
Automatic Coding of Open-ended Questions Using

Text Categorization Techniques

Daniela Giorgetti1, Irina Prodanof1, Fabrizio Sebastiani2

1 Istituto di Linguistica Computazionale, Consiglio Nazionale delle Ricerche, Pisa, Italy
2 Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche,

Pisa, Italy

{daniela.giorgetti,irina.prodanof}@ilc.cnr.it, fabrizio@iei.pi.cnr.it

Abstract. Open-ended questions do not limit respondents’ answers in terms

of linguistic form and semantic content, but bring about severe problems in

terms of cost and speed, since their coding requires trained professionals

to manually identify and tag meaningful text segments. To overcome these

problems, a few automatic approaches have been proposed in the past, some

based on matching the answer with textual descriptions of the codes, others

based on manually building rules that check the answer for the presence

or absence of code-revealing words. While the former approach is scarcely

effective, the major drawback of the latter approach is that the rules need

to be developed manually, and before the actual observation of text data.

We propose a new approach, inspired by work in information retrieval (IR),

that overcomes these drawbacks. In this approach survey coding is viewed

as a task of multiclass text categorization (MTC), and is tackled through

techniques originally developed in the field of supervised machine learning.

In MTC each text belonging to a given corpus has to be classified into exactly

one from a set of predefined categories. In the supervised machine learning

approach to MTC, a set of categorization rules is built automatically by

learning the characteristics that a text should have in order to be classified

under a given category. Such characteristics are automatically learnt from a

set of training examples, i.e. a set of texts whose category is known.

For survey coding, we equate the set of codes with categories, and all the

collected answers to a given question with texts. Giorgetti and Sebastiani [5]

have carried out automatic coding experiments with two different supervised

learning techniques, one based on a näıve Bayesian method and the other

based on multiclass support vector machines. Experiments have been run

on a corpus of social surveys carried out by the National Opinion Research

Center, University of Chicago (NORC). These experiments show that our

methods outperform, in terms of accuracy, previous automated methods

tested on the same corpus.

1 Introduction

The survey process typically consists of several steps which have to be performed
sequentially, and include the design, construction, administration, analysis and eval-
uation of the survey itself. Survey questions may be open-ended, i.e. they allow
respondents to answer in their own words, or close-ended, i.e. they consist of ques-
tions where the answers are limited by a multiple choice list or entail a true/false,
agree/disagree reply. In this paper we will only deal with coding, a core step in
open-ended surveys, in which text data extracted from free responses to open-ended
questions are mapped into codes according to a predefined code scheme. While the

coding of a close-ended survey is straightforward, the coding of an open-ended sur-
vey is a subjective task traditionally performed manually by trained professionals,
and thus it is costly, time-consuming and affected by the inter-coder agreement
problem (which occurs when there is not agreement between two different coders
on the code to be assigned to a specific text segment). These are the reasons why
social scientists tend to avoid including too many open-ended questions in their
surveys, preferring the less problematic multiple choice questions.

A few solutions have been proposed to automate the coding phase of open-
ended surveys, but they still require some manual engineering effort. Our approach
instead, relies on fully automatic text categorization techniques developed in the
information retrieval and machine learning fields.

The structure of this paper is as follows. In Section 2 we focus on the task of auto-
matic survey coding and we discuss how previous approaches have tried to automate
(at least partially) the coding task. In order to make the paper self-contained, in
Section 3 we give some background on information retrieval and text categorization.
In Section 4 we describe how we map the task of coding onto a text categorization
task. In Section 5 we present experimental results [5] obtained on three corpora
from NORC General Social Survey using two different text categorization classifiers
and in Section 6 we summarize our approach and the results achieved and give some
hints for possible future developments.

