

Incremental Knowledge Acquisition
for

Non-Monotonic Reasoning

Fabrizio Sebastiani & Umberto Straccia
Istituto di Elaborazione dell’Informazione

Consiglio Nazionale delle Ricerche
Via S. Maria, 46 - 56126 Pisa (Italy)

E-mail : {fabrizio,straccia}@iei.pi.cnr.it
Phone : +39.50.593407
Fax : +39.50.554342

Abstract

The use of conventional non-monotonic reasoning tools in real-sized knowledge-based
applications is hindered by the fact that the knowledge acquisition phase cannot
be accomplished in the incremental way that is instead typical of knowledge base
management systems based on monotonic logics. As a result, some researchers have
departed from orthodox non-monotonic formalisms and proposed languages for the
representation of Multiple Inheritance Networks with Exceptions (MINEs). Such
languages do not suffer from the problem of incrementality in knowledge acquisition,
but are inadequate both from a formal and from an empirical point of view. In fact,
they are not endowed with a formal semantics, and the intuitions that underlie their
inferential mechanisms are far from being widely agreed upon.

In this paper we discuss an approach to non-monotonic reasoning which does
allow the phase of knowledge acquisition to be accomplished in an incremental and
modular way, but at the same time relies on a solid and widely acknowledged formal
apparatus such as First Order Logic (FOL). We have obtained this by specifying a
(non-monotonic) function that maps MINEs into sets of FOL formulae. We have
shown that the mapping function we discuss is sound and complete, in the sense that
each conclusion that can be derived from a MINE is also derivable from the set of
FOL formulae resulting from its translation via the mapping function, and vice-versa.

Keywords : Compositionality, Knowledge Representation, Knowledge Acquisition, Mul-
tiple Inheritance, Non-monotonic Reasoning

1

1 Introduction

Traditional formal systems have the property of being monotonic, in the sense that an
addition to the set of formulae making up the knowledge base (KB) never determines a
decrement in the set of conclusions that may be derived from the KB via the inference
rules. Formally, if Γ � A holds, then necessarily Γ ∪ Γ′ � A holds, where Γ and Γ′ are sets
of formulae, A is a formula and � is the derivability relation.

Unfortunately, only few application domains exist whose formalization may be accom-
plished by means of monotonic formal systems1. In fact, there are many reasoning patterns
for which a monotonic formal system would prove inadequate. One of these is default re-
asoning , a reasoning style that is to be applied whenever the rules involved allow for
exceptions . Such rules dictate that, “by default” (i.e. whenever there is no information to
the contrary), one may assume that the situation that is to be dealt with is a typical (i.e.
not exceptional) situation. However, a possible subsequent acquisition of new knowledge
might lead one to discover that this situation is not typical as was believed, but exceptio-
nal ; in this case, what had been assumed “by default” is revoked . Hence, reasoning by
default (also known as reasoning in the presence of exceptions) is a non-monotonic kind of
reasoning.

An instance of this reasoning style is the inferential chain induced by the assertion “if
x is a bird, assume that it flies, unless you know it does not”. If we reason according to
this rule and know that Opus is a bird, in the absence of information to the contrary we
may conclude that Opus flies; but if we later learn that Opus is a penguin, knowing that
penguins typically do not fly, we have to revoke the conclusion that Opus flies.

Non-monotonic reasoning is nowadays a hot topic in AI; in fact, the spectrum of its
applications is extremely wide, ranging from image interpretation [11], reasoning about
action [10], troubleshooting [13], knowledge bases automatic generation [15] and natural
language understanding [2]. The requirements that are imposed by these application do-
mains have lead to the development of a variety of non-monotonic formalisms, most of
which belong to the offspring of Doyle and McDermott’s Nonmonotonic Logic, Reiter’s
Default Logic and McCarthy’s Circumscription2. Unfortunately, these formalisms, besi-
des having unattractive metalogical and computational properties (i.e. undecidability of
the versions with quantifiers, computational intractability of those without quantifiers),
suffer from a problem that hinders their use in those knowledge representation contexts
which require that the knowledge acquisition phase be accomplished in an incremental and
modular fashion. We will call this problem the Exceptions Explicitation Problem (EEP).

Incrementality of knowledge acquisition is an asset of knowledge base management
systems that hardly needs to be argued for. Large knowledge bases are the result of an
evolutionary process; this happens because knowledge entry is a time-consuming process,
and because knowledge may simply become available at later stages of the process, possibly
contradicting (or specializing) previously acquired knowledge. When a large KB is built

1Witness the fact that most research papers about monotonic KR languages draw their examples from
“unrealistically neat” application domains, such as e.g. geometry, kinships, and the like.

