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Abstract

Imaging is a class of non-Bayesian methods for the revision of probability
density functions originally proposed as a semantics for conditional logic.
Two of these revision functions, Standard Imaging and General Imaging,
have successfully been applied to modelling information retrieval (IR).
Due to the problematic nature of a“direct” implementation of Imaging
revision functions, we propose their alternative implementation by repre-
senting the semantic structure that underlies them, in the language of
a probabilistic (Bayesian) logic. Recasting these models of information
retrieval in such a general-purpose knowledge representation (KR) tool,
besides showing the potential of this “Bayesian” tool for the represen-
tation of non-Bayesian revision functions, paves the way to a possible
integration of these models with other more KR-oriented models of IR,
and to the exploitation of general purpose domain-knowledge.

1 Introduction

Researchers have recently devoted an increasing effort to the specification of
models of information retrieval (IR) along the so-called logical approach 1. Al-
though there are various interpretations of this approach, by and large we may
take it to say that the relevance of documents to user queries may be viewed
in terms of the validity of the formula d → q of a logical language, where d is a
formula representing the document, q is a formula representing the query and
“→” is the conditional (“implication”) connective of the chosen logica. Howe-
ver, the impossibility of finding perfect (i.e. absolutely faithful) representations
of the information content of documents and queries calls for a probabilistic
treatment of this conditional sentence: researchers agree that a realistic ap-
proach to the IR problem must rather rely on the evaluation of the real-valued
term P (d → q), where P (α) stands for “the probability that α”.

A number of researchers have recently taken up these ideas, and proposed
logics and logic-based models of IR based on them. Among these, of particular

aFor a discussion why we think that validity, rather than truth, of d → q is the notion to
consider, see 2.
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interest to the present paper are the models of IR based on “Imaging” 3 (here-
after called Standard Imaging) and “General Imaging” 4 by Crestani and van
Rijsbergen 5,6,7. Standard and General Imaging are density revision functions
(DRFs – see Section 2) originally proposed as a semantics for conditional logic,
the branch of logic that addresses the “if . . . then . . . ” notion of natural lan-
guage. The experimental results presented in 5,6 show a definite improvement
of performance over standard approaches to IR, thus supporting the conjecture
that Imaging methods capture some fundamental intuition underlying IR.

A full-blown implementation of Imaging methods is, unfortunately, pro-
blematic. The reason is that implementation techniques for DRFs (of which
belief networks are a primary example) have so far concentrated on the Baye-
sian case, i.e. Bayesian conditionalisation. To our knowledge, no technique has
been developed yet for non-Bayesian DRFs such as Imaging, and no theorem
proving technique has been developed for Imaging-based conditional logics. In
this paper we propose an alternative method for implementing Imaging me-
thods. Essentially, the idea is to represent the semantic structure that underlies
Imaging-based conditional logics in the language of a probabilistic (Bayesian!)
logic. This process of abstraction (i.e. of transfer from the realm of semantics
to that of syntax) is conceptually not dissimilar from the so-called “standard
translation” (see e.g.8) of modal propositional logic into first order logic (FOL),
whereby modal propositional reasoning is reduced to FOL reasoning by simu-
lating within FOL the possible worlds semantics of modal propositional logic.

We have shown that Halpern’s L1
9 logic, a FOL extended with features

for objective probability, is powerful enough to accommodate Standard and
General Imaging, but also generalizations of them such as “Proportional Ima-
ging”. For reasons of space, in this paper we confine our discussion to Standard
Imaging only; in an extended version of this paper 10, besides dealing with the
General and Proportional Imaging cases, we also show that an extension of L1

with features for subjective probability (called L3) can further accommodate
“Jeffrey Imaging”, a variant of Imaging obtained by combining (any variant
of) Imaging and Jeffrey Conditionalisation11, which seems a promising tool for
the analysis of non-binary “relevance feedback” in IR 12. Our implementation
of Imaging (and variations thereof) on top of L1 shows then that Bayesian
revision tools can be seen as convenient and powerful toolkits for fast proto-
typing of non-Bayesian models of IR. Quite obviously, recasting these models
of IR in such a general purpose knowledge representation (KR) and reaso-
ning tool paves the way to a possible integration of these models with other
more KR-oriented models of IR (such as e.g. 13,14), and to the exploitation of
general-purpose domain-knowledge.

