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Introduction
Due to the pervasive role of multimedia documents
(MDs) in nowadays information systems, a vast
amount of research has been carried out in the last
few years on methods for effectively retrieving such do-
cuments from large repositories. This research is still
in its infancy, due to the inherent difficulty of inde-
xing documents pertaining to media other than text in
a way that reflects their information content and, as
a consequence, that significantly impacts on retrieval.
Nonetheless, a number of theoretical results concerning
sub-problems (e.g. the image retrieval problem) have
been obtained and experimented with, and on top of
these a first generation of retrieval systems have been
built (Gudivada & Raghavan 1995b) and, in some ca-
ses, even turned into commercial products (Bach et al.
1996; Faloutsos et al. 1994).

The distinguishing feature of these multimedia re-
trieval systems (MRSs), and of the related research
models, is the lack of a proper representation and use
of the content of non-textual documents: only featu-
res pertaining to their form, being most amenable to
automatic extraction through digital signal processing
(DSP) techniques, are used upon retrieval. But this
is disturbing, as documents, irrespective of the repre-
sentation medium they employ, are to be regarded as
information carriers, and as such are to be studied
along two parallel dimensions, that of form (or syntax,
or symbol) and that of content (or semantics, or me-
aning). Here, “form” is just a collective name for all
those (medium-dependent) features of an information
carrier that pertain to the representation and to the re-
presentation medium, while “content” is likewise a col-
lective name for those (medium-independent) features
that pertain to the slice of the real world being re-
presented, which exists independently of the existence
of a representation referring to it. The main thrust
of our work is that a data model for the retrieval of
MDs (which we here take as consisting of multiple sub-
documents each pertaining to possibly different media,

rather than as just non-textual “atomic” documents)
not only needs both dimensions to be taken into ac-
count, but also requires that each of them be tackled
by means of the tools most appropriate to it, and that
these sets of tools be integrated in a principled way in
order to ensure transparent user access. Concerning
the issue of tool appropriateness, we think that, ina-
smuch as the techniques from DSP (used e.g. in image
and audio retrieval) are inadequate to reason about
content, those from the field of knowledge representa-
tion are inadequate to deal with document form.

This study addresses the problem of injecting se-
mantics into MD retrieval by presenting a data model
for MDs where sub-documents may be either texts or
images. The way this model enforces the interaction
between these two media is illustrative of how other
media might also be accounted for. Texts and images
are represented at the content level as sets of proper-
ties of the real-world objects being represented; at this
level, the representation is medium-independent, and
a unique language for content representation is thus
adopted. This data model is logic-based, in the sense
that this latter language is based on a description logic
(DL – see e.g. (Borgida 1995)).

Texts and images are also represented at the form
level, as sets of physical features of the objects repre-
senting a slice of the world. Although the main task of
our DL is reasoning about content, our DL-based query
language is also endowed with the referential machi-
nery to address form; linking the form and content of
the same document is made possible by the sharing of
the same DL symbols. At the form level, the represen-
tation is medium-dependent, so different document pro-
cessing techniques are used to deal with sub-documents
expressed in the different media. Although features
pertaining to form are not represented explicitly in the
DL, they impact on the DL-based reasoning through
a mechanism of “procedural attachments”. This im-
plements the connection between (logical) reasoning
about content and (non-logical) reasoning about form.



     

From the point of view of the semantics of the query
language, this latter connection is established by re-
stricting the set of interpretations of the logical lan-
guage to those that verify the constraints imposed at
form level by the results of the text processing and
DSP analysis. This mechanism for giving semantics
to procedural attachments, thereby allowing to effecti-
vely merge logical and non-logical reasoning, has also
been called the method of concrete domains (Baader &
Hanschke 1991).

The DL-based query language thus allows the ex-
pression of retrieval requests addressing both structu-
ral (form) and conceptual (content) similarity, and its
underlying logic permits, among other things, to bring
to bear domain knowledge (whose representation DLs
are notoriously good at) in the retrieval process. The
query language also includes facilities for fuzzy rea-
soning, in order to address the inherently quantitative
nature of notions like “similarity” between text/images
or between their features (word morphology, image co-
lour, image shape, and the like). The model is exten-
sible, in that the set of symbols representing similarity
can be enriched at will, to account for different notions
of similarity and methods for computing it.

