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Abstract

The automated categorisation (or classification) of texts into topical categories has a long his-
tory, dating back at least to 1960. Until the late ’80s, the dominant approach to the problem
involved knowledge-engineering automatic categorisers, i.e. manually building a set of rules
encoding expert knowledge on how to classify documents. In the ’90s, with the booming pro-
duction and availability of on-line documents, automated text categorisation has witnessed
an increased and renewed interest. A newer paradigm based on machine learning has super-
seded the previous approach. Within this paradigm, a general inductive process automatically
builds a classifier by “learning”, from a set of previously classified documents, the character-
istics of one or more categories; the advantages are a very good effectiveness, a considerable
savings in terms of expert manpower, and domain independence. In this tutorial we look at
the main approaches that have been taken towards automatic text categorisation within the
general machine learning paradigm. Issues of document indexing, classifier construction, and
classifier evaluation, will be touched upon.

1 A definition of the text categorisation task

Document categorisation (or classification) may be seen as the task of determining an assignment
of a value from {0,1} to each entry of the decision matriz
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where C = {c1,...,cn} is a set of pre-defined categories, and D = {dy,...,d,} is a set of doc-

uments to be categorised (sometimes called “requests’). A value of 1 for a;; is interpreted as a

decision to file d; under ¢;, while a value of 0 is interpreted as a decision not to file d; under c;.
Fundamental to the understanding of this task are two observations:

e the categories are just symbolic labels. No additional knowledge of their “meaning” is
available to help in the process of building the categoriser; in particular, this means that the
“text” constituting the label (e.g. Sports in a news categorisation task) cannot be used;

e the attribution of documents to categories should, in general, be attributed on the basis
of the content of the documents, and not on the basis of metadata (e.g. publication date,



document type, etc.) that may be available from an external source. This means that the
notion of relevance of a document to a category is inherently subjective!.

Different constraints may be enforced on the categorisation task, depending on the application:
we may want that

1. {<1|1]>1]...} elements of C' must be assigned to each element of D. When exactly
one category is assigned to each document (as e.g. in [28, 43]), this is often referred to as
the non-overlapping categories case.

2. each element of C' must be assigned to {<1|1|>1]...} elements of D.

The techniques we will consider here are applicable irrespectively of whether any of these con-
straints are enforced or not.

1.1 Category- or document-pivoted categorisation

An important distinction is whether we want to fill the matrix one row at a time (category-pivoted
categorisation — CPC), or fill the it one column at a time (document-pivoted categorisation — DPC).
This distinction is mostly pragmatic rather than conceptual, but is important in the sense that
the sets C' of categories and D of documents are not always available in their entirety right from
the start.

DPC is thus suitable when documents might become available one at a time over a long span
of time, e.g. in the case a user submits one document at a time for categorisation, rather than
submitting a whole batch of them all at once. In this case, sometimes the categorisation task
takes the form of ranking the categories in decreasing order of their estimated appropriateness for
document d; because of this, CPC is sometimes called category-ranking classification or on-line
classification [50].

CPC is instead suitable if we consider the possibility that a new category c¢,,+1 is inserted into
a previously existing set of categories C = {c1,..., ¢y } after a number of documents have already
been categorised under C, which means that these documents need to be categorised under ¢, 41
too. In this case, sometimes the categorisation task takes the form of ranking the documents
in decreasing order of their estimated appropriateness for category c,,+1; symmetrically to the
previous case, DPC may also be called document-ranking classification.

CPC is more commonly used than DPC, as the case in which documents are submitted one
at a time is somehow more common than the case in which newer categories dynamically crop
up. However, although some specific techniques apply to one and not to the other (e.g. the
proportional thresholding method discussed in Section 6, which applies only to CPC), this is
more the exception than the rule: most of the techniques we will discuss in this paper allow the
construction of classifiers capable of working in either mode.

2 Applications of document categorisation

Automatic text categorisation goes back at least to the early 60, with the seminal work by
Maron [29]. Since then, it has been used in a number of different applications. In the following,
we briefly review the most important ones.

IThis is exemplified by the well-known phenomenon of inter-indezer inconsistency [5]: when two different
humans must take a decision on whether to categorise document d under category ¢, they may disagree. Note
that the above-mentioned notion of relevance of a document to a category is basically the notion of relevance of a
document to an information need, as from information retrieval [41].



2.1 Automatic indexing for Boolean information retrieval systems

The first use to which automatic categorisers were put at, and the application that spawned most
of the early research in the field, is that of automatic document indexing for use in information
retrieval (IR) systems relying on a controlled dictionary. The most prominent example of such IR
systems is, of course, that of Boolean systems. In these systems, each document is assigned one or
more keywords or keyphrases describing its content, where these keywords and keyphrases belong
to a finite set of words, called controlled dictionary) and often consisting of a hierarchical thesaurus
(e.g. the NASA thesaurus for the aerospace discipline [34], or the MESH thesaurus covering the
medical field [35]). Usually, this assignment is performed by trained human indexers, and is thus
an extremely costly activity.

If the entries in the thesaurus are viewed as categories, document indexing becomes an instance
of the document categorisation task, and may thus be addressed by the automatic techniques de-
scribed in this paper. Concerning Point 1 in Section 1, note that in this case a typical constraint
may be that [; < x < Iy keywords are assigned to each document. Document-pivoted categorisa-
tion might typically be the best option, so that documents are categorised on a first come, first
served basis.

Various automatic document categorisers explicitly addressed at the document indexing appli-
cation have been described in the literature; see e.g. [4, 10, 12].

2.2 Document organisation

In general, all issues pertaining to document organisation and filing , be it for purposes of personal
organisation or document repository structuring, may be addressed by automatic categorisation
techniques. For instance, at the offices of a newspaper, incoming “classified” ads should be, prior
to publication, categorised under the categories used in the categorisation scheme adopted by the
newspaper; typical categories might be e.g. Personals, Cars for sale, Real estate, .... While most
newspapers would handle this application manually, those dealing with a high daily number of
classified ads might prefer an automatic categorisation system to choose the most suitable category
for a given ad.

Concerning Point 1 in Section 1, note that in this case a typical constraint might be that
exactly one category is assigned to each document. Again, a first-come, first-served policy might
look the aptest here, which would make one lean for a document-pivoted categorisation style.

2.3 Document filtering

Document filtering (also known as document routing) refers to the activity of categorising a dy-
namic, rather than static, collection of documents, in the form of a stream of incoming documents
dispatched in an asynchronous way by an information producer to an information consumer [3]. A
typical case of this is a newsfeed, whereby the information producer is a news agency (e.g. Reuters
or Associated Press) and the information consumer is a newspaper. In this case, the filtering sys-
tem should discard (i.e. block the delivery to the consumer of) the documents the consumer is not
likely to be interested in (e.g. all news not concerning sports, in the case of a sports newspaper).

Filtering can be seen as a special case of categorisation with non-overlapping categories, i.e.
the categorisation of incoming documents in two categories, the relevant and the irrelevant. Ad-
ditionally, a filtering system may also perform a further categorisation into topical categories of
the documents deemed relevant to the consumer; in the example above, all articles about sports
are deemed relevant, and should be further subcategorised according e.g. to which sport they deal
with, so as to allow individual journalists specialised in individual sports to access only documents
of high prospective interest for them.

The construction of information filtering systems by means of machine learning techniques is
widely discussed in the literature: see e.g. [43].



2.4 'Word sense disambiguation

Word sense disambiguation (WSD - see e.g. [20]) refers to the activity of finding, given the oc-
currence in a text of an ambiguous (i.e. polysemous or homonymous) word, the word sense the
word refers to. For instance, the English word bank may have (at least) two different senses, as in
the Bank of England (a financial institution) or the bank of river Thames (a hydraulic engineering
artifact). It is thus a WSD task to decide to which of the above senses the occurrence of bank
in | got some money on loan from the bank this morning refers to. WSD is very important for a
number of applications, including indexing documents by word senses rather than by words for
information retrieval or other content-based document management applications.