2 Automatic survey coding of open-ended surveys

Coding a survey may be viewed as the task of identifying and labelling common
meaningful themes in the answers given by different respondents to a survey ques-
tionnaire. Sometimes novel, unforeseen themes are sought in the answers being
analyzed, but most of the times surveys are run with a clear purpose, i.e. with a
clear set of previously identified concepts whose presence in the text corpus must be
assessed or measured in some way. We will concentrate on the most frequent case,
in which themes sought are known a priori.

The issue of automating survey coding has been dealt with in software pack-
ages developed in the context of text analysis for the social sciences, which includes
survey analysis. However, these software packages are not usually tailored for the
specific task of survey analysis; in particular, the solutions they provide for the
coding task are still unsatisfactory. Many of these applications mostly aim at facil-
itating the manual coding of data, and their display in several convenient ways. A
few of these packages instead do perform automatic coding, mainly by relying on
specialized hand-developed dictionaries (or rules). This means that text fragments
are automatically assigned to a specific category if and only if they contain words
matching those in the dictionary relevant to the category.

The closest approach to ours is probably the dictionary-based approach as it is
described in Viechnicki’s work [16]. In this paper responses to questions from the
NORC3 General Social Survey [3] are classified by means of a set of codes predefined
by NORC social scientists. Viechnicki proposes two alternative approaches. In the
first one, words that characterize a given category may be combined by means of
Boolean operators (AND, OR, NOT), and the answer is classified under the cat-
egory whose Boolean description it matches. The second method is instead based
on computing the similarity between two weighted vectors of words (see Section 3.1
for an explanation of how weighted vectors of words and their similarity are com-
puted) extracted from the answer and from a textual explicatory caption of the
code, and choosing the code with the highest similarity score. Similarly, Macchia

3 http://www.norc.uchicago.edu/

and Murgia [10] present a dictionary-based automated approach in which the an-
swer is assigned a unique code if there is an exact match with phrases belonging to
a previously defined dictionary associated with the code, or it is assigned a “best
code” if the match is partial.

These approaches have the typical drawback of dictionary-based methods, which
need a dictionary to be manually developed before the actual coding step takes place,
i.e. when data is still totally unknown. Besides, dictionaries need to be manually
updated as a result of changes in the structure and/or semantics of the coding
scheme. For example, if a new category is added to the scheme, a new dictionary has
to be created for it, and the dictionaries for the old categories need to be updated in
order to avoid “capturing” the answers that are instead to be filed under the newly
introduced category.

Our approach to survey coding has several advantages with respect to the
dictionary-based approach.

Firstly, in our learning-based approach the manual effort is directed towards the
manual coding of a relatively small training set of answers, and not towards the
creation of specialized dictionaries. This is advantageous, as it is easier to manually
classify a set of documents than to build and tune a dictionary of words that trigger
the attribution of the code, for the simple fact that it is easier to characterize a
concept extensionally (i.e. to select instances of it) than intensionally (i.e. to describe
the concept in words, or to describe a procedure for recognizing its instances).

Secondly, our approach is solidly grounded in machine learning theory, and it can
leverage on a wealth of results and techniques developed within text categorization,
a discipline which has been bursting with activity in the last ten years (see e.g. [13])
and has produced systems whose accuracy rivals or exceeds that of a human (i.e.
systems capable of generating codes that correlate with those attributed by a coder
at least as well as the codes attributed by two human coders correlate with each
other).

Of course, our approach is mostly useful for medium- to large-sized surveys, as
in the learning phase we need a hand-coded set of answers to train the inductive
learner. This means that if a survey is somewhat limited in the number of surveyed
people, hand-coding the training set may coincide with hand-coding the entire set.
NORC’s surveys are examples of relatively large-sized surveys, since 40,933 inter-
views have been completed in the years from 1972 to 2000.

3 Basics of Text Categorization

This section gives a brief introduction to text categorization and to some basic
concepts adopted from the related field of information retrieval; these notions will
provide us with the background for solving the survey coding task.