2Up-to-date accounts of what is going on in the field may be gathered by consulting [1, 4, 12].

2

by this “stepwise refinement” process, it is highly desirable that the refinement consists in
the plain, piecemeal addition of new knowledge chunks, rather than in a time-consuming
revision (with a possibly ensuing deletion) of pre-existing chunks; in other words, it is
desirable that knowledge acquisition be incremental (or compositional).

In Section 2 of this paper we will discuss how the EEP manifests itself in standard
non-monotonic formalisms, and will see how this makes their implementation into working
KBMSs allowing for incremental knowledge acquisition virtually impossible.

In Section 3 we will briefly describe a class of languages, those allowing the represen-
tation of Multiple Inheritance Networks with Exceptions (MINEs – see e.g. [16, 19]), that
solve this problem by a technique we will call implicit handling of exceptions. Unfortu-
nately, such languages lack a denotational semantics that account for the meaning of the
linguistic primitives contained therein in a clear and unambiguous way. Besides, given the
complexity and awkwardness of the non-standard proof theory such languages rely on in
order to specify the conclusions that are derivable from a KB, it is substantially implau-
sible to think that such a proof theory might “implicitly” constitute a semantics for the
languages in question3.

In order to overcome these deficiencies, in Section 4 we will propose an approach to
non-monotonic reasoning that combines the advantages (in terms of incrementality of the
knowledge acquisition phase) that are offered by the languages for MINEs, with those (in
terms of semantic clarity) that are offered by a formally solid apparatus such as First Order
Logic (FOL). This approach is accomplished by specifying a (non-monotonic) function that
maps a MINE into a set of FOL formulae. We will show that this mapping function is
a “good” mapping, in the sense that each conclusion which is derivable from a MINE
is also derivable from the set of FOL formulae that results from the application of the
mapping function to the MINE, and vice-versa. An interesting side-effect of this result is
that MINE-like reasoning can be performed by means of ordinary, ready-made first order
theorem provers, with no need to add specific machinery. Section 5 concludes.

2 The Exceptions Explicitation Problem

In this section we will discuss, by means of a concrete example, how the EEP manifests
itself in the context of Nonmonotonic Logic (NML); to this respect, other formalisms such
as Default Logic and Circumscription behave in a completely analogous way, and will not
be discussed. The “penguin” example that we have hinted at in the preceding section may
be represented by means of the NML formula

∀x Bird(x) ∧M [Flies(x)]⇒ Flies(x) (1)

(where M [α] informally means “α does not contradict the KB”). Let us consider an

3For a more detailed discussion on this “implicit” approach to the semantics of representation languages
see e.g. [3].

3

exception to the rule, “penguins are birds that typically do not fly”, and let us represent
it by means of the axioms:

∀x Penguin(x)⇒ Bird(x) (2)

∀x Penguin(x) ∧M [¬Flies(x)]⇒ ¬Flies(x) (3)

There is a problem hidden in this set of formulae: in NML the addition of the assertion
Penguin(opus) to axioms (1)-(3) generates two different “sets of conclusions” (“fixpoints”,
in NML terminology): in one of them Opus flies while in the other Opus does not fly,
depending on whether we “first” consider axiom (1) or axiom (3), respectively; this happens
regardless of the fact that our knowledge of the animal world makes us strongly prefer the
conclusion according to which Opus does not fly.

Hence NML seems, at first sight, inadequate to account for this kind of reasoning, as
it generates a situation of ambiguity in the representation of a state of affairs that is all
but ambiguous to us4. At first sight, it seems possible to overcome this problem without
departing from NML; what one needs to do is explicitly consider exceptions in each default
formula they involve. Accordingly, a set of axioms that induces a correct behaviour of
NML for our example is the following:

∀x Bird(x) ∧M [Flies(x) ∧ ¬Penguin(x)] ⇒ Flies(x) (4)

∀x Penguin(x)⇒ Bird(x)

∀x Penguin(x) ∧M [¬Flies(x)]⇒ ¬Flies(x)

At this point, given Penguin(opus), axiom (4) does not allow one to conclude Flies(opus);
this leaves us with one fixpoint only, a fixpoint that contains only the conclusions we
actually subscribe to.