WSD may be seen as a categorisation task once we view word occurrence contexts as documents
and word senses as categories. Quite obviously, this is a case in which exactly one category needs
to be assigned to each document, and one in which document-pivoted categorisation is most likely
to be the right choice. WSD is viewed as a categorisation task in a number of different works in
the literature; see e.g [14, 42].

2.5 Yahoo!-style search space categorisation

Automatic document categorisation has recently arisen a lot of interest also for its possible Internet
applications. One of these is automatically categorising Web pages, or sites, into one or several of
the categories that make up commercial hierarchical catalogues such as those embodied in YAHOO!,
INFOSEEK, etc. When Web documents are catalogued in this way, rather than addressing a generic
query to a general-purpose Web search engine, a searcher may find it easier to first navigate in
the hierarchy of categories and then issue his search from (i.e. restrict his search to) a particular
category of interest.

Automatically categorising Web pages has obvious advantages, since the manual categorisation
of a large enough subset of the Web is problematic to say the least. Unlike in the previous
applications, this is a case in which one might typically want each category to be populated by a
set of k1 < x < ko documents, and one in which category-centered categorisation may be aptest.

3 The machine learning approach to document categorisa-
tion

In the ’80s, the main approach used to the construction of automatic document categorisers
involved knowledge-engineering them, i.e. manually building an expert system capable of taking
categorisation decisions. Such an expert system might have typically consisted of a set of manually
defined rules (one per category) of type if (DNF Boolean formula) then (category), to the effect
that if the document satisfied (DNF Boolean formula) (DNF standing for “disjunctive normal
form”), then it was categorised under (category). The typical example of this approach is the
CONSTRUE system [15], built by Carnegie Group for use at the Reuters news agency.

The drawback of this “manual” approach to the construction of automatic classifiers is the
existence of a knowledge acquisition bottleneck, similarly to what happens in expert systems. That
is, rules must be manually defined by a knowledge engineer with the aid of a domain expert (in
this case, an expert in document relevance to the chosen set of categories). If the set of categories
is updated, then these two professional figures must intervene again, and if the classifier is ported
to a completely different domain (i.e. set of categories), the work has to be repeated anew.

On the other hand, it was suggested that this approach can give very good effectiveness results?:
Hayes et al. [15] report a .90 “breakeven” result (see Section 7) on a subset of the Reuters-21578
test collection, a figure that outperforms most of the best classifiers built in the late '90s by
machine learning techniques. However, no other classifier has been tested on the same dataset as
CONSTRUE (see also Table 4), and it is not clear how this dataset was selected from the Reuters-
21578 collection (i.e. whether it was a random or a favourable subset of the whole collection). All

2See Section 7 for a more formal definition of “effectiveness” in the context of automatic categorisation.



in all, as convincingly argued in [50], the results above do not allow us to confidently say that
these effectiveness results may be obtained in the general case.

Since the early '90s, a new approach to the construction of automatic document classifiers
(the machine learning approach) has gained prominence and eventually become the dominant one
(see [31] for a comprehensive introduction to machine learning). In the machine learning approach
a general inductive process automatically builds a classifier for a category c¢; by “observing” the
characteristics of a set of documents that have previously been classified manually under ¢; by a
domain expert; from these characteristics, the inductive process gleans the characteristics that a
novel document should have in order to be categorised under ¢;. Note that this allows us to view
the construction of a classifier for the set of categories C' = {c1,..., ¢} as m independent tasks
of building a classifier for a single category ¢; € C, each of these classifiers being a rule that allows
to decide whether document d; should be categorised under category c;.

The advantages of this approach over the previous one are evident: the engineering effort
goes towards the construction not of a classifier, but of an automatic builder of classifiers. This
means that if the original set of categories is updated, or if the system is ported to a completely
different domain, all that is needed is the inductive, automatic construction of a new classifier
from a different set of manually categorised documents, with no required intervention of either the
domain expert or the knowledge engineer.

In terms of effectiveness, categorisers build by means of machine learning techniques nowa-
days achieve impressive levels of performance (see Section 7), making automatic classification a
qualitatively viable alternative to manual classification.

3.1 Training set and test set

As previously mentioned, the machine learning approach relies on the existence of a an initial
corpus Co = {dy,...,ds} of documents previously categorised under the same set of categories
C = {c1,...,cm} with which the categoriser must operate. This means that the corpus comes
with a correct decision matrixz

Training set Test set
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A value of 1 for ca;; is interpreted as an indication from the expert to file d; under ¢;, while a
value of 0 for is interpreted as an indication from the expert not to file d; under ¢;. A document
d; is often referred to as a positive example of ¢; if ca;; = 1, a negative ezample of ¢; if ca;; = 0.
For evaluation purposes, in the first stage of classifier construction the initial corpus is typically
divided into two sets, not necessarily of equal size:

e a training set Tr = {di,...,d,}. This is the set of example documents observing the
characteristics of which the classifiers for the various categories are induced;

o atestsetTe= {EQH, ...,ds}. This set will be used for the purpose of testing the effectiveness
of the induced classifiers. Each document in T'e will be fed to the classifiers, and the classifier
decisions compared with the expert decisions; a measure of classification effectiveness will
be based on how often the values for the a;;’s obtained by the classifiers match the values
for the ca;;’s provided by the experts.

Note that in order to give a scientific character to the experiment the documents in Te cannot
participate in any way in the inductive construction of the classifiers; if this condition were not to
be satisfied, the experimental results obtained would typically be unrealistically good. However,



it is often the case that in order to optimise a classifier, its internal parameters should be tuned
by testing which value of the parameter yields the best effectiveness. In order for this to happen
and, at the same time, safeguard scientific standards, the set {d, ... ,Eg} may be further split into
a “true” training set Tr = {31, ... ﬂf}, from which the classifier is induced, and a validation test
set Va = {Ef+1, . ,89}, on which the repeated tests of the induced classifier aimed at parameter
optimization are performed.

Finally, one may define the generality gco(c;) of a category ¢; relative to a corpus Co as the
percentage of documents that belong to ¢;, i.e.:

| {d; € Co | caj; =1} |
gCo(Ci) = =
| {dj € Co} |

(1)

The training set generality gr,(c;), validation set generality gvo(c;), and test set generality gre(c;)
of a category ¢; may be defined in the obvious way by substituting T'r, Va, or Te, respectively, to
Co in Equation 1.

3.2 Information retrieval techniques and document classification

The machine learning approach to classifier construction heavily relies on the basic machinery of

information retrieval. The reason is that both information retrieval and document categorisation

are content-based document management tasks, and therefore share many characteristics.
Information retrieval techniques are used in three phases of the classification task:

1. IR-style indexing is always (uniformly, i.e. by means of the same technique) performed on the
documents of the initial corpus and on those to be categorised during the operating phase
of the classifier;

2. IR-style techniques (such as document-request matching, query expansion, ...) are typically
used in the inductive construction of the classifiers;

3. IR-style evaluation of the effectiveness of the classifiers is performed.

The various approaches to classification differ mostly for how they tackle Step 2, although in a
few cases (e.g. [2]) non-standard approaches to Step 1 are also used. Steps 1, 2 and 3 will be the
main themes of Sections 4, 5 and 7, respectively.