Text categorization (TC, also known as text classification) is the task of ap-
proximating the unknown target function Φ : D × C → {T, F} that describes how
documents ought to be classified by means of a function Φ̂ : D× C → {T, F} called
the classifier, where C = {c1, . . . , c|C|} is a predefined set of thematic categories, D
is a domain of documents, and T, F represent the boolean values true and false.
If Φ(dj , ci) = T , then dj is called a positive example (or a member) of ci, while if
Φ(dj , ci) = F it is called a negative example of ci. The categories are just symbolic
labels, and no additional knowledge of their meaning is usually available. Classifi-
cation has to be accomplished only on the basis of knowledge extracted from the
documents contents, as no metadata (such as e.g. publication date, document type,
publication source) are usually available.

Text categorization is a subjective task: when two experts (human or artificial)
decide whether to classify document dj under category ci, they may disagree, and

this in fact happens quite frequently. A news article on Tony Blair visiting Tuscany
could be filed under Politics, or under Gossip, or under both, or even under neither,
depending on the subjective judgment of the expert.

Depending on the application, it might be the case that exactly one label ci ∈ C
must be assigned to each dj ∈ D, or that any number 0 ≤ nj ≤ |C| of categories
may be assigned to each dj ∈ D. The former case is usually dubbed the binary case
or the multiclass case, depending on whether |C| = 2 or |C| > 2, respectively. Since
the |C| > 2 case will be the object of interest in this paper, from here on when
speaking of TC we will actually mean multiclass TC.

We can roughly distinguish three different phases in the life cycle of a TC system:
document indexing, classifier learning, and classifier evaluation. The three following
paragraphs are devoted to these three phases, respectively; for a more detailed
treatment see Sections 5, 6 and 7, respectively, of [13].

3.1 Document indexing

Document indexing denotes the activity of mapping a document dj into a compact
representation of its content that can be directly interpreted (i) by a classifier-
building algorithm and (ii) by a classifier, once it has been built. The document
indexing methods usually employed in TC are borrowed from IR, where a text dj

is typically represented as a vector of term weights dj = 〈w1j , . . . , w|T |j〉. Here, T
is the dictionary, i.e. the set of terms (also known as features) that occur at least
once in at least α documents, and 0 ≤ wkj ≤ 1 quantifies the importance of tk in
characterizing the semantics of dj . Typical values of α are between 1 and 5.

An indexing method is characterized by (i) a definition of what a term is, and (ii)
a method to compute term weights. Concerning (i), the most frequent choice is to
identify terms either with the words occurring in the documents (with the exception
of stop words, i.e. topic-neutral words such as articles and prepositions, which are
eliminated in a pre-processing phase), or with their stems (i.e. their morphological
roots, obtained by applying a stemming algorithm). When terms coincide with
words (either stemmed or not) the approach to document representation is called bag
of words. Experimental results[?,12, ?] on the use of phrases as additional indexing
terms have not been uniformly encouraging up to now. Lewis [8] argues that the
likely reason for the discouraging results is that, although indexing languages based
on phrases have superior semantic qualities, they have inferior statistical qualities
with respect to word-only indexing languages.

Concerning (ii), either statistical or probabilistic techniques are used to com-
pute terms weights, the former being the most common option. Binary weights are
a special case where 1 denotes the presence and 0 the absence of the term in the
document. The choice of binary or non-binary weights depends on the kind of input
that the classifier learning algorithm adopted requires. A popular class of statistical
term weighting functions yelding non binary weights is tfidf (see e.g. [11]), where
two intuitions are at play: (a) the more frequently tk occurs in dj , the more impor-
tant for dj it is (the term frequency intuition); (b) the more documents tk occurs
in, the less discriminating it is, i.e. the smaller its contribution is in characterizing
the semantics of a document in which it occurs (the inverse document frequency
intuition). Weights computed by tfidf are often normalized so as to contrast the
tendency of tfidf to emphasize long documents. Note that formulae such as tfidf
weigh the importance of a term to a document in terms of occurrence considerations
only, disregarding for example the order in which terms appear in the document
and their syntactic role.