The paper is organised as follows. While in Section 2 we briefly review
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Standard Imaging, in Section 3 we look at the main features of the L1 logic,
the main tool we will use in this work. In Section 4 we show a L1 implemen-
tation of a model of IR based on Standard Imaging. Section 5 discusses both
some theoretical underpinnings and the practical consequences of our work by
comparing it with related work.

2 The Bayesian model of epistemic states

The notion of Imaging (together with its variations) assumes that the epistemic
state of a cognitive agent is represented by a (subjective) probability function
P defined on the set of sentences of a language L and that complies with the
standard axioms of probability. If A is a sentence of L, then P (A) is meant to
represent the degree of confidence (or certainty, or belief) that the agent has in
the truth of A: if P (A) = 1 the agent is certain of the truth of A, if P (A) = 0
the agent is certain that A is false, while if 0 < P (A) < 1 the agent is unsure
whether A is the case or not. From now on, we will take L to be the language
of propositional logic defined on a finite number of propositional letters.

In real life agents may change their mind as a result of the acquisition of
new evidence; e.g. the agent may come to believe true facts that she believed
probably false. In order to model this, one needs a mechanism to change the
probability value associated to a sentence and change the values of other se-
mantically related sentences accordingly. This is called a probability revision
function. The standard probability revision function is Bayesian conditionali-
sation, according to which if an agent comes to firmly believe in the truth of
a sentence A (which she believed at least possibly true — i.e. P (A) > 0), her
new epistemic state must be described by a new probability function P (−|A)
(also indicated as PA) which, for all sentences B is defined as:

PA(B)
def
= P (B|A)

def
=

P (A ∧B)
P (A)

(1)

Note that PA is such that A is (correctly) deemed true, i.e. PA(A) = 1. An al-
ternative, semantically oriented but equivalent way of characterizing epistemic
states is to assume that there is a density function (also called a probability
distribution) µ on the set W of the 2n possible worlds (or simply worlds) on
which the propositional language is interpreted (where n is the number of pro-
positional letters in the language)b; i.e. µ is such that

∑
{w∈W} µ(w) = 1. The

bThis characterisation of possible worlds should not be confused with the Hintikka-Kripke
notion, according to which for giving semantics to modal logic we group possible worlds in
so-called “Kripke structures”, and each of them is considered “possible” by an explicitly
(rather than implicitly) represented cognitive agent. This latter notion implies a notion of
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degree of confidence of the agent in sentence A is defined as the sum of the
probabilities of the worlds that satisfy A (“A-worlds”), i.e.

P (A)
def
=

∑
{w∈W | w|=A}

µ(w) (2)

In the possible worlds view, instead of specifying a probability revision function
one specifies a density revision function (i.e. a functions mapping a density
function into another density function) on possible worlds that induces the
desired probability revision function through (2). Viewed as a DRF, Bayesian
conditionalisation then amounts to eliminating from consideration the worlds
that do not satisfy A (“¬A-worlds”), and creating a new density function µ′

obtained from µ by redistributing to the A-worlds the probability originally
assigned to the ¬A-worlds, where the redistribution is proportional to the
probability originally assigned to the A-worlds:

µ′(w) =




µ(w) · (1 +
P (¬A)
P (A)

) if w |= A

0 if w �|= A
(3)

Imaging and its variations are DRFs alternative to Bayesian conditionalisation.
They differ from it in that they are based on the idea that the probability of
¬A-worlds is not redistributed proportionally to the original probability of
the A-worlds. The underlying assumption is that there is a measure S of
similarity defined on W such that 0 ≤ S(w,w′) ≤ 1 measures, for every pair
〈w,w′〉 ∈ W 2, how similar to w w′ is (the higher S(w,w′), the more similar
to w w′ is). According to Imaging DRFs, only worlds sufficiently similar to
the ¬A-worlds receive some probability; how similar they need to be is what
differentiates the various forms of Imaging.