4 Indexing and dimensionality reduction

In true information retrieval style, each document (either belonging to the initial corpus, or to be
categorised in the operating phase of the system) is usually represented by a vector of n weighted
index terms. Weights usually range between 0 and 1 (only a few authors (e.g. [26, 28, 43]) use
binary weights), and with no loss of generality we will assume they always do. This is often referred
to as the bag of words approach to document representation. Both Apté et al. [1] and Lewis [21]
have found that more sophisticated representations yield worse categorisation effectiveness, thereby
confirming similar results from information retrieval [39]. In particular, [21] has tried to use noun
phrases, rather than individual words, as indexing terms, but the experimental results he has
found have not been encouraging, irrespectively of whether the notion of “phrase” is motivated

e linguistically; i.e. the phrase is such according to a grammar of the language (syntactic
phrase; see e.g. [44]);

e statistically; i.e. the phrase is not grammatically such, but is composed of a set/sequence of
words that occur contiguously with high frequency in the collection (see e.g. [9]).



Quite convincingly, Lewis argues that the likely reason for the discouraging results is that, al-
though indexing languages based on phrases have superior semantic qualities, they have inferior
statistical qualities with respect to indexing languages based on single words. Notwithstanding
these discouraging results, investigations on the effectiveness of phrase indexing are still being
actively pursued [32, 33].

In general, for determining the weight w;j of term ¢, in document d; any IR-style indexing
technique that represents a document as a vector of weighted terms may be used. Most of the
times, the standard ¢fidf weighting function is used (see e.g. [39]), defined as

tfidf (tg, dj) = #(tx, dj) -log #\&7(;?)

where #(tx, d;) denotes the number of times ¢; occurs in d;, #(t) denotes the number of doc-
uments in Tr in which ¢ occurs at least once (also known as the document frequency of term
tr), and g is the cardinality of the training set Tr. This function encodes the intuitions that i)
the more often a term occurs in a document, the more it is representative of the content of the
document, and ii) the more documents the term occurs in, the less discriminating it is®. In order
to make weights fall in the [0,1] interval and documents be represented by vectors of equal length,
the weights resulting from ¢ fidf are often normalised by cosine normalisation, given by:

oy — tfidf (tr, d;) o)

VI (e fidf (2, dy))?

where T is the set of all terms that occur at least once in Tr. Although tfidf is by far the most
popular one, other indexing functions have also been used (e.g. [11]).

Before indexing, the removal of function words is usually performed, while only a few authors
(e.g. [36, 43, 46, 50]) perform stemming.

Unlike in information retrieval, in document categorisation the high dimensionality of the term
space (i.e. the fact that the number r of terms that occur at least once in the corpus Co is high)
may be problematic. In fact, while the typical matching algorithms used in IR (such as cosine
matching) scale well to high values of r, the same cannot be said of many among the sophisticated
learning algorithms used for classifier induction (e.g. the LLSF algorithm of [51]). Because of this,
techniques for dimensionality reduction (DR) are often employed whose effect is to reduce the
dimensionality of the vector space from r to v’ < r.

Dimensionality reduction is also beneficial in that it tends to reduce the problem of overfit-
ting, i.e. the phenomenon by which a classifier is tuned also to the contingent, rather than just
the necessary (or costitutive) characteristics of the training data*. Classifiers which overfit the
training data tend to be extremely good at classifying the data they have been trained on, but are
remarkably worse at classifying other data. For example, if a classifier for category Cars for sale
were trained on just three positive examples among which two concerned the sale of a yellow car,
the resulting classifier would deem “yellowness”, clearly a contingent property of these particular
training data, as a costitutive property of the category. Experimentation has shown that in order
to avoid overfitting a number of training examples roughly proportional to the number of index
terms used is needed. This means that, after DR is performed, overfitting may be avoided by
using a smaller amount of training examples.

Various DR functions, either from the information theory or from the linear algebra literature,
have been proposed, and their relative merits have been tested by experimentally evaluating the
variation in categorisation effectiveness that a given classifier undergoes after application of the
function to the feature space it operates on.

There are two quite distinct ways of viewing DR, depending on whether the task is approached
locally (i.e. for each individual category, in isolation of the others) or globally:

3 Actually, tfidf is, rather than a function, a whole class of functions, which differ from each other in terms of
normalisation or other correction factors being applied or not. Formula 2 is then just one of the possible instances
of this class; see [39] for variations on this theme.

4The overfitting problem is often referred to as “the curse of dimensionality”.



e local dimensionality reduction: for each category ¢;, r, < r features are chosen in terms of
which the classifier for category ¢; will operate (see e.g. [1, 26, 28, 36, 43, 46]). Conceptually,
this would mean that each document d; has a different representation for each category c;;
in practice, though, this means that different subsets of d;’s original representation are used
when categorising under the different categories;

e global dimensionality reduction: v’ < r features are chosen in terms of which the classifiers
for all categories C' = {cy,..., ¢y} will operate (see e.g. [46, 50, 53]).

This distinction usually does not impact on the kind of technique chosen for DR, since most DR
techniques can be used (and have been used) either for local or for global DR.
A second, orthogonal distinction may be drawn in terms of what kind of features are chosen:

e dimensionality reduction by feature selection: the chosen features are a subset of the original
r features;

o dimensionality reduction by feature extraction: the chosen features are not a subset of the
original r features. Usually, the chosen are not homogeneous with the original features (e.g.
if the original r features are words, the chosen features may not be words at all), but are
obtained by combinations or transformations of the original ones.

Quite obviously, and unlike in the previous distinction, the two different ways of doing DR are
tackled by quite distinct techniques; we will tackle them separately in the next two sections.

4.1 Feature selection

Given a fixed ' < r, techniques for feature selection (also called term space reduction — TSR)
purport to select, from the original set of r features, the r’ terms that, when used for document
indexing, yield the smallest reduction in effectiveness with respect to the effectiveness that would
be obtained by using full-blown representations. Results published in the literature [53] have even
shown a moderate (< 5%) increase in effectiveness after term space reduction has been performed,
depending on the classifier, on the aggressivity .5 of the reduction, and on the TSR technique
used.

Global TSR is usually tackled by keeping the } < r terms that score highest according to a
predetermined numerical function that measures the “importance” of the term for the categorisa-
tion task.

4.1.1 Document frequency

A simple and surprisingly effective global TSR, function is the document frequency #(tx) of a term
t, first used in [1] and then systematically studied in [53]. Note that in this section we will
interpret the event space as the set of all documents in the training set; in probabilistic terms,
document frequency may thus also be written as P(¢x). Yang and Pedersen [53] have shown that,
irrespectively of the adopted classifier and of the initial corpus used, by using #(t;) as a feature
selection technique it is possible to reduce the dimensionality of the term space by a factor of 10
with no loss in effectiveness (a reduction by a factor of 100 brings about just a small loss).

This result seems to state, basically, that the most valuable terms for categorisation are those
that occur more frequently in the collection. As such, it would seem at first to contradict a truism
of information retrieval, according to which the most informative terms are those with low-to-
medium document frequency [39]. But these two results do not contradict each other, since it is
well-known (see e.g. [40]) that the overwhelming majority of the words that occur at least once in
a given corpus have an extremely low document frequency; this means that by performing a TSR
by a factor of 10 using document frequency, only such words are removed, while the words from
low-to-medium to high document frequency are preserved.