In TC, unlike in IR, a dimensionality reduction phase is often applied so as to re-
duce the size of the document representations from T to a much smaller, predefined
number. This has both the effect of reducing overfitting (i.e. the tendency of the

classifier to better classify the data it has been trained on than new unseen data),
and to make the problem more manageable for the learning method, since many
such methods are known not to scale well to high problem sizes. Dimensionality
reduction often takes the form of feature selection: each term is scored by means of
a scoring function that captures its degree of (positive, and sometimes also nega-
tive) correlation with ci, and only the highest scoring terms are used for document
representation.

3.2 Classifier learning

A text classifier for categories C = {c1, . . . , c|C|} is automatically generated by a
general inductive process (the learner) which, by observing the characteristics of a
set of documents preclassified under C, gleans the characteristics that a new unseen
document should have in order to belong to a generic category ci ∈ C. In order to
build classifiers for C, one thus needs a labelled corpus Ω of documents such that
the value of Φ(dj , ci) is known for every 〈dj , ci〉 ∈ Ω × C. In experimental TC it
is customary to partition Ω into three disjoint sets Tr (the training set), V a (the
validation set), and Te (the test set). The training set consists of documents the
learner “observes” to build up the classifier. This is called a supervised learning
activity, since learning is “supervised” by the information on the membership of
training documents in categories. The validation set is the set of documents the
engineer uses to fine-tune the classifier, e.g. choosing for a parameter p on which the
classifier depends, the value that has yielded the best effectiveness when evaluated
on V a. The test set is used for the final evaluation of classifier effectiveness. In
both the validation and test phase, “evaluating the effectiveness” means running
the classifier on a set of preclassified documents (V a or Te) and checking the degree
of correspondence between the output of the classifier and the preassigned labels
(which are assumed to be correct).

Several methods have been proposed in the text categorization literature for
learning a text classifier from training data (see [13] for a review), including proba-
bilistic methods, regression methods, decision tree and decision rule learners, neu-
ral networks, batch and incremental learners of linear classifiers, example-based
methods, support vector machines, genetic algorithms, hidden Markov models, and
classifier committees.

3.3 Classifier evaluation

Training efficiency (i.e. average time required to build a classifier Φ̂ from a given
corpus Ω), as well as classification efficiency (i.e. average time required to classify
a new document by means of Φ̂), and effectiveness (i.e. average correctness of Φ̂’s
classification behaviour) are different measures of success for a learner. However,
effectiveness is usually considered the most important criterion, since in most appli-
cations one is willing to trade training time and classification time for correct deci-
sions. Also, it is the most reliable one when it comes to comparing different learners,
since efficiency depends on too volatile parameters (e.g. different software/hardware
platforms). As a result, we will only measure the success of our approach in terms
of effectiveness.

In multiclass TC, effectiveness is usually equated to accuracy, which is defined
as the percentage of classification decisions that are actually correct.

4 Automatic coding of open-ended surveys

by a Text Categorization approach

In this section we describe how survey coding may be handled as a text categoriza-
tion task, i.e. as the task of automatically generating a classifier that automatically
selects, from a set of predefined codes, the correct code to attach to a given answer.
The set of all answers to a given question q play the role of the domain D, and the
set of all possible codes that may be attributed to an answer to question q play
the role of the set of categories C (coding the answers to different questions thus
corresponds to different TC tasks).