Standard Imaging (first introduced in 3) is based on the assumption that,
for all satisfiable sentences A and for all ¬A-worlds w, a most similar A-world
w′ = σ(A,w)

def
= max{S(w,w′) | w′ |= A} always exists and is unique; it is to

w′ that the probability µ(w) is transferred. Imaging thus sanctions that:

µ′(w′) =




0 if w′ �|= A

µ(w′) +
∑

{w∈W | w′=σ(A,w)}
µ(w) if w′ |= A (4)

belief located in the object language (with explicit “Beli” operators, where “Beli(α)” means
“agent i believes that α”), rather than in the metalanguage as the view we discuss.
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Obviously, the results of applying Imaging depend on the choice of the S
function. In general, however, for no choice of the similarity function the
results of Bayesian conditionalisation coincide with those of Imaging.

3 The L1 probabilistic logic

The L1 probabilistic logic is a FOL for reasoning about (objective) probabili-
ties 9. Probability values can explicitly be mentioned in the language: rather
than mapping non-probabilistic formulae on the real interval [0, 1], probabi-
listic formulae are mapped on the standard truth values true and false. The
logic allows the expression of real-valued terms of type w〈x1,...,xn〉(α) (where α
is any L1 formula), with the meaning “the probability that random individuals
x1, . . . , xn verify α”. It also allows their comparison by means of standard nu-
merical binary operators, resulting in formulae that can be composed by the
standard sentential operators of FOL. The semantics of L1 is given by assuming
the existence of a discrete probability structure on the domain; a formula such
as w〈x1,...,xn〉(α) ≥ r is true in an interpretation iff the probability assigned to
the individuals that verify α sums up to at least rc.

The semantics of L1 can be specified by means of type 1 probabilistic struc-
tures (PS1), i.e. triples M = 〈D,π, µ〉, where D is a domain of individuals, π is
an assignment of n-ary relations on D to n-ary predicate symbols and of n-ary
functions on D to n-ary function symbols (〈D,π〉 is then a FOL interpreta-
tion), and µ is a discrete density function (DDF) on D. The numerical value
µ(d) may be interpreted as “the probability that, if a random individual has
been picked from the domain D, it is d”. In what follows, we will use µ(D′)
(where D′ ⊆ D) as a shorthand for

∑
d∈D′ µ(d). Also, given a DDF µ on D, µn

is defined as the DDF on Dn such that µn(〈d1, . . . , dn〉) = µ(d1)× . . .×µ(dn).
A valuation is a mapping v of object variables (i.e. variables denoting

individuals of the domain, indicated by the subscript o) into D and numerical
variables (i.e. variables denoting real numbers, indicated by the subscript c)
into R. Three semantic notions can now be defined:

• the (numerical) value ‖tc‖〈M,v〉 of a numerical term tc in 〈M, v〉, with
values in the real interval [0, 1];

• the (object) value [to]〈M,v〉 of an object term to in 〈M, v〉, with values in
D;

cIt follows that, if x does not occur free in α, the term w〈x〉(α) may evaluate to 0 or 1
only, depending whether α evaluates to false or true, respectively. Given a closed formula
α, the term w〈x〉(α) plays then the role of its characteristic function.
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• the truth 〈M, v〉 |= α of a formula α in 〈M, v〉, with values in {true, false}.

The semantics of the logic is more formally described by the semantic clauses
that follow. In these, “mathop” is an operator in the setMATHOP={+,−,·,÷},
and “relop” is an operator in the set RELOP={=,�=,≥,≤,<,>}; mathop and
relop are the corresponding operations on real numbers.