Finally, note that a slightly more empirical form of feature selection by document frequency is
adopted by many authors (e.g. [18, 28, 46]), who remove from consideration all terms that occur



| Function | Denoted by | Mathematical form I Used in |

Document frequency #(tr, ci) P(tg,c;) (1, 53]
. . Pty ci) - P(ty, i)
Information gain IG(tg, ci P(tk,c;) - log—————+— + P(t,ci) - log—————"~— 21, 26, 53
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Chi-square T g [Ptk ci) (tk7fz) (tkacz)7 (tr; i) (43, 53]
P(t) - P(ty) - Ples) - P(ci)
[P(tg, c;) - P(tg,¢i) — P(tg, ;) - P(tg, c;
Correlation coefficient | CC(tg,c;) VI [Ptk ci) - Pt _C ) (%) - Pt ci)] [36]
VP(t) - P(t) - Plci) - P(@)
Relevancy score RS(tk, ci) OgM [46]
P(trle;) +d

Table 1: Main functions proposed for term space reduction purposes. Information gain is also
known as ezpected mutual information; it is used under this name by Lewis [21, page 44]. In the
x? and CC formulae, g is as usual the cardinality of the training set. In the RS(t, ¢;) formula d
is a constant damping factor.

in at most x training documents (popular values for z range from 1 to 3), either as the only form
of dimensionality reduction [18] or before applying another more sophisticated form [28, 46].

4.1.2 Other information-theoretic TSR functions

Other more sophisticated information-theoretic functions have been used in the literature; the
most important of them are summarised in Table 1. Probabilities are interpreted as usual on an
event space consisting of the initial corpus (e.g. P(,c;) thus means the probability that, for a
random document z, term ¢ does not occur in x and z does not belong to category ¢;), and are
estimated by counting occurrences in the training set. Most of these functions try to capture the
intuition according to which the most valuable terms for categorisation under ¢; are those that
are distributed most differently in the sets of positive and negative examples of the category.

These functions have given even better results than document frequency: Yang and Pedersen
have shown that, with different classifiers and different initial corpora, sophisticated techniques
such as IG or x? can reduce the dimensionality of the term space by a factor of 100 with no loss
(or even with a small increase) of categorisation effectiveness.

Unfortunately, the complexity of some of these information-theoretic measures does not always
allow one to readily interpret why their results are so good; in other words, the rationale of the
use of these measures as TSR functions is not always clear. In this respect, Ng et al. [36] have
observed that the use of x2(¢) for TSR purposes is contrary to intuitions, as the power of 2 that
appears in its formula has the effect of equating those factors that indicate a positive correlation
between the term and the category (i.e. P(t,¢;) and P(t,¢;)) with those that indicate a negative
correlation (i.e. P(¢,¢;) and P(¢,¢;)). The “correlation coeflicient” CC(t) they propose, being the
square root of x2(t), emphasises thus the former and de-emphasises the latter, thus respecting
intuitions. The experimental results by Ng et al. [36] show a superiority of CC(t) over x2(t), but
it has to be remarked that these results refer to a local, rather than global, term space reduction
application.

The use of this function for TSR purposes has been tested in [13] on the Reuters-21578 col-
lection (see Section 7) and on a variety of different classifiers, and its experimental results have
outperformed those obtained by means of both x?(t) and CC(t).

It is to be noted, however, that the reported improvements in performance that some TSR
functions achieve over others cannot be taken as general statements of the properties of these
functions unless the experiments involved have been carried out in thoroughly controlled conditions
and on a variety of different situations (e.g. different classifiers, different initial corpora, ...). So
far, only the comparative evaluations reported in [53], and partly those reported in [13], seem



conclusive in this respect.

4.2 Feature extraction

Given a fixed r’ < r, feature extraction (also known as reparameterisation) purports to synthesize,
from the original set of r features, a set of ' new features that maximises the obtained effectiveness.
The rationale for using synthetic (rather than naturally occurring) features is that, due to the
pervasive problems of polysemy, homonymy and synonymy, terms may not be optimal dimensions
for document content representation. Methods for feature extraction aim at solving these problems
by creating artificial features that do not suffer from any of the above-mentioned problems. Two
approaches of this kind have been experimented in the literature, namely term clustering and
latent semantic indexing.

4.2.1 Term clustering

Term clustering aims at grouping words with a high degree of pairwise semantic relatedness into
clusters, so that the clusters (or their centroids) may be used instead of the terms as dimensions
of the vector space. Any term clustering method must specify i) a method for grouping words
into clusters, and ii) a method for converting the original representation of a document d; into
a new representations for it based on the newly synthesized dimensions. One example of this
approach is the work of Li and Jain [28], who view semantic relatedness between terms in terms
of their co-occurrence and co-absence within training documents. By using this technique in
the context of a hierarchical clustering algorithm they witnessed only a marginal effectiveness
improvement; however, as noted in Section 5.5, the small size of their experiment hardly allows
any hard conclusion to be reached.

4.2.2 Latent semantic indexing

Latent semantic indexing [8] is a technique for dimensionality reduction originally developed in
the context of information retrieval in order to address the problems deriving from the use of
synonymous, near-synonymous and polysemous words as dimensions of document and query rep-
resentations. This technique compresses vectors representing either documents or queries into
other vectors of a lower-dimensional space whose dimensions are obtained as combinations of the
original dimensions by looking at their patterns of co-occurrence. The function mapping original
vectors into new vectors is obtained by applying a singular value decomposition to the incidence
matrix formed by the original document vectors. In the context of text categorisation, this tech-
nique is applied by deriving the mapping function from the training set and applying it to each
test document so as to produce a representation for it in the lower-dimensional space.

One characteristic of LSI as a dimensionality reduction function is that the newly obtained
dimensions are not, unlike the cases of feature selection and term clustering, readily interpretable.
However, they tend to work well in bringing out the “latent” semantic structure of the vocabulary
used in the corpus. For instance, Schiitze et al. [43, page 235] discuss the case of classification
under category Demographic shifts in the U.S. with economic impact by a neural network classifier.
In the experiment they report, they discuss the case of a document that was indeed a positive test
instance for the category, and that contained, among others, the quite revealing sentence “The
nation grew to 249.6 million people in the 1980s as more Americans left the industrial and agricultural
heartlands for the South and West”. The classifier decision was incorrect when dimensionality
reduction had been performed by y2-based feature selection retaining the top original 200 terms,
but was correct when the same task was tackled by means of LSI. This well exemplifies how LSI
works: the above sentence does not contain any of the 200 terms most relevant to the category
selected by x2, but in all evidence the words contained in the document had concurred to generate
one or more of the LSI higher-order features that generate the document space of the category.
How Schiitze et al. put it, “if there is a great number of terms which all contribute a small amount
of critical information, then the combination of evidence is a major problem for a term-based
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classifier” [43, page 230]. A drawback of LSI, though, is that if some original term is particularly
good in itself at discriminating a category, that discriminatory power may be lost in the new vector
space.

Wiener et al. [46] use LSI in two alternative ways: i) for local dimensionality reduction, thus
creating several LSI representations specific to individual categories, and ii) for global dimen-
sionality reduction, by creating a single LSI representation for the entire category set. Their
experimental results show the former approach to perform better than the latter. Anyway, both
LSI-based approaches are shown to perform better than a simple feature selection technique based
on the relevancy weighting measure.

5 Building a classifier

The problem of the inductive construction of a text classifier has been tackled in a variety of
different ways. Here we will describe in some detail only the methods that have proven the
most popular in the literature, but at the same time we will also try to mention the existence of
alternative, less standard approaches.

The inductive construction of a classifier for a category ¢; € C' usually consists of two different
phases:

1. the definition of a function CSV; : D — [0, 1] that, given a document d, returns a categori-
sation status value for it, i.e. a number between 0 and 1 that, roughly speaking, represents
the evidence for the fact that d should be categorised under ¢;. The C'SV function takes up
different meanings according to the different classifiers: for instance, in the “Naive Bayes”
approach discussed in Section 5.1 C'SV(d) is a probability, whereas in the “Rocchio” ap-
proach discussed in Section 5.2.1 CSV(d) is a distance between vectors in r-dimensional
space;

2. the definition of a threshold 7; such that C'SV;(d) > 7; is interpreted as a decision to categorise
d under ¢;, while CSV;(d) < 7; is interpreted as a decision not to categorise d under ¢;. A
particular case occurs when the classifier already provides a binary judgement, i.e. is such
that CSV; : D — {0,1}. In this case, the threshold is trivially any value in the (0,1) open
interval.