The input to the learners (and to the classifiers, once they have been built), con-
sists of a set of answers dj represented as vectors of term weights dj = 〈w1j , . . . , w|T |j〉.
Note that the fact that many of the answers in the corpus are ill-formed (like
in the sentence “my boyfriend went to court yestreday and if he doesn’t
have a drivers liceces insurance by the 28th of this month he goes to
jail for 6 months”, extracted from the NORC corpus angry at described in Sec-
tion 5) makes the bag of words approach to representation even more appropriate:
given that current linguistic analysis techniques have not proven worthy (i.e. well-
performing and robust at the same time) in standard TC, where we usually deal
with syntactically well-formed text, it is easy to conjecture that they could hardly
prove worthy here.

Giorgetti and Sebastiani [5] have run a series of experiments with two different
classifier-learning methods. The first learner used is a probabilistic näıve Bayesian
learner, as implemented in the Rainbow package4. Probabilistic text classification
methods assume that the data was generated by a parametric model, and use the
training set to estimate the parameters of this model. Bayes’ theorem then allows
to estimate from this model the probability that a given category has generated the
document to be classified; classification thus consists in selecting the category with
the highest probability.

The second learning method used is a multiclass support vector machine (SVM)
learner as embodied in the MCSVM software5. SVMs attempt to learn a hyperplane
in |T |-dimensional space that separates the positive training examples of category
ci from the negative ones with the maximum possible margin, i.e. such that the
minimal distance between the hyperplane and a training example is maximum;
results in computational learning theory indicate that this tends to minimize the
generalization error, i.e. the error of the resulting classifier on yet unseen examples.
SVMs were initially conceived for solving binary classification problems, and only
recently they have been adapted to multiclass classification.

Crammer and Singer describe in [2] an algorithmic implementation of multiclass
SVMs based on a notion of margin generalized to multiclass problems, which allows
to train directly a multiclass classifier (while in most of previous work the multiclass
problem is decomposed into multiple independent binary classification tasks [6]).

Regarding effectiveness, the text categorization literature has shown that näıve
Bayesian approaches are, with respect to other learning methods, no more than aver-
age performers (see e.g. [4, 7, 9, 17]). On the contrary, support vector machines are
currently (together with “boosting”-based classifier committees) the unsurpassed
top performers in the TC field [4, 7]. The reason why we experiment with Rainbow
is that we want to show that a text categorization approach to survey coding is
much more effective than the dictionary-based approach regardless of the specific

4 Rainbow was implemented by Andrew McCallum and can be downloaded from

http://www.cs.cmu.edu/~mccallum/rainbow.
5 MCSVM was implemented by Koby Crammer and Yoram Singer, and we were kindly

provided with a pre-release version of it.

learning method adopted, i.e. that even with an average-performing learning method
our text categorization approach to survey coding can outperform the dictionary-
based method. Instead, the reason why we experiment with MCSVM is that we
want to show what level of effectiveness this approach can achieve, once instantiated
with a top-performing learning algorithm6.

A binary representation as input to Rainbow, and a non-binary one as input to
MCSVM have been adopted. This is due to the fact that the probabilistic models
upon which Rainbow is based require binary inputs, while this is not the case for
SVMs. In the binary representation, wkj represents just presence or absence of term
tk in answer dj . Our non-binary representation is instead the tfidf function in its
standard “ltc” variant [11], i.e.

tfidf(tk, dj) = tf(tk, dj) · log
|Tr|

#Tr(tk)
(1)

where #Tr(tk) denotes the number of answers in the training set Tr in which tk
occurs at least α times and

tf(tk, dj) =
{

1 + log #(tk, dj) if #(tk, dj) > 0
0 otherwise

where #(tk, dj) denotes the number of times tk occurs in answer dj . Weights ob-
tained by Equation 1 are normalized by cosine normalization, yielding

wkj =
tfidf(tk, dj)√∑|T |
s=1 tfidf(ts, dj)2

(2)

In all the experiments, stop words, punctuation, and numbers, have been removed,
and all letters have been converted to lowercase. No feature selection (see e.g. [13,
Section 5.1]) has been performed. The reason is that, as shown in extensive experi-
ments by Brank et al. [1], the effectiveness of SVMs is usually worsened by feature
selection, irrespectively of the feature selection algorithm used and of the chosen
reduction factor (this is also independently confirmed by the results of [15]), and
the effectiveness of näıve Bayesian methods does not show systematic patterns of
improvement either.