[xo]〈M,v〉 = v(xo)

[fn
i (to1, . . . , t

o
n)]〈M,v〉 = π(fn

i )([to1]〈M,v〉, . . . , [ton]〈M,v〉)

‖xc‖〈M,v〉 = v(xc)
‖kc‖〈M,v〉 = k

‖tc1 mathop tc2‖〈M,v〉 = ‖tc1‖〈M,v〉 mathop ‖tc2‖〈M,v〉

‖w〈xo
1,...,x

o
n〉(α)‖〈M,v〉 = µn({〈d1, . . . , dn〉|〈M, v[xo1/d1, . . . , x

o
n/dn]〉 |= α})

〈M, v〉 |= Pn
i (to1, . . . , t

o
n) iff 〈[to1]〈M,v〉, . . . , [ton]〈M,v〉〉 ∈ π(Pn

i )
〈M, v〉 |= ¬α iff 〈M, v〉 �|= α

〈M, v〉 |= α ∧ β iff 〈M, v〉 |= α and 〈M, v〉 |= β

〈M, v〉 |= ∀xo.α iff 〈M, v[xo/d]〉 |= α for all d ∈ D

〈M, v〉 |= ∀xc.α iff 〈M, v[xc/r]〉 |= α for all r ∈ R
〈M, v〉 |= tc1 relop t

c
2 iff ‖tc1‖〈M,v〉 relop ‖tc2‖〈M,v〉

〈M, v〉 |= to1 = to2 iff [to1]〈M,v〉=[to2]〈M,v〉

A formula α is satisfiable iff there exists 〈M, v〉 such that 〈M, v〉 |= α; a for-
mula α is valid (in symbols: |= α) iff 〈M, v〉 |= α for all 〈M, v〉. Validity, the
main notion of interest in reasoning contexts, has been shown to be decidable
in L1 when the domain D has a fixed, finite cardinality n (see 9). Note that,
although the syntax of the logic might seem too limited for practical uses, a
number of other constructs may be defined as “shorthands” of the above formu-
lae. For instance, the Bayesian conditionalisation operator “w〈x1,...,xn〉(−|−)”
is expressed by considering the formula w〈x1,...,xn〉(α|β) = r as shorthand for
the formula w〈x1,...,xn〉(α ∧ β) = r · w〈x1,...,xn〉(β). Similarly, the square root
operator “

√
−” is expressed by considering the formula

√
tc = r as shorthand

for the formula tc = r · r. In an actual implementation of the logic, numerical
functions such as “

√
−” can obviously be implemented as calls to appropriate

subroutines rather than as expansions into the appropriate axiomatic defini-
tions, which then serve for theoretical purposes only.
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4 A representation of Imaging on top of Probabilistic Logic

Crestani and van Rijsbergen’s models of IR are based on a somewhat non-
standard interpretation of Imaging DRFs, as: (1) the representation language
is not that of propositional logic but a language of simple propositional letters,
each representing a document or a query; (2) possible worlds are keywords;
this means that there are not necessarily 2n possible worlds, but there are as
many possible worlds as there are keywords in the application domaind. The
propositional letter di (resp. qi) is conventionally taken to be true at world
tj iff the document represented by di (resp. the query represented by qi) is
indexed by the keyword represented by tj .

We now describe a representation of the model of IR of 5 in terms of L1.
Our purpose is to show how the representation of these mechanisms may be
accomplished quite easily, thus establishing Bayesian tools as convenient and
powerful platforms for fast prototyping of non-Bayesian IR models. In the full
paper we go on to show how also the model of 6, plus some generalisations of
both, can also be easily represented. In our approach, the whole information
retrieval process is modelled as a proper theory of L1, obtained by assembling
together various sets of formulae, each representing a class of entities partici-
pating in the process.

In order to implement Standard Imaging, a first subset of L1 formulae is
necessary to identify keywords and documents. This is necessary, as the domain
of interpretation must be restricted to deal with these types of individuals only,
which are the only entities of interest in the revision processes. Assuming that
{t1, . . . , tn} is the language of keywords by means of which documents are
represented, and that {d1, . . . , dm} are the documents in our collection, we
need formulae

Keyword(t1) ∧ . . . ∧ Keyword(tn) (5)
Document(d1) ∧ . . . ∧ Document(dm) (6)
∀x.[x = t1 ∨ . . . ∨ x = tn ∨ x = d1 ∨ . . . ∨ x = dm] (7)
∀x.¬(Document(x) ∧Keyword(x)) (8)

This is a key feature of this approach: documents and keywords are individuals
belonging to the domain of discourse of a first order interpretation, while in
the original approach of 5,6 keywords are (propositional) interpretations and
documents are propositions. Back to this point in Section 5.

dThe actual methods with which Crestani and van Rijsbergen have dealt with are (Stan-
dard) Imaging (in 5) and an approximation of the combination of General and Proportional
Imaging (in 6).