Issue 2 will be the subject of Section 6. Let us then concentrate on Issue 1. Lewis et al. [27]
distinguish two main ways to build a classifier:

e parametric. According to this approach, training data are used to estimate parameters of a
probability distribution. We will discuss this approach in detail in Section 5.1.

e non-parametric. This approach may be further subdivided in two categories:

— profile-based. In this approach, a profile (or linear classifier) for the category, in the form
of a vector of weighted terms, is extracted from the training documents pre-categorised
under ¢;. The profile is then used as a query against the documents D to be categorised;
the documents with the highest retrieval status value (RSV) are categorised under ¢;.
We will discuss this approach in detail in Section 5.2.

— example-based : According to this approach, the document d to be categorised is used
as a query against the training set Tr. The categories under which the training doc-
uments with the highest CSV are categorised, are considered as promising candidates
for categorising d. We will discuss this approach in detail in Section 5.3.
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5.1 Parametric classifiers

The main example of the parametric approach is the probabilistic Naive Bayes classifier, used e.g.
by Lewis [21], which is based on computing

osvi(dy)) = Pleldy) < T IPGelty) - Pltyld;) + Plelt,) - P(E,1d;)] (3)
y=1

In this formula the r terms upon which the product is calculated are the full term set if no term
space reduction has been applied, and the reduced set otherwise. However, Li and Jain [28] have
found feature selection to be extremely counterproductive for the Naive Bayes approach.

In the learning phase, the four probabilities that intervene in the formula are estimated on the
training set. The supposedly “naive” character of this approach derives from the fact that the
probability of d; falling under ¢; is viewed as depending on the product of r independent factors.
In reality, the occurrence of a term ¢’ within a document d is not independent from the occurrence
within d of another term t”; assuming otherwise (the binary independence hypothesis) is just a
matter of convenience, as both computing and making practical use of the stochastic dependence
between terms is computationally hard. However restrictive it may seem, the binary indepen-
dence hypothesis has been shown to work surprisingly well in practice, both in an information
retrieval [38] and in a classification context [24].

5.2 Profile-based classifiers

A profile-based (or linear) classifier is basically a classifier which embodies an explicit, or declara-
tive, representation of the category on which it needs to take decisions. The learning phase consists
then on the extraction of the profile of the category from the training set.

Profile-extraction may be typically preceded by local term space reduction (see Section 4.1),
i.e. the v’ most important terms for category ¢; are selected according to some measure. For this,
the “local” variants of the functions illustrated in Table 1 are usually employed®. For instance,
Apté et al. [1] use document frequency to pick the 100 most frequent words for each category.

Linear classifiers are often partitioned in two broad classes, incremental classifiers and batch
classifiers.

Incremental classifiers build a profile before analysing the whole training set, and refine this
profile as they read new training documents. Example incremental classifiers are the Widrow-Hoff
classifier and a refinement of it, the exponentiated gradient classifier, first introduced to the text
classification literature in [27].

Batch classifiers instead build a profile by analyzing the training set all at once. Within the
text classification literature, one example of a batch linear classifier is the one built by linear
discriminant analysis, a model of the stochastic dependence between terms that relies the covari-
ance matrices of the various categories [17, 43]. The foremost example of a batch linear classifier,
however, is the Rocchio classifier discussed in Section 5.2.1.

5.2.1 Rocchio-style profile extraction

The Rocchio classifier relies on an adaptation to the text categorisation case of Rocchio’s formula
for relevance feedback in the vector-space model. This adaptation was first used in [18]; since
then, Rocchio has been used by many authors, either as the main classifier [37] or as a baseline
classifier [6, 11, 13, 27, 43].

Rocchio’s classifier is defined by the formula

Woq, 5 Wo, 5
Wi — ﬂ _ YJ +,.Y _ Yyj
! 2 | {d; | cai; =1} | 2 | {d; | cai; =0} |

{Ej | ca;j=1} {EJ | ca;;=0}

5By “local variant” of a TSR measure we mean a measure computed with reference only to the subset of the
training set consisting of the documents belonging to the category c; of interest.
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where 3+~ =1, 8 >0, v < 0 and w,; is the weight that term ¢, has in document d;. In this
formula, 8 and v are control parameters that allow setting the relative importance of positive and
negative examples. For instance, if 5 is set to 1 and =y to 0, this corresponds to viewing the profile
of ¢; as the centroid of the positive training examples of c;. In general, the Rocchio classifier
rewards the closeness of a document to the centroid of the positive training examples, and its
distance from the centroid of the negative training examples. Clearly, most of the times the role of
negative examples is de-emphasised, by setting 3 to a high value and 7 to a low one; for instance,
in [43] the values § =1 and v = 0 are chosen.

One issue in the application of the Rocchio formula to profile extraction is whether the set of
negative training instances {d; € T'r | ca;; = 0} should be considered in its entirety, or whether a
well-chosen sample of it, such as the set of near-positives (defined as “the most positive amongst
the negative training examples”), should be selected. When the original Rocchio formula is used
for relevance feedback in information retrieval, near-positives tend to be used rather than generic
negatives, as the documents on which user judgments are available tend to be the ones that
had scored highest in the previous ranking. Most applications of the Rocchio formula to text
categorisation (e.g. [18]) use the whole set of negative examples, as it is not easy to individuate
near-positives. Near-positives would be more useful for training, since they are the most difficult
to tell apart from the relevant documents. Fuhr et al. [11] use near-positives, as the application
they work on (Web page categorisation into hierarchical catalogues) does allow such a selection to
be performed; as a consequence, the contribution of the > (d; | cas;=0} m factor tends
to be more significant.

One of the advantages of the Rocchio method is that it produces “understandable” classifiers, in
the sense that the category profile it produces can be readily interpretable of, and thus heuristically
tuned, by a human reader. This does not happen for other approaches such as e.g. neural networks.

The Rocchio classifier, as all linear classifiers, has the disadvantage that it basically divides
the space of documents in two subspaces; any document falling within the former (in the case of
Rocchio, an n-sphere) will be classified under ¢;, while all documents falling within the latter will
not. This situation is graphically depicted in Figure la, where documents are classified within c;
if and only if they fall within the circle. Note that even most of the positive training examples
would not be classified correctly by the classifier. This is clear from the fact that what Rocchio
basically does is taking the average (centroid) of all positive examples, and as all averages this is
only partly representative of the whole set®.

5.3 Example-based classifiers

Example-based classifiers do not build an explicit, declarative representation of the category of
interest, but “parasite” on the categorisation judgments that the experts have given on the training
documents similar to the one to be categorised. These classifiers have thus been called lazy learning
systems, since they do not involve a true training phase [50].

The first introduction of example-based methods in the text classification literature is due to
Masand et al. [7, 30]. Our presentation of the example-based approach will be based instead on the
k-NN (for “k nearest neighbours”) algorithm implemented by Yang in the ExpNet system [49]. For
deciding whether d; should be classified under ¢;, k-NN looks at whether the k training documents
most similar to d; have also been classified under ¢;; if the answer is positive for a large enough
proportion of them, a positive categorisation decision is taken, and a negative decision is taken
otherwise.

Mathematically, classifying a document by means of k-NN comes down to computing

CSVi(d;) = 3 RSV(d;de) - ca @)
d.€ TRk(d;)

6The subdivision into different clusters of the positive training examples which is depicted in Figure la is quite
plausible. This could be the case, for example, of a news categorisation task, and of a set of positive training
examples for the category Sports; one of the clusters could consist of articles about basketball and another about
skiing, with the former ones having little in common with the latter ones.
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where TRy, (d;) is the set of the k documents d, for which RSV (d;,d,) is maximum and the ca;,
values are from the correct decision matrix of Section 3.1. In turn, RS V(dj,Ez) represents some
measure or semantic relatedness, or mutual relevance, between documents d; and d.; any matching
function, be it probabilistic or vector-based, from a ranked information retrieval system may be
used for this purpose ([49] uses the cosine similarity typical of vector-space retrieval).