5 Experimental settings and results

As already pointed out, the experiments have been carried out on data from NORC’s
General Social Survey. This survey, which is ongoing since 1972, aims at investigat-
ing how people assess their physical and mental health, the balancing of security
and civil liberties, external and internal security threats, intergroup relations and
cultural pluralism, religious congregations, etc. We deal with three datasets (see Ta-
ble 1) from the NORC General Social Survey administered in 1996. Each of these
datasets (here nicknamed angry at, angry why, and brkdhlp) consists of a set of
answers to a given question, plus their associated category codes manually chosen
by NORC’s professional coders from a predefined set of category codes7. The task
consists in choosing exactly one code for each answer.

We have chosen these three datasets because they are the same datasets used
in [16], which means that we will be able to obtain a direct comparison between the

6 Note that there are no published results yet concerning the application to TC of multi-

class SVMs, because multiclass SVMs are a recent development, and because most TC

applications are binary. The assumption that multiclass SVMs would be a top performer

Dataset Category # of instances

ANGRYFAM 275

ANGRYWRK 345

ANGRYGVT 74

angry at WRK&GVT 8

WRK&FAM 27

FAM&GVT 16

OTHER 625

total 1370

SELF 29

PREVENTED 36

angry why CRITICAL 88

DEMANDING 60

EXPECT 196

OTHER 51

total 460

FAMILY 57

FRIEND 33

GROUP 2

brkdhlp CLERGY 55

PSYCHIATRIST 56

AGENCY 16

OTHER 148

total 367

Table 1. Distribution of the categories in the three datasets used in the experiments.

effectiveness of a method representative of the dictionary-based approach to survey
coding and the effectiveness of our supervised learning approach.
For each dataset, the experiments were carried out according to the following main
steps:

1. preprocess the data in order to obtain a data format compatible with the learners
(this had to be repeated once for Rainbow and once for MCSVM, since the
two systems require different data representations);

2. partition the set of answers in each dataset in four random disjoint subsets of
equal size;

3. run the learner to generate a classifier, using three of the four subsets as the
training set (75% of data) and the fourth as the test set (25% of data);

4. run the classifier to categorize the data in each test set of each dataset and
evaluate the results in terms of accuracy.

In order to achieve better statistical significance, in all experiments steps 3 and 4
were repeated four times, for all four possible choices of the test set. Each of the
results we report is thus the result of averaging across four different experiments.
We have computed the accuracy on the three datasets both with Rainbow and
with MCSVM; the results are reported in Table 2, where they are compared with
the accuracy obtained in [16] on the same datasets.

The first observation we can make is that the supervised learning approach to
survey coding significantly outperforms the dictionary-based approach: the improve-
ments with respect to the best-performing method reported in [16] are significant,
a +18% on average for Rainbow and a +26% for MCSVM. The improvement
is especially noteworthy on the “non-obvious” datasets: for instance, angry why
appears to be a hard to characterize dataset, as shown by the poor performance
of the two dictionary-based methods, and on this dataset the supervised learning
methods improve up to +43% with respect to them. The angry at dataset looks
somehow “easier” than angry why, as witnessed by the fact that all four methods
listed in Table 2 perform better on angry at than on angry why. This might also be
explained by the fact that, as it can be seen from Table 1, it contains more data,
since each category in angry at has 195 positive examples on average, while this
goes down to 76 for angry why. On the contrary, the brkdhlp dataset seems easy to
tackle by simple Boolean rules, as shown by the .747 accuracy figure of the Boolean
method; in this case Rainbow underperforms the Boolean method by 13%, while
MCSVM virtually delivers the same performance as the Boolean method.