However, this solution looks like an ad hoc patch rather than a real solution. In fact, it
should be noted that, given the informal meaning that Doyle and McDermott attribute to
NML formulae, the conclusion according to which Opus does not fly should already follow
from axioms (1)-(3), as these already represent the fact that penguins are exceptional birds
as far as the ability to fly is involved; consequently, the modification of axiom (1) to yield
(4) seems a redundant re-assertion of this fact.

Besides, one should note that, until the KB did not contain any reference to penguins,
axiom (1) was more than adequate. The introduction of axioms (2) and (3) has obliged
us to transform axiom (1) into axiom (4); in the more general case, the acquisition of new
knowledge obliges us to revoke (in order to subsequently assert some modified version of
them) previously acquired formulae from the KB. It is then evident that the realization of
default reasoning by means of NML is undermined by the impossibility to update KBs by

4The generation of multiple fixpoints in NML may otherwise be due to an inherent ambiguity of the
state of affairs being represented. A very famous example of this is the so-called “Nixon diamond” (see
Example 2).

4

simple piecemeal additions of new knowledge chunks. In semantic terms this means the
impossibility, unlike what happens with traditional logical formalisms, to characterize the
extensional semantics of the modified KB in a compositional way, i.e. as a combination of
the extensions of the original KB and of the newly acquired formulae.

But the need to explicitly represent exceptions brings about other, even more compelling
problems, having to do with the way in which, at the time of the introduction of a new
formula into the KB, it is to be determined which are the formulae that are to be modified
and which are the ones that are not. It turns out that this operation cannot be realized by
simply performing a number of matchings between the formula to be introduced and the
other formulae in the KB; on the contrary, it requires in general a NML theorem proving
operation. This may clearly be seen by taking a look at our example: the relation between
the precondition of axiom (1) and the precondition of axiom (3) has been determined by
relying on the fact that Bird(x) is derivable from Penguin(x) by means of axiom (2);
the transformation of axiom (1) into axiom (4) is then realized in order to “inhibit” not
axiom (1) in itself, but the inferential chain that would lead us to conclude Flies(x)
from Penguin(x). In general, given a NML knowledge base, it is not even determined a
priori whether there exist one, several or no inferential chains that lead to the undesired
conclusion (in our case, one, several or no inferential chains between Penguin(x) and
Flies(x)); in case several such chains exist, each of them has to be inhibited by means of
a call to the NML theorem prover, each resulting in the introduction of a subformula of
type M [α].

That the phase of KB construction requires repeated calls to the NML theorem prover
in order to maintain the consistency of the KB that is being built, is in itself rather implau-
sible; but the whole endeavour becomes absurd once we consider that NML is undecidable!
This means that, unless the construction of the KB is realized in a completely static (non
incremental) way, the problem of knowledge acquisition in NML (and, analogously, in the
other non-monotonic formalisms mentioned in Section 1) is an unsolvable problem.

3 Multiple Inheritance Networks with Exceptions

The Exceptions Explicitation Problem that affects standard non-monotonic formalisms has
lead to the definition of languages for the representation of Multiple Inheritance Networks
with Exceptions (MINEs). Such languages have two fundamental characteristics:

• they are specifically oriented to the representation of (non-monotonic) knowledge of
a taxonomic nature (i.e. of knowledge that lends itself to being organized hierarchi-
cally); hence, they are less expressive of those we have mentioned in Section 1, in the
sense that they only allow for monadic predicate symbols, a limited use of negation,
and no disjunction at all;

• they implement an implicit handling of exceptions (see below).

A MINE is a directed graph whose nodes represent classes or individuals of the domain of
discourse, and whose edges represent relationships of “conceptual containment” between

5

the nodes involved. For instance, a MINE Γ might contain the nodes opus, Penguin and
Bird, and contain the edges opus→ Penguin, Bird→ Flies and Penguin �→ Flies. The
word inheritance refers to the fact that the deductive mechanisms of these languages are
such that an edge Bird → Flies has the effect of transmitting “by inheritance” all the
properties of Flies to Bird; this inheritance is multiple because a MINE Γ may contain
more than one edge outgoing from the same node, the net effect being that the node inherits
properties from different, unrelated nodes. Last, we speak of networks with exceptions
because the intended denotation of an edge such as p → q is the set of states of affairs in
which “p’s are typically q’s”; this assertion allows for the existence of p’s that are not q’s,
i.e. of exceptions. Dual arguments apply to edges of type p �→ q.