The construction of a k-NN classifier also involves determining a threshold k&, indicating how
many top-ranked training documents have to be considered for computing C'SV;(d;). This thresh-
old is usually determined experimentally; in her experiments Yang [49, 50] has found & = 30 to
yield the best effectiveness and values higher than that to yield no significant loss in performance.

Note that k-NN, unlike linear classifiers, does not subdivide the document space in just two
subspaces, hence it does not suffer from the problem discussed at the end of Section 5.2.1. This
is graphically depicted in Figure 1b, where the more “local” character of k-NN with respect to
Rocchio can be appreciated.

Besides its remarkable efficiency, which has been proven through a number of different exper-
iments (see Section 7.3), one of the advantages of k-NN is its efficiency, as the classification of a
document in to the m categories of interest can be performed in time linear in the cardinality g
of the training set [50].

Various nearest neighbour techniques have been used in the text categorisation literature. Li
and Jain [28] use a nearest neighbour technique in the context of a USENET postings classification
task with non-overlapping categories. Their results show a lower effectiveness than a Naive Bayes
approach (and this is somehow surprising, given the experiments of [50] discussed in Section 7.3),
but might be possibly due to the fact that they use the (arguably unpromising) value k = 1 without
any attempt at optimisation. An interesting variant of the basic k-NN approach is proposed by
Galavotti [13], who reinterprets Equation (4) by redefining ca;, as

. — 1 if d. is a positive example of ¢;
b —1 if d, is a negative example of c;

The difference with the original k-NN approach is that a negative weight, instead of 0, is attributed
to the negative examples of ¢;. In this way, the fact that a document d., similar to the document
d; we want to categorise under ¢;, does not belong to ¢; is not discarded, but weights negatively
in the decision to categorise d; under c;.

5.4 Combining profile- and example-based classifiers

A combination of profile- and example-based methods is presented in [19]. In this work a k-NN
system is fed, in place of training documents, what the authors call generalised instances (Gls).
This approach may be seen as the result of

e clustering the positive instances of category c;, thus obtaining a set of clusters C'L; =
{Clil, N 7Cliki};

e extracting a profile pr(cl;.) (generalised instance) from each cluster cl;, either with Rocchio,
Widrow-Hoff or other algorithm for the extraction of linear classifiers;

e applying k-NN with profiles in place of training documents, i.e. computing
| Cliz |

Csvid) Y S RSV pr(cly)) - —i
cli€CL; ‘ UU:]_ CZ’i'u |

This exploits the superior effectiveness (graphically illustrated in Figure 1) of k-NN over linear
classifiers while at the same time avoiding the sensitivity of £-NN to noise in the training docu-
ments.
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Figure 1: The categorisation behaviour of linear and non-linear classifiers.

5.5 Classifier committees

The method of classifier committees (or ensembles) is based on the idea that, given a task that
requires expert knowledge to be performed, k experts may be better than one if their individual
judgments are appropriately combined. In text classification, the idea is to apply k different
classifiers {®1, ..., ®;} to the same task of deciding whether document d; should be classified
under category ¢;, and then combine their outcome appropriately. Such a classifier committee is
then characterised by i) a choice of k classifiers, and ii) a choice of a combination function.

Concerning the former issue, it is well-known from the machine learning literature that, in order
to guarantee good effectiveness, the classifiers forming the committee should be as independent as
possible, i.e. should be possibly based on radically different intuitions on how classification is to be
performed. The classifiers may be different in terms of the indexing approach followed, or in terms
of the inductive method applied in order to induce them, or both. Within text classification, the
only avenue which has been explored is, to our knowledge, the second.

Different combination rules have been experimented with in the literature. The simplest pos-
sible rule is majority voting (MV), whereby the binary classification judgments obtained by the
k classifiers are pooled together, and the classification decision that reaches the majority of %
votes is taken (k obviously needs to be an odd number) [28]. This method is particularly suited
to the case in which the committee includes classifiers characterised by a binary decision function
CSV; : D — {0,1}. Another possible policy is dynamic classifier selection (DCS), whereby among
committee {®y, ..., ®p} the classifier &, that yields the best effectiveness on the [ validation
examples most similar to d; is selected, and his judgment adopted by the committee [28]. A
still different policy, somehow intermediate between MV and DCS, is adaptive classifier combina-
tion (ACC), whereby the judgments of all the classifiers in the committee are summed together,
but their individual contribution is weighted by the effectiveness that they have shown on the [
validation examples most similar to d; [28].

Classifier committees have had mixed results in text categorisation so far. Li and Jain [28]
have experimented with a committee formed of (various combinations of) a Naive Bayes classifier,
a nearest neighbour classifier, a decision tree classifier, and a classifier induced by means of their
own “subspace method”; the combination rules they have worked with are MV, DCS and ACC.
Only in the case of a committee formed by Naive Bayes and the subspace classifier combined by
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means of ACC the committee has outperformed, and by a narrow margin, the best individual
classifier (for every attempted classifier combination, anyway, ACC gave better results than MV
and DCS). This seems discouraging, especially in the light of the fact that the committee approach
is computationally expensive (its cost trivially amounts to the sum of the computational costs of
the individual classifiers plus the cost incurred for the computation of the combination rule). It
has to be remarked, however, that the small size of their experiment (two test sets of less than
700 documents each were used) does not allow to draw definitive conclusions on the approaches
adopted.

6 Determining thresholds

There are various possible policies for determining the threshold 7; discussed at the beginning of
Section 5, also depending on the constraints imposed by the application.

One possible policy is CSV thresholding (also called probability thresholding in the case of
probabilistic classifiers [21], or Scut [50]) [46]. In this case the threshold 7; is a value of the
CSV; function. Lewis [21] considered using a fixed threshold 7 equal for all ¢;’s, but noted
that this might result in assigning all the test docs to category c¢; while not even assigning a
single test document to category c;. He then considered using different thresholds 7; for different
categories ¢; established by normalising probability estimates (following a suggestion from [29]).
His experimental results did not show, however, a considerable difference in effectiveness between
the two variants. Yang [50] uses different thresholds 7; for the different categories ¢;. Each
threshold is optimised by testing different values for it on the validation set and choosing the
value which yields the best value of the chosen effectiveness function.

A second, popular policy is proportional thresholding [21, 46] (also called Pcut in [50]). The
aim of this policy is to set the threshold 7; so that the test set generality gr.(c;) of a category ¢;
is as close as possible to its training set generality gr,(c;). This idea encodes the quite sensible
principle according to which both in training set and test set the same percentage of documents of
the original set should be classified under ¢;. One drawback of this thresholding policy is that, for
obvious reasons, it does not lend itself to document-pivoted categorisation. Yang [50] proposes a
still more refined version of this policy, i.e. one in which a factor x (equal for all ¢;’s) is multiplied
to grr(c;) to actually obtain gr.(c;). Yang claims that this factor, whose value is to be empirically
determined by experimentation on a validation set, allows a smoother trade-off between recall and
precision to be obtained (see Section 7.1.1). For both k-NN and LLSF she found that optimal
values lie in the [1.2, 1.3] range.

Sometimes, depending on the application, a fized thresholding policy (also known as “k-per-
doc” thresholding [21] or Rcut [50]) is applied, whereby it is stipulated that a fixed number k of
categories, equal for all d;’s, are to be assigned to each document d;. Strictly speaking, however,
this is not a thresholding policy in the sense defined at the beginning of Section 5, as it might
happen that d’ is categorised under ¢;, d” is not, and CSV;(d") < CSV;(d"). Quite clearly, this
policy is mostly at home with document-pivoted categorisation. It suffers, however, from a certain
coarseness, as the fact that k is equal for all documents (nor could this be otherwise) does not
allow system fine-tuning.