Moreover, the supervised learning approach delivers a more stable performance
across the three datasets, since the reductions in standard deviation with respect to
the same best-performing method are very significant, a -28% for Rainbow and a -
15% for MCSVM. These improvements are even more significant once we remember
that they are obtained by a method that is much cheaper than the dictionary-based
method in terms of expert humanpower.

once used in a multiclass TC context is based on the top performance that multiclass

SVMs have delivered in multiclass application contexts other than TC [2].
7 The angry at and angry why datasets actually involve the same question, which deals

with the description of a situation that caused anger to the respondent; each answer was
classified according to two different sets of codes, one concerning the object of anger,

the other concerning the cause of anger. Actually, angry why contains only a subset of

the answers contained in angry at, in the sense that NORC coders classified some of

the answers only according to the angry at set of codes. The brkdhlp dataset (called

breakdown in [16]) consists of answers to the question as to what source of help was

used to deal with a nervous breakdown.

Dictionary-Based [16] Supervised Learning

Vector Boolean Rainbow MCSVM

angry at 0.451 0.465 0.714 (+54%) 0.756 (+63%)

angry why 0.211 0.272 0.389 (+43%) 0.376 (+38%)

brkdhlp 0.646 0.747 0.653 (-13%) 0.746 (-0.13%)

Average 0.436 0.495 0.585 (+18%) 0.626 (+26%)

Std. Dev. 0.218 0.239 0.173 (-28%) 0.216 (-10%)

Table 2. Comparative accuracy results obtained on the angry at, angry why and brkdhlp

datasets using a Boolean and a vector-based method and using a näıve Bayesian and

a multiclass SVM TC methods. The percentile improvements in accuracy and average

accuracy, and the percentile reductions in standard deviation, are reported with respect

to the Boolean method, the best dictionary-based method in [16]. Boldface indicates the

best performance on the dataset.

The fact that improvements of this order of magnitude are obtained even with a
method, such as the näıve Bayesian technique implemented in Rainbow, which is
known as an average performer in the text categorization literature, bears witness
to the superiority of the supervised learning approach to survey coding.

The fact that multiclass SVMs, known top-performers in the machine learn-
ing literature (see e.g. [2]), outperform Rainbow, only by a very small margin, is
more surprising. A possible explanation to this might be that the vocabulary of the
NORC corpora exhibits low internal stochastic dependence, hence approximating
the conditions under which Bayesian approaches are theoretically optimal.

6 Conclusion and future work

We have shown that automatic coding of responses to open-ended survey ques-
tions may be posed as a multiclass text categorization problem, and that text cat-
egorization techniques based on supervised learning may significantly outperform
dictionary-based techniques, such as those used in [16], that have been up to now
the dominant approach to automated survey coding. Another advantage of the su-
pervised learning approach with respect to the dictionary-based approach, which
requires that the text classifiers be handcrafted (by a knowledge engineer and a so-
cial scientist working together), is that the classifiers can be generated automatically
from the training data, with substantive savings in terms of expert humanpower.

The effectiveness levels that text categorization techniques have achieved in our
experiments are far from being perfect, and also from being completely satisfactory.
Although the results obtained in our research are promising, we think that more
research is needed for the automatic approach to survey coding to clearly supersede
the manual approach.

Acknowledgements

The open-ended text used in this work was collected in the General Social Surveys of
the National Opinion Research Center (NORC), University of Chicago, and supplied
by NORC to the authors. We are grateful to Tom Smith and Jennifer Berktold for
providing these texts and for assisting us in their interpretation. We are also grateful

to Koby Crammer, Yoram Singer and Andrew McCallum for making the MCSVM
and Rainbow packages available, to Peter Viechnicki for clarifying several points
of his experiments, to Henri Avancini for helping with several preprocessing issues.