The languages for the representation of MINEs that have been proposed in the literature
are by now a fairly vast and multifaceted class (see e.g. [5, 6, 14, 18]). It is not our purpose
to give an exhaustive review of the constructs and inferential mechanisms that appear in
the various languages (to this respect, the interested reader may consult [16, 19]); what we
want is to introduce a number of fundamental concepts that, besides being common to a
vast class of MINE representation languages, will be sufficient to illustrate the problems
affecting such languages in general, and to motivate the approach described in Section 4.

In the discussion that follows we will restrict ourselves to the case in which the relation
→ ∪ �→ (a relation which we will indicate with the symbol ❀) is irreflexive and transitive
(i.e. a strict partial order); this limitation is not particularly stringent from a pragmatic
point of view. In MINEs that enjoy this property, exceptions are implicitly handled by
this ordering: to a first approximation, we can say that, in case of conflicts, an edge is
“preferred” to another if the source node of the first precedes the source node of the second
in the ordering. For example, given the MINE consisting of the edges opus → Penguin,
Penguin → Bird, Bird → Flies, Penguin �→ Flies, we will see how the conclusion
according to which Opus does not fly is given priority, on the grounds that the premise of
Penguin �→ Flies is more specific than that of Bird→ Flies, and that, as a consequence,
the conclusion derivable from the former is more reliable than the one derivable from the
latter5.

Let us now formally define our language for the representation of MINEs.

Definition 1 Let I and C be two finite sets of individual constants and predicate symbols,
respectively, and let A be a finite set of positive edges x → y and negative edges x �→ y,
where x ∈ I ∪C and y ∈ C. A Multiple Inheritance Network with Exceptions (MINE) is a
triple Γ = 〈I, C,A〉 such that the relation → ∪ �→ is a strict partial order. The elements of
the set I ∪ C are called nodes. The polarity of an edge is given by its positive or negative
sign.

5The reader may have noticed that in this example we have used the edge Penguin→ Bird to formalize
a fact that would be better represented by an implication of classical logic, given that all penguins are
birds. The integration between “categorical” and “default” implications in a single framework is not among
the purposes of this paper; for simplicity, we will hereafter take all implications as having a default nature.
For a more detailed discussion on the above-mentioned integration see e.g. [5].

6

With ΓI , ΓC and ΓA we will refer to the components I, C and A of Γ. In the examples that
follow we will use lowercased words as metavariables ranging over individual constants,
capitalized words for predicate symbols and the letters p, q, . . . , x, y, z for (generic) nodes.

Let us now define, given a MINE Γ, what the set of conclusions that may be derived
from Γ is; this is very important because, similarly to what happens in other logics for
knowledge representation, it establishes the way in which we may infer knowledge implicit
in the KB from the knowledge explicitly coded therein. However, in order to do so we have
to introduce the notions of “chain” and “path”.

Definition 2 A chain in a MINE Γ is a sequence of edges in ΓA, x1 ❀ x2 ❀ . . . ❀

xn−1 ❀ xn (n ≥ 2). The node x1 is called initial node of the chain and xn is called
terminal node. The degree of a chain in Γ with initial node x and terminal node y is given
by the length of the longest chain from x to y in Γ.

Hereafter we will use lowercased greek letters as metavariables ranging over chains, and we
will indicate with degΓ(σ) the degree of a chain σ on Γ.

Definition 3 A positive path in a MINE Γ is a chain x1 → x2 → . . . → xn−1 → xn

(n ≥ 2) in Γ consisting of positive edges only. A negative path in a MINE Γ is a chain
x1 → x2 → . . . → xn−1 �→ xn (n ≥ 2) in Γ consisting of a (possibly empty) sequence of
positive edges followed by one negative edge. The polarity of a path is given by the polarity
of its last edge. The edge formed by the initial node of a path, its terminal node and its
polarity is called conclusion derived from the path.

Intuitively, paths are those chains from which it is somehow possible to draw conclu-
sions. For example, let us consider a MINE such as KB1 = 〈{opus}, {Penguin, Bird,
F lies, Swims}, {opus → Penguin, Penguin → Bird, Bird → Flies, Penguin �→ Flies,
F lies �→ Swims}〉. The chain

opus→ Penguin→ Bird→ Flies (5)

is a positive path, from which we can draw the conclusion opus→ Flies (“As there is no
information to the contrary, we assume that Opus flies”), while from the negative path

opus→ Penguin �→ Flies (6)

we may conclude opus �→ Flies (“As there is no information to the contrary, we assume
that Opus does not fly”). The chain

opus→ Penguin �→ Flies �→ Swims (7)

is not a path; in fact, no reasonable conclusion may be drawn from it with respect to
the fact whether Opus can swim or not. Similar empirical considerations have induced

7

researchers to define the notion of “conclusion” with respect to paths only, and not with
respect to chains in general.