The resulting retrieval capability thus extends that
of current MRSs with the use of semantic information
processing and reasoning about text/image content.
So far, the only attempts in this direction had been ba-
sed on textual annotations to non-textual documents
(“captions”: see e.g. (Smeaton & Quigley 1996)), in
some cases supported by the use of thesauri to seman-
tically connect the terms occurring in the text (Gu-
glielmo & Rowe 1996); this means that text is seen as
mere comment on the non-textual document, and not
as an object of independent interest and therefore su-
bject to retrieval per se. In our model text and images
are both first-class citizens, and this clearly indicates
how the extension to other media could be accompli-
shed.

The paper is organised as follows. We first deal with
the “form” dimension of texts and images, defining the
notions of text layout and image layout; these consists
of the symbolic representation of form-related aspects
of a text or image. Both notions are endowed with
a mereology, i.e. a theory of parts, based on the no-
tion of text region and image region as from digital
geometry. We then briefly introduce a fuzzy DL, di-
scussing its use to represent document content and to
“anchor” content representations to form representa-
tions. Document bases are defined next; last, we in-
troduce queries, categorising them with respect to the
representation medium and to the dimension involved,
and describing how the “procedural attachment” and

the “concrete domains” methods provide a smooth in-
tegration of form- and content-based retrieval.

The full paper, besides discussing each of these issues
in much greater detail, also discusses its computational
complexity and the realization of an MRS supporting
the model. Concerning this latter point, we only re-
mark that this are well within reach of the current
technology. In particular, we have developed a theo-
rem prover for a significant extension of the DL we use
here (Meghini & Straccia 1996), based on a sound and
complete Gentzen-style sequent calculus; this theorem
prover is currently being prototyped for subsequent ex-
perimental evaluation.

Representing form

We here briefly hint to the basic notions of the form
dimension of texts and images; these notions are for-
mally defined and more fully argued in the full paper.

Given an alphabet Σ, a text layout is a pair 〈n, w〉
(abbreviated as wn) where n ∈ IN is the length of the
text and w : {0, n − 1} → Seq(Σ) is a total func-
tion assigning a word to each position in [0, n − 1]. A
(grounded) text region is a pair 〈wn, S〉, where S is a
sub-interval of the [0, n− 1] interval. By extended text
region we will mean a set of (non necessarily conti-
guous) text regions from the same layout. By Seq(Σ)n

we denote the set of all possible text layouts of length
n. The text universe T = ∪i∈IN+Seq(Σ)i is the union
of all finite-length text layouts.

Given a set of colours C, an image layout is a tri-
ple i = 〈Ai, πi, f i〉, where Ai, the domain, is a finite,
aligned, rectangular region (see e.g. (Rosenfeld & Kak
1982, Chapter 11)); πi is a partition of Ai into non-
empty connected regions {T1, ..., Tn}, called atomic re-
gions; f i is a total function from πi to C, assigning a
colour to each atomic region (and therefore called the
colour function) such that no two neighbour atomic
regions have the same colour. Informally, by extended
region we will mean a set of contiguous regions, and
by extended colour function f i

e of a layout i we will
mean the function that extends the colour function to
extended regions (returning so-called colour distribu-
tions). In general, a region S is not bound to a par-
ticular layout; this binding is realized in the notion of
grounded region, which we define as a pair 〈i, S〉, where
i = 〈Ai, πi, f i〉 is a layout and S ∈ πi

e.