References

1. Janez Brank, Marko Grobelnik, Natasa Milić-Frayling, and Dunja Mladenić. Interac-

tion of feature selection methods and linear classification models. In Proceedings of

the ICML-02 Workshop on Text Learning, Sydney, AU, 2002.

2. Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. Journal of Machine Learning Research, 2:265–292, 2001.

3. James A. Davis and Tom Smith. General Social Surveys, 1972-1996: Cumulative

Codebook. National Opinion Research Center, Chicago, US, 1996.

4. Susan T. Dumais, John Platt, David Heckerman, and Mehran Sahami. Inductive

learning algorithms and representations for text categorization. In Georges Gardarin,

James C. French, Niki Pissinou, Kia Makki, and Luc Bouganim, editors, Proceed-

ings of CIKM-98, 7th ACM International Conference on Information and Knowledge

Management, pages 148–155, Bethesda, US, 1998. ACM Press, New York, US.

5. Daniela Giorgetti and Fabrizio Sebastiani. Automating survey coding by multiclass

text categorization techniques. JASIST, 2004.

6. Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-class support

vector machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

7. Thorsten Joachims. Text categorization with support vector machines: learning with

many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Proceedings

of ECML-98, 10th European Conference on Machine Learning, pages 137–142, Chem-

nitz, DE, 1998. Springer Verlag, Heidelberg, DE. Published in the “Lecture Notes in

Computer Science” series, number 1398.

8. David D. Lewis. An evaluation of phrasal and clustered representations on a text cate-

gorization task. In Nicholas J. Belkin, Peter Ingwersen, and Annelise Mark Pejtersen,

editors, Proceedings of SIGIR-92, 15th ACM International Conference on Research

and Development in Information Retrieval, pages 37–50, Kobenhavn, DK, 1992. ACM

Press, New York, US.

9. Hang Li and Kenji Yamanishi. Text classification using ESC-based stochastic decision

lists. Information Processing and Management, 38(3):343–361, 2002.

10. Stefania Macchia and Manuela Murgia. Coding of textual responses: Various issues

on automated coding and computer assisted coding. In Proceedings of JADT-02, 6th

International Conference on the Statistical Analysis of Textual Data, pages 471–482,

St-Malo, FR, 2002.

11. Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic

text retrieval. Information Processing and Management, 24(5):513–523, 1988. Also

reprinted in [14], pp. 323–328.

12. Hinrich Schütze, David A. Hull, and Jan O. Pedersen. A comparison of classifiers and

document representations for the routing problem. In Edward A. Fox, Peter Ingwersen,

and Raya Fidel, editors, Proceedings of SIGIR-95, 18th ACM International Conference

on Research and Development in Information Retrieval, pages 229–237, Seattle, US,

1995. ACM Press, New York, US.

13. Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Com-

puting Surveys, 34(1):1–47, 2002.

14. Karen Sparck Jones and Peter Willett, editors. Readings in information retrieval.

Morgan Kaufmann, San Mateo, US, 1997.

15. Hirotoshi Taira and Masahiko Haruno. Feature selection in SVM text categorization.

In Proceedings of AAAI-99, 16th Conference of the American Association for Artificial

Intelligence, pages 480–486, Orlando, US, 1999. AAAI Press, Menlo Park, US.

16. Peter Viechnicki. A performance evaluation of automatic survey classifiers. In Vasant

Honavar and Giora Slutzki, editors, Proceedings of ICGI-98, 4th International Collo-

quium on Grammatical Inference, pages 244–256, Ames, US, 1998. Springer Verlag,

Heidelberg, DE. Published in the “Lecture Notes in Computer Science” series, number

1433.

17. Yiming Yang and Xin Liu. A re-examination of text categorization methods. In

Marti A. Hearst, Fredric Gey, and Richard Tong, editors, Proceedings of SIGIR-99,

22nd ACM International Conference on Research and Development in Information

Retrieval, pages 42–49, Berkeley, US, 1999. ACM Press, New York, US.