In terms of experimental results, Lewis [21] found the proportional policy to be definitely
superior to C'SV thresholding when microaveraged effectiveness was tested but slightly inferior
when using macroaveraging (see Section 7.1.1). Yang [50] found instead CSV thresholding to
be superior to proportional thresholding (possibly due to her category-specific optimisation on a
validation set), and found fixed thresholding to be consistently inferior to the other two policies.
Of course, the fact that these results have been obtained across different classifiers no doubt
reinforce them. In general, aside from the considerations above, the choice of the thresholding
policy may also be influenced by the application; for instance, in applying a text classifier to
document indexing for Boolean systems, a fixed thresholding policy might be chosen, while a
proportional or C'SV thresholding method might be chosen for Web page classification under
Yahoo!-like catalogues.
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7 Evaluation issues for document categorisation

As in the case of information retrieval systems, the evaluation of document classifiers is typically
conducted experimentally, rather than analytically. The reason for this tendency is that, in order
to evaluate a system analytically (e.g. proving that the system is correct and complete) we always
need a formal specification of the problem that the system is trying to solve (e.g. with respect
to what correctness and completeness are defined), and the central notion of document classifica-
tion (namely, that of relevance of a document to a category) is, due to its subjective character,
inherently non-formalisable.

The experimental evaluation of classifiers, rather than concentrating on issues of efficiency,
usually tries to evaluate the effectiveness of a classifier, i.e. its capability of taking the right
categorisation decisions. The main reasons for this bias are that:

e efficiency is a notion dependent on the hw/sw technology used. Once this technology evolves,
the results of experiments aimed at establishing efficiency are no longer valid. This does
not happen for effectiveness, as any experiment aimed at measuring effectiveness can be
replicated, with identical results, on any different or future hw/sw platform;

o effectiveness is really a measure of how the system is good at tackling the central notion of
classification, that of relevance of a document to a category.

7.1 Measures of categorisation effectiveness
7.1.1 Precision and recall

Classification effectiveness is measured in terms of the classic IR notions of precision (Pr) and
recall (Re), adapted to the case of document categorisation. Precision wrt ¢; (Pr;) is defined as
the conditional probability P(ca;, = 1| a;; = 1), i.e. as the probability that if a random document
d, is categorised under ¢;, this decision is correct. Analogously, recall wrt ¢; (Re;) is defined as the
conditional probability P(a;, = 1 | ca;z = 1), i.e. as the probability that, if a random document
d, should be categorised under ¢;, this decision is taken. These category-relative values may be
averaged, in a way to be discussed shortly, to obtain Pr and Re, i.e. values global to the whole
category set. Borrowing terminology from logic, Pr may be viewed as the “degree of soundness” of
the classifier wrt the given category set C', while Re may be viewed as its “degree of completeness”
wrt C.

As they are defined here, Pr; and Re; (and consequently Pr and Re) are to be understood,
in the line of [48], as subjective probabilities, i.e. values measuring the expectation of the user
that the system will behave correctly when classifying a random document under ¢;. These
probabilities may be estimated in terms of the contingency table for category c; on a given test set
(see Table 2). Here, FP; (false positives wrt ¢;) is the number of documents of the test set that
have been incorrectly classified under ¢;; TN; (true negatives wrt ¢;), TP; (true positives wrt c;)
and F'N; (false negatives wrt ¢;) are defined accordingly. Precision wrt ¢; and recall wrt ¢; may
thus be estimated as

pr, & 17t
" TP + FP, (5)
est T-Pz
Rei = 7B TFN, (6)

For obtaining estimates of precision and recall relative to the whole category set, two different
methods may be adopted:

e microaveraging: precision and recall are obtained by globally summing over all individual
decisions, i.e.:

pri = (7)



Category expert judgments
¢ YES| NO
classifier | YES TP, FP;
judgments | NO FN; TN;

Table 2: The contingency table for category c;.

Category set expert judgments
C={ec1,...,cm} YES | NO

classifier | YES | TP = ZTH- FP = Z FP,

i=1 i=1
m

judgments | NO || FN =Y FN; | TN =) TN;

i=1 i=1

Table 3: The global contingency table.

Rer @ TP Y Th (8)
TP+FN S (TP +FN,)

where the “u” superscript stands for microaveraging. For this, the “global” contingency table
of Table 3, obtained by summing over all category-specific contingency tables, is needed.

e macroaveraging : precision and recall are first evaluated “locally” for each category, and
then “globally” by averaging over the results of the different categories, i.e.:

es 771 Pz
P’I“M est Ez_l r (9)

m
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v e Ty Fe (10)
m

where the “M” superscript stands for macroaveraging.

It is important to recognise that these two methods may give quite different results, especially
if the different categories are unevenly populated: for instance, if the classifier performs well on
categories with a small number of positive test instances, its effectiveness will probably be better
according to macroaveraging than according to microaveraging. There is no agreement among
authors on which is better. Some believe that “microaveraged performance is somewhat misleading
(...) Dbecause more frequent topics are weighted heavier in the average” [46, page 327] and
thus favour macroaveraging, while others believe that topics should indeed count proportionally
to their frequence, and thus lean towards microaveraging. From now on, we will assume that
microaveraging is used, and will thus drop the “” subscript from Pr, Re and other symbols; it
should be clear, however, that everything we will say in the rest of Section 7 may be adapted to
the case of macroaveraging in the obvious way.

7.1.2 Combined measures

Neither precision nor recall make sense in isolation of the other. In fact, in order to obtain a
classifier with 100% recall, one would only need to set every threshold 7; to 0, thereby obtaining
the trivial acceptor (i.e. the classifier that sets a;; = 1 for all 1 < i < m,1 < j < n, ie. that
classifies all documents under all categories). Quite obviously, in this case precision would usually
be very low (more precisely, equal to ape, the average percentage of categories per test document).
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Conversely, it is well-known from everyday information retrieval practice that higher levels of
precision may be obtained at the price of a low recall.

In practice, by tuning thresholds 7; a classification algorithm is tuned so as to improve Pr to
the detriment of Re or viceversa. A classifier should thus be measured by means of a “combined”
effectiveness measure which both Pr and Re concur to determine. Various such measures have
been proposed, among which the following are most frequent:

e effectiveness is computed as (interpolated) 11-point average precision. That is, each threshold
T; 18 successively set to the values for which recall takes up values of 0.0, 0.1, ..., 0.9, 1.0;
for these 11 different thresholds precision is computed and averaged over the 11 resulting
values. This methodology is completely analogous to the standard evaluation methodology
for IR systems, and may be used

— with categories being used in place of queries. This is most frequently used in the case
of document-pivoted categorisation (see e.g [43, 49, 50, 53));

— with documents being used in place of queries and categories in place of documents.
This is most frequently used in the case of category-pivoted categorisation (see e.g. [46,
Section 6.1]. Note that in this case if macroaveraging is used, it needs to be redefined
on a per-document, rather than per-category, basis.

o effectiveness is computed as the breakeven point, i.e. the value at which Pr equals Re (e.g. [1,
21, 26]). In all reasonable classifiers a value for each 7; for which Pr and Re are (almost)
equal does exist, since by increasing 7; from 0 to 1 Pr increases monotonically and Re
decreases monotonically. If for no value of 7; Pr and Re are exactly equal, 7; is set to the
value for which Pr and Re are closest, and an interpolated breakeven is computed as the
average of the the values of Pr and Re. As noted in [50], when for no value of 7; Pr and Re
are close enough, interpolated breakeven may not be a reliable indicator of the effectiveness
of the classifier;

e effectiveness is computed as the value of the F,, function, for some 0 < o <1 (e.g. [23]), i.e.