305



   

The next formulae are the ones that specify keyword occurrence, i.e. which
documents are indexed by which keywords. We represent this by formulae
wx(Occ(ti, dj)) = oij ∈ {0, 1} for all i = 1, . . . , n and j = 1, . . . ,m, where oij
is 1 iff ti occurs in dj . This representation is made possible by the fact that,
as noted in Footnote (c), the probability operator applied to a closed formula
yields the formula’s characteristic function.

Next, the probability of each keyword ti is specified with the set of formulae

wx(x = ti | Keyword(x)) = pti pti ∈ [0, 1] (9)

for all i = 1, . . . , n. These formulae account for the case in which we want
to input the probability values pti from the outside. Alternatively, these va-
lues can be computed within L1 from the already available occurrence data,
e.g. as their inverse document frequency (IDF). In this case, formulae (9) are
substituted by formulae

wx(x = ti | Keyword(x)) = −log(wy(Occ(ti, y) | Document(y))) (10)

The formula wy(Occ(ti, y) | Document(y)) is in fact to be read as “the proba-
bility that, by picking a random document y, keyword ti occurs in y”. For (10)
to truly represent IDF, though, we must assume that documents are picked
with equal probability, which we state by formula

∀xy.(Document(x) ∧Document(y)) ⇒ [wz(x = z) = wz(y = z)] (11)

Alternatively, one might choose to include both formulae (9), (10) and (11)
in the representation. In this way, probability values would be precomputed
“externally” and input to the reasoning process through formulae (9), and
formulae (10) and (11) would act as integrity constraints. In what follows we
will use the expression P (ti) as short for wx(x = ti | Keyword(x)).

The next subset of formulae is the one that specifies the similarity matrix,
i.e. how similar document di is to document dj for all 1 ≤ i, j ≤ m, i �= j:

Sim(ti, tj) = sij 1 ≤ i, j ≤ m, i �= j (12)

Only similarities between nonequal documents are specified; in fact the case i =
j is not interesting for Imaging methods, and its specification would complicate
the expression of formulae (15). Values sij are input from an external source
of information. Alternatively, they can be computed from within L1 from
the already available occurrence values; for instance, they may be taken to be
equivalent to the degree of coextensionality of the Occ predicate and computed
by means of the formula:

Sim(ti, tj) = wx(Occ(ti, x) | Occ(tj , x)) · wx(Occ(tj , x) | Occ(ti, x)) (13)
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or else be computed according to some other measure of similarity (e.g. the
EMIM measure adopted in 5). Again, formulae (12) and (13) might coexist,
with formulae (13) acting then as integrity constraints. Further integrity con-
straints might be added, if one’s theory of similarity requires one to do so; e.g.
similarity may be constrained to be a symmetric relation by means of formula
∀xy.[Sim(x, y) = Sim(y, x)], and/or a triangular relation by means of formula
∀xy.[Sim(x, y) + Sim(y, z) ≥ Sim(x, z)].

The following subset of formulae specifies, for each keyword, its most si-
milar keyword:

MostSim(ti, tki) 1 ≤ i ≤ n (14)

Similarly to formulae (9) and (12) these formulae account for the case in which
we want to input the “most-similarity” values from the outside. Alternatively,
these values can be computed within L1 from the already available similarity
data by means of the formulae

MostSim(ti, tki
) ⇔ ¬∃tj .[Sim(ti, tj) ≥ Sim(ti, tki

)] (15)

Again, formulae (14) and (15) may coexist, with formulae (15) acting then as
integrity constraints.

