature selection for

ordinal regression,” in Proceedings of the 25th ACM Symposium on
Applied Computing (SAC’10), Sierre, CH, 2010, pp. 1748–1754.

[2] G. Forman, “An extensive empirical study of feature selection
metrics for text classification,” Journal of Machine Learning Research,
vol. 3, pp. 1289–1305, 2003.

[3] Y. Yang and J. O. Pedersen, “A comparative study on feature selec-
tion in text categorization,” in Proceedings of the 14th International
Conference on Machine Learning (ICML’97), Nashville, US, 1997, pp.
412–420.

[4] M. Dash, K. Choi, P. Scheuermann, and H. Liu, “Feature selection
for clustering - a filter solution,” in Proceedings of the 2nd IEEE
International Conference on Data Mining (ICDM’02), Maebashi City,
JP, 2002, pp. 115–122.

[5] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the
subset selection problem,” in Proceedings of the 11th International
Conference on Machine Learning (ICML’94), New Brunswick, US,
1994, pp. 121–129.

[6] A. Miller, Subset selection in regression, 2nd ed. London, UK:
Chapman and Hall, 2002.

[7] S. Baccianella, A. Esuli, and F. Sebastiani, “Multi-facet rating of
product reviews,” in Proceedings of the 31st European Conference on
Information Retrieval (ECIR’09), Toulouse, FR, 2009, pp. 461–472.

[8] R. Mukras, N. Wiratunga, R. Lothian, S. Chakraborti, and
D. Harper, “Information gain feature selection for ordinal text
classification using probability re-distribution,” in Proceedings of
the IJCAI’07 Workshop on Text Mining and Link Analysis, Hyder-
abad, IN, 2007.

[9] G. Forman, “A pitfall and solution in multi-class feature selection
for text classification,” in Proceedings of the 21st International Con-
ference on Machine Learning (ICML’04), Banff, CA, 2004, pp. 38–45.

[10] N. Jindal and B. Liu, “Review spam detection,” in Proceedings of
the 16th International Conference on the World Wide Web (WWW’07),
Banff, CA, 2007, pp. 1189–1190.

[11] S. Baccianella, A. Esuli, and F. Sebastiani, “Evaluation measures
for ordinal text classification,” in Proceedings of the 9th IEEE In-
ternational Conference on Intelligent Systems Design and Applications
(ISDA’09), Pisa, IT, 2009, pp. 283–287.

[12] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” in Proceedings of the 9th
Conference on Neural Information Processing Systems (NIPS’96), Den-
ver, US, 1997, pp. 155–161.

[13] W. Chu and S. S. Keerthi, “Support vector ordinal regression,”
Neural Computation, vol. 19, no. 3, pp. 145–152, 2007.

[14] J. C. Platt, “Fast training of support vector machines using
sequential minimal optimization,” in Advances in kernel methods:
Support vector learning, B. Schölkopf, C. J. C. Burges, and A. J.
Smola, Eds. Cambridge, US: MIT Press, 1999, pp. 185–208.