In this formula o may be seen as the relative degree of importance attributed to Pr and Re:
if a = 1, then F, coincides with Pr, if & = 0 then F, coincides with Re. Usually, a value
of a = 0.5 is used, which attributes equal importance to Pr and Re; for reasons we do not
want to enter here, rather than Fp 5 this is usually called called Fy (see [23] for details). As
shown in [50], for a given classifier @, its breakeven value is always less or equal than its Fy
value.

Once an effectiveness measure is chosen, a classifier can be tuned (e.g. thresholds and other internal
parameters can be set) so that the resulting effectiveness is the best achievable by that classifier.
The tuning of a parameter p (be it a threshold or other) is normally done experimentally. This
means performing repeated experiments on the validation set in the same experimental conditions,
with the values of the other parameters p; fixed (at a default value, in the case of a yet-to-be-
tuned parameter py, or at the chosen value, if the parameter p; has already been tuned) and with
different values for parameter p. At the end of the process, the value that has yielded the best
effectiveness is chosen for p.

7.2 Test collections

For experimentation purposes, standard test collections (playing a role akin to the test collections
of TIR) are available in the public domain. Typical examples include
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e the REUTERS-21578 corpus, consisting of a revised version of an older corpus known as
REUTERS-22173 [22]. The documents are newswire stories covering the period between
1987 and 1991;

e the OHSUMED corpus [16]. The documents are titles or title-plus-abstract’s from medical
journals (OHSUMED actually consists of a subset of the MEDLINE document base); the cat-
egories are the postable terms of the MESH thesaurus [35].

These two test collections (especially REUTERS-21578 together with its older version) account
for most of the experimentation that has been performed to date in text categorisation. Unfor-
tunately, this does not mean that we have definitive results concerning how well a given classifier
compares to another, in the sense that many of these experiments have been carried out in some-
times subtly different experimental conditions. In fact, at least six different versions (including
REUTERS-21578) of the REUTERS-22173 collection have been carved out of the original and used
for experimentation.

In order for the experimental results on two different classifiers to be directly comparable, the
experiments should be performed under the following conditions:

1. the same collection (i.e. same documents and same categories) is used for both classifiers;
2. the same choice (“split”) of training set and test set is made for both classifiers;
3. the same effectiveness measure is used for both classifiers.

Unfortunately, much of earlier experimentation (at least until 1997) was not performed with this
caveat in mind, which means that the results reported by these researches are seldom directly
comparable. By experimenting three different classifiers on five versions of REUTERS-22173,
Yang [52] has experimentally shown that a lack of compliance with these three conditions (and
with Condition 1 in particular) may significantly influence the experimental results. In particular,
[52] shows that experiments carried out on Version 2 are not directly comparable with those
using later versions, since the former includes a significant percentage (58%) of “unlabelled” test
documents which, being negative examples of all categories, tend to depress effectiveness. Many
of these documents appear to have simply not been considered by the human categorisers, rather
than having consciously been deemed not to belong to any category; Version 2 is thus simply not
a good testbed for automatic classifiers.

7.3 Which classifier is best?

In what may be regarded as the first large-scale cross-experimental evaluation in the text cate-
gorisation literature, Yang [52] has been able to obtain indications on the relative performance of
the various methods described in the literature. This was achieved by using either

e direct comparison: classifiers C’ and C” are experimented on the same test collection T'C
by using a common evaluation measure;

e indirect comparison:

1. classifier C” is tested on test collection T'C" and classifier C” is tested on test collection
TC",

2. one or more “baseline” classifiers C1, ..., C,, are tested on both T’C’ and T'C".

Test 2 can give an indication of the relative “hardness” of the two collections; using both
this indication and the results from Test 1 yields an indication on the relative value of the
two classifiers.

The results reported in this evaluation are illustrated in Table 4. A number of interesting conclu-
sions can be drawn from them (for more detailed discussions on these results see [50]):
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System | Type of Method || Reuters 1 | Reuters 2 | Reuters 3 | Reuters 4 |

WORD (non-learning) .15 (Scut) .31 (Pcut) | .29 (Pcut)
kE-NN instance-based .69 (Scut) .85 (Scut) | .82 (Scut)
LLSF regression-based .85 (Scut) | .81 (Scut)
NNETS.PARC neural networks .82 (Scut)
CrassI neural networks .80
RIPPER rule learning .72 (Scut) .80 (Scut)
SWAP-1 rule learning .79
IND decision trees .67 (Pcut)
C4.5 decision trees 79 (Fy)
CHARADE rule learning .78
SLEEPING EXPERTS rule learning .75 (Scut) | .76 (Scut)
RoccHIO .66 (Scut) | .75 (Scut)
NAIVE BAYES probabilistic .65 (Pcut) | .71 (777)
CONSTRUE (non-learning) .90

Table 4: Comparative results among different classifiers (the entries indicate the microaveraged
breakeven point and the thresholding policy used, with “Scut” denoting CSV thresholding and
“Pcut” denoting proportional thresholding; boldface indicates the best performer on the collec-
tion). The results have been obtained by Yang [50], from both new experiments (first three rows
of the table) and previously published results (rows from fourth to last), by direct and indirect
comparison.

e The highest performance reported in the literature belongs to CONSTRUE, a manually con-
structed classifier. Unfortunately, this classifier has not been tested on other more standard
benchmarks, and it is not clear [50] whether the (small) test set on which it has been ex-
perimented has been chosen randomly. As a consequence, the fact that this figure may be
indicative of the performance of CONSTRUE has been convincingly questioned [50];

e Aside from CONSTRUE, the best performing methods appear to be nearest-neighbours [49],
regression [51], and neural networks [36, 46].

e Rocchio is not a good performer, scoring next to last. These results somehow confirm earlier
results by Schutze et al. [43], who had found classifiers based on linear discriminant analysis,
linear regression, and neural networks, to perform about 15% better than Rocchio.

e The worst classifier appears to be Naive Bayes [25]. These results are (with the exception of
the neural networks approaches) confirmed by experimentation on at least two versions of
the collection and, although clearly not definitive, may be considered at least indicative of
the relative value of these approaches. SLEEPING EXPERTS is the best performer on Version
2, but performs worse than most other classifiers on Version 3 (a more “reliable” collection
than Version 2); this is surprising, to the point that the plausibility of these results has been
questioned [50].

e By far the lowest performance is displayed by WORD, a “mock” classifier implemented by
Yang [50] and not including any learning component”. This shows that machine learning
techniques are definitely the way to go for automatic text categorisation.

It is however important to bear in mind that these values are not absolute and final judgments
(if there may be any) on the comparative effectiveness of these classifiers. The main reason is

TWORD is based on the comparison between documents and category names, each treated as a vector of weighted
terms in the vector space model. WORD was implemented by Yang with the only purpose of determining the
difference in effectiveness that adding a learning component to a classifier brings about. WORD is actually called
STR in [49].
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that comparisons tend to be pretty reliable when they concern new experiments, performed by
one author under carefully controlled conditions. However, they are more problematic when they
involve different classifiers tested as part of different experiments, which is very much the case
when comparing results published by different people. As pointed out in [50], in this case various
factors, often extraneous to the learning algorithm proper, may have influenced the experimental
results. This may include, among others, different choices in pre-processing (stemming, etc.)
and indexing, or different standards of compliance with safe scientific practice (such as tuning
parameters on the test set rather than on a separate validation set), which often are not detailed
in published papers. One can only subscribe to the common belief that more experimentation on
truly common benchmarks needed in order to arrive at more definitive conclusions.
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