Representing document contents

We take the content of a document (be it text, or
image, or any combination of the two) to be a scene,
i.e. the set of all states of affairs consistent with the
information in the document. Informally, the content
of a text will thus be the set of situations that sup-
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port the sentences making up the text, and that of an
image will thus be a set of situations indistinguishable
from the visual point of view. For instance, the scene
denoted by image i might be the one in which Giu-
lia is hugging Francesco, and in which they both wear
blue; this scene encompasses all visually equivalent si-
tuations of this kind, i.e. it is irrespective of when the
action takes place, and of what Francesco and Giulia
are thinking of. Symbolic representations of scenes are
important if an MD base is to be accessed for retrieval
based also on the properties of the individuals refer-
red to within documents. The formalism we have cho-
sen for representing and reasoning on image contents
is a Description Logic (DL – see e.g. (Borgida 1995;
Meghini et al. 1993)). DLs (aka “Terminological Lo-
gics”) are contractions of first order logic, and have an
“object-oriented” character that makes them especially
suitable to reasoning about structured objects. They
have been shown adequate for modelling a large class
of facts relevant to information systems (Buchheit et
al. 1994; De Giacomo & Lenzerini 1995), and a num-
ber of them also have decidedly better computational
properties than FOL (decidability and, in some cases,
also polynomiality; see e.g. (Donini et al. 1991)).

The specific DL that we adopt is ALC (Schmidt-
Schauß & Smolka 1991), a significant representative
of the DLs family; however, our model is not tied in
any way to this particular choice, and any other DL
would easily fit in it. The language of ALC includes
unary and binary predicate symbols, called primitive
concepts (indicated by the metavariable A with optio-
nal subscripts) and primitive roles (metavariable R),
respectively, and individuals (metavariable a). These
are the basic constituents by means of which concepts
(metavariable C), i.e. “non-primitive predicate sym-
bols”, are built via concept constructors, according to
the following syntactic rule:

C −→ A | C1 � C2 | C1 � C2 | ¬C | ∀R.C | ∃R.C

A crisp assertion is an expression having one of the
forms: a) C(a), meaning that a is an instance of C; b)
R(a1, a2), meaning that a1 is related to a2 by means of
R; c) T � T ′, where T and T ′ are both concepts or both
roles, means that T is a specialization of T ′. The first
two kinds of assertions are called simple assertions,
while any instance of the last kind is said to be an
axiom.

In order to deal with the uncertainty inherent in
similarity-based retrieval, we add to ALC fuzzy as-
sertions (see e.g. (Dubois & Prade 1980)), i.e. expres-
sions of the form 〈α, n〉 where α is a crisp assertion
and n ∈ [0, 1], meaning that α is true “to degree n”.
We will use the terms fuzzy simple assertion and fuzzy
axiom, with the obvious meaning. The semantics of

fuzzy ALC is detailed in the full paper.
Let us now discuss how fuzzy ALC is used for do-

cument content representation. We recall that content
is a medium-independent notion, and as such may be
discussed without reference to whether the document
analysed is an image or a text. Therefore, let i be a
(text or image) layout uniquely identified by the indi-
vidual i. A content description δ for i is a set of fuzzy
assertions, consisting of the union of four component
subsets:

1. the document identification, a set containing a single
fuzzy assertion of the form 〈Ego(i), 1〉, whose role is
to associate a content description with the layout it
refers to. In particular, in what follows σ(i) will
denote the set of the (possibly many) content de-
scriptions whose identification is Ego(i);

2. the object anchoring, a set of fuzzy assertions of the
form 〈Rep(r, o), n〉, where r is an individual that uni-
quely identifies a grounded (text or image) region of
i and o is an individual that identifies the object
denoted by the region;

3. the scene anchoring, a set of fuzzy assertions of the
form 〈About(i, o), n〉, where i and o are as above.
By using these assertions, an indexer can state what
the scene represented by the document is about;

4. the scene description, a set of fuzzy simple assertions
(where neither the predicates Ego, Rep and About,
nor identifiers pertaining to layout such as the i’s
and r’s above, occur), describing important facts de-
scribed by the document about the individuals iden-
tified by assertions of the previous two kinds.

While the task of components 1 to 3 is that of binding
the form and content dimension of the same document,
component 4 pertains to the content dimension only.
Note that there may be more than one content descrip-
tion for the same document i; this is meant to reflect
the fact that there may be multiple viewpoints under
which a document may be considered. As an exam-
ple, let us consider a photograph showing a singer,
Mary, performing as Zerlina in Mozart’s “Don Gio-
vanni”. Part of a plausible content description for this
image, named i, could be (for simplicity, in this exam-
ple we only use crisp assertions):

{Ego(i), About(i,o), Rep(r,mary),
DonGiovanni(o), Plays(mary,zerlina)}

Document bases
We model a document base as a collection consisting
of a text base and an image base, plus additional infor-
mation on “document structures” (DSs). This latter
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aspect, that for reasons of space we relegate to the full
paper, includes a formal definition of the notion of DS,
which is meant to address the possibly complex, hie-
rarchical structure that a MD may have. Typically,
leaf nodes of document structures will be elements of
either the text base or image base.