Next, we have to show how to calculate the revised probability of keyword
ti by Imaging on document dj , i.e. how to implement the probability transfer
function. The revised probabilities are specified by the following numerical
terms, for 1 ≤ i ≤ n:

wx(Occ(ti, dj)) · [P (ti) +

+
n∑

k=1

[P (tk) · wx(¬Occ(tk, dj)) · wx(MostSim(tk, ti)]] (16)

To interpret term (16) remember Footnote (c) and note that all formulae oc-
curring in the context of a wx operator are closed (wx-terms thus act here as
“guards”). The summation operator

∑
is obviously a shorthand for the corre-

sponding expanded numerical term. In what follows we will use the expression
P#
dj

(ti) as a shorthand of expression (16).
In order to compute relevance of documents to the query, we now have to

indicate by which keywords the query q is indexed. This is accomplished by
the formulae wx(Occ(ti, q)) = oi, for oi ∈ {0, 1}. The probability of relevance
of document dj to query q may be then calculated as the value of the numerical
term Rel#dj

(q) =
∑n

i=1 wx(Occ(ti, q)) · P#
dj

(ti).
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5 Related work and discussion

In this work we have discussed an implementation of a non-Bayesian revision
method on top of L1, a (Bayesian) FOL extended with features for reaso-
ning about objective probability; implementations of other related methods
are described in the full paper. These implementations have been achieved
by representing the semantic structure that underlies Imaging-based condi-
tional logics in the language of L1. Recasting the Imaging-related models of
information retrieval in such a general purpose knowledge representation and
reasoning tool, besides showing the potential of this “Bayesian” tool for the
representation of non-Bayesian revision functions, paves the way to a possible
integration of these models with other, more KR-oriented models of IR, and
to the exploitation of general-purpose domain-knowledge in the IR process.

The nature of this work may be discussed more effectively by comparing it
with the implementation of the Imaging-based models of IR discussed in 15,16.
These works, instead of a full-blown probabilistic FOL, use Probabilistic Da-
talog 17, an extension of Stratified Datalog (itself a version of the well-known
deductive database language Datalog) by means of features for subjective pro-
bability. Both in our work and in 15,16, the entities that participate in the
Imaging process (the keywords, their prior probabilities, the similarity values
between them, the documents and the queries) are given an explicit represen-
tation in the language. Unlike in 15,16, however, in our approach an explicit
representation is given also to the formula that computes the prior probabilities
of keywords, to the formula that computes the similarities between keywords
and to the formula that chooses the recipients of probability transfers and
computes the revised probabilities of these recipients; the meaning of all these
formulae is definable in terms of just the available keyword occurrence data.
This hints to the fact that different formulae encoding different methods of
computation of the above features may be experimented with in our appro-
ach. In this sense, the whole Imaging DRF is completely modelled as a proper
theory of L1. The definitions of 16 and 15 are instead rather partial, as most
of the reasoning needed for the implementation of the DRF has to be done by
some external process.

Our approach has the advantage of being more self-contained and concep-
tually attractive, as it requires the minimum amount of data to be provided
from outside the reasoning mechanism. Moreover, with a minimal coding ef-
fort, different probability kinematics methods may be experimented with and
compared, as can be seen in the full paper by the ease with which we have
encoded the probability transfer formula of different variants of Imaging in L1.
The price to be paid for this is that of efficiency, as reasoning in Probabilistic
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Datalog, a less expressive reasoning tool than L1, is no doubt computationally
easier.

One may wonder why the implementations of 15,16 require the prior pro-
babilities of keywords, the similarities between keywords and the revised pro-
babilities of keywords to be computed externally. We think that the answer
does not lie in the fact that Probabilistic Datalog is a less powerful tool than
L1, but in the fact that it is inherently geared towards subjective, and not
objective, probability (this character of Probabilistic Datalog can be seen from
the fact that its semantics contemplates density functions on possible worlds
rather than on the individuals of the domain). This entails the impossibility
to represent entities that are inherently of a frequentistic nature, such as the
IDF of a keyword (see Equation 10) and the notion of similarity between two
keywords as degree of coextensionality (see Equation 13). It also somewhat en-
tails a distortion of the meaning of probabilities. For instance, in Probabilistic
Datalog one needs to code keyword prior probabilities by means of sentences
of type 0.2 term(t1), which literally means “the agent believes, with degree of
confidence 0.2, that t1 is a keyword”. In L1 one writes instead wx(t1) = 0.2,
which means “the probability that a random pick among keywords yields t1 is
0.2”. The latter is no doubt a more faithful rendition of prior probabilities of
keywords.
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