An image base is a 4-tuple IB = 〈IL, νI ,ΣIC ,ΣID〉
where: a) IL is a set of image layouts; b) νI is a naming
function mapping image layouts and grounded image
regions in IL into individuals, which therefore act as
unique names for them; c) ΣIC is the set of content
descriptions associated to the layouts in IL; and d)
ΣID is the domain knowledge for the images in IB.
In a completely analogous way, a text base is a 4-tuple
TB = 〈TL, νT ,ΣTC ,ΣTD〉, with the obvious meaning.

A unified query language

A query posed to a document base can refer to the
structure of the requested documents, and/or to fea-
tures of their text components, and/or to features of
their image components. For reasons of space we will
here address only the last aspect, as features concer-
ning the first two can be figured out from the discussion
that follows (and are to be found in the full paper).

A query addressed to an image base can refer either
to the form dimension, in which case we call it a vi-
sual query, or to the content dimension, in which case
we call it a conceptual query. These two categories
are exhaustive but not disjoint. Visual queries can be
partitioned as follows:

1. concrete visual queries: these consist of images the-
mselves that are submitted to the system as a way
to indicate a request to retrieve “similar” images;

2. abstract visual queries: these are “abstractions” of
layouts that address specific aspects of image simila-
rity via artificially constructed image elements; they
can be further categorised into: a) colour queries, i.e.
colour distributions that are used to retrieve images
with a similar colour distribution; b) shape queries,
i.e. specifications of one or more shapes (closed sim-
ple curves in the 2D space) and possibly of their spa-
tial relationships, used to retrieve images in which
the specified shapes occur as contours of significant
objects, in the specified relationships; and c) other
categories, such as spatial and texture queries (Gu-
divada & Raghavan 1995a), which we do not deal
with here.

Concrete visual queries are processed in a global way,
i.e. by matching a vector of global features extracted
from the query image with each of the homologous vec-
tors extracted from the images subject to retrieval.

Abstract visual queries replicate the same phenome-
non but at a different level of granularity: the visual
entities relevant to retrieval (such as shape and colour)
are represented via features extracted from the query,
and are to be matched with their homologous features
extracted from images subject to retrieval. There are
a number of different methods for performing image
matching, each based on a specific set of features and
a specific way for combining them in order to obtain
a significant similarity assessment. These methods are
mostly application-dependent, in that their effective-
ness is a function of the type of targeted images and,
most importantly, of the goal of retrieval, which greatly
affects the relevant similarity criteria. In addition, they
are better expressed at the procedural level, if anything
else for efficiency considerations. For all these reasons
our model, unlike (Jagadish, Mendelson, & Milo 1995),
does not provide the machinery for defining similarity
functions, but views them as “black boxes” which have
two objects of the proper type as input and produce a
degree of similarity, i.e. a number in [0, 1], as output.
These black boxes are the semantics of special predi-
cate symbols (SPSs) which model similarity at the DL
level. In this way, a procedural attachment is establi-
shed between the logical symbols that denote visual
features and the algorithms that compute them.

In order to query layouts, the following SPSs are
introduced:

• symbols for global matching: in general, there will be
a set of such symbols, each capturing a specific simi-
larity criterion. Since from the conceptual viewpoint
these symbols form a uniform class, we just include
one of them in our language, to be understood as the
representative of the whole class. Any other symbol
of the same sort can be added without altering the
structure and philosophy of the language. So, for
global matching we use the SPS

– SI(i,j) (standing for Similar Image): assesses
the similarity between two layouts i and j;

• symbols for local matching: these come in two sorts.
First we have selectors, which are SPSs needed to
select the entity to match from a layout:

– HAR(i,r) (Has Atomic Region): a selector rela-
ting the image i to any of its grounded atomic
regions r;

– HR(i,r) (Has Region): a selector relating the
image i to any of its grounded regions r;

– HC(r,c) (Has Colour): a selector relating the
grounded region r to its colour c;

– HS(r,s) (Has Shape): a selector relating the
grounded region r to its shape s.
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Second, we have symbols for local matching, asses-
sing similarity between local entities. Similarly for
what it has been done for global matching, we in-
clude in the language one symbol for each category
of entities to be matched; so we have:

– SC(c,c’) (Similar Colour): returns the simila-
rity between two colour distributions c and c’;

– SS(s,s’) (Similar Shape): returns the simila-
rity between two shapes s and s’.

The semantics of the symbols introduced so far is fixed,
and is detailed in the full paper.

We are now in the position of defining the query lan-
guage of the model. In order to comply with the phi-
losophy of the model, the query language must satisfy
two basic requirements. First, it has to be a concept
language of a DL, so that matching queries against
images can be done in the logical framework defined
so far; and, second, it must respect the semantics of
the symbols for addressing images introduced in the
previous section.

In our query language (again, described in detail
in the full paper) a query is a combination, via the
conjunction and disjunction constructors, of so-called
image-concepts, each of which may have one of four
forms (following the order of the syntax):

1. a global similarity match request;

2. a query on some content-related object described by
content-concept, which is any ALCO concept built
with the symbols used for scene descriptions;

3. a query on an atomic region, which is required
to satisfy the property expressed by the embedded
region-concept;

4. a query on an extended region. In this case, the
embedded concept is the same as a region-concept,
but it must include a Rep clause; this prevents the
specification of queries involving arbitrary extended
regions of an image, of which there are an exponen-
tial number.

A region-concept gives conditions on a region, and
is built as an �/�-combination of three basic condi-
tions: one concerns the colour of the region, which
must be the same as, or similar to, a specified co-
lour (colour-concept); another analogously concerns
the shape of a region(shape-concept); the third involves
the individual represented by a region, and is a content
concept.

Let us reconsider the example introduced earlier.
The images that are about Don Giovanni are retrieved
by the query ∃About.DonGiovanni. Those showing

the singer Mary are described by ∃HR.∃Rep.{mary}.
Turning to visual queries, the request to retrieve the
images similar to a given one, named this, is ex-
pressed by ∃SI.{this}, and can be easily combined
with any conceptual query, e.g. yielding ∃SI.{this}
� ∃About.DonGiovanni, which would retrieve the
images that are either similar to the given one or
are about Don Giovanni. As far as local visual
queries are concerned, the images in which there
is a blue region whose contour has a shape simi-
lar to a given curve s are denoted by the query
∃HAR.(∃HC.{blue} � (∃HS.∃SS.{s})). Finally, the
user interested in retrieving the images in which
Mary plays Zerlina and wears a bluish dress, can use
the query ∃HR.∃Rep.({mary}�∃Plays.{zerlina}) �
(∃HC.∃SC.{blue}).

Our image data model is based on the idea that, in
response to a query Q addressed to an image base IB =
〈L, nl, nr,ΣC ,ΣD〉, the layout named i is attributed a
degree of relevance n iff:

n = max{δj∈σ(i)}{nj = Maxdeg(δj ∪ ΣD, Q(i))}
where Maxdeg computes the “maximum degree of
truth” with respect to the interpretations that satisfy
the (procedurally defined semantics) of the SPSs.

Let us consider an image base containing two image
layouts named i and j, such that:

{〈Ego(i), 1〉, 〈About(i, o), 0.8〉, 〈DonGiovanni(o), 1〉}
{〈Ego(j), 1〉, 〈About(j, o), 0.7〉, 〈WestSideStory(o), 1〉}
are in ΣI . Moreover, ΣA contains the following axioms:

〈DonGiovanni � EuropeanOp, 1〉
〈WestSideStory � AmericanOp, 1〉

〈EuropeanOp � Op � (∃CondBy.European), 0.9〉
〈AmericanOp � Op � (∃CondBy.European), 0.8〉

Suppose we are interested in those images that are
about an opera conducted by a European director.
To this end, we can use the query ∃About.(Opera �
∃ConductedBy.European). It can be verified that the
degree of relevance attributed to i is 0.8, whereas that
of j is 0.7.
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