As we have seen, MINEs such as KB1 have paths from which contradictory conclusions
may be derived; unfortunately, this generates situations of ambiguity in the representation
of states of affairs which are all but ambiguous to us. In order to eliminate these situations,
what we will do is to define which are, given a MINE Γ, the paths from which we may
derive “reliable” conclusions, and that must consequently be given priority over others.
For example, in a MINE such as KB1 this will allow us to give path (6) priority over path
(5), hence to inhibit the undesired conclusion according to which Opus flies. In MINE
terminology, paths from which we may derive “reliable” conclusions are called derivable
paths.

Definition 4 A positive path σ is derivable from a MINE Γ (in symbols: Γ � σ) if and
only if the following conditions obtain:

1. if σ = x→ y, then Γ � σ if and only if σ ∈ ΓA and x �→ y �∈ ΓA;

2. if degΓ(σ) = n > 1, then Γ � σ if and only if there exists a (possibly empty) positive
path δ and nodes x, y and u ∈ ΓI ∪ ΓC such that:

(a) σ = x→ δ → u→ y

(b) u→ y ∈ ΓA;

(c) Γ � x→ δ → u;

(d) x �→ y �∈ ΓA;

(e) for all v and for all τ such that Γ � x→ τ → v and v �→ y ∈ ΓA, there exists a
z such that z → y ∈ ΓA and either z = x or Γ � x → γ1 → z → γ2 → v for
some path γ1 and for some path γ2.

Definition 5 A negative path σ is derivable from a MINE Γ (in symbols: Γ � σ) if and
only if the following conditions obtain:

1. if σ = x �→ y, then Γ � σ if and only if σ ∈ ΓA and x→ y �∈ ΓA

2. if and only if degΓ(σ) = n > 1, then Γ � σ if and only if there exists a (possibly
empty) positive path δ and nodes x, y and u ∈ ΓI ∪ ΓC such that:

(a) σ = x→ δ → u �→ y

(b) u �→ y ∈ ΓA

(c) Γ � x→ δ → u

(d) x→ y �∈ ΓA

(e) for all v and for all τ such that Γ � x→ τ → v and v → y ∈ ΓA there exists a
z such that z �→ y ∈ ΓA and either z = x or Γ � x → γ1 → z → γ2 → v for
some path γ1 and for some path γ2.

8

Following the terminology of [19] we might say that clauses (b) and (c) of Definitions 4 and
5 represent the option for a style of reasoning informed by “bottom-up chaining”, while
clause (e) represents the option for “off-path preclusion”; the mapping function that we
will describe in Section 4 subscribes to these options6.

Definition 6 The set of conclusions of a MINE Γ (in symbols: C(Γ)) is the set of those
edges p ❀ q such that p ❀ q is the conclusion of a path σ derivable from Γ.

The set of conclusions that may be drawn from a MINE Γ is the set that represents the
knowledge “implicitly” present in the KB.

4 Mapping MINEs into FOL

The implicit handling of exceptions implemented in MINE representation languages by
means of the ordering of nodes in the network allows the phase of knowledge acquisition
to be realized in an incremental way: recalling the example of Section 2, if our KB con-
tained the edge Bird → Flies, a subsequent introduction of the edges opus → Penguin,
Penguin → Bird and Penguin �→ Flies would not bring about the need to modify the
pre-existing edge, as the new strict partial order deriving from the introduction of the new
edges would inhibit the undesired conclusion opus→ Flies.

The limit of the MINE-based approach is its lack of semantic clarity. In fact, the
development of a model-theoretic semantics for MINE representation languages is still an
open problem, and the lack of such a semantics makes both the analysis of these languages
and the comparison between them extremely difficult.

In this paper we discuss an approach to non-monotonic reasoning that allows for in-
cremental knowledge acquisition, while at the same time relying on a formally solid and
widely acknowledged framework such as First Order Logic. We have accomplished this by
specifying a first order representation of the MINE formalism (a representation that we dub
LT , the Logical Theory of Multiple Inheritance with Exceptions), and a mapping function
M that maps a MINE Γ into a set of FOL formulae. The LT theory will be on all counts
our formalism for default reasoning; a mathematical theory for default reasoning (i.e. a
KB) will be obtained by adding to LT the result of the application of M to a particular
MINE, obtaining the FOL knowledge base T (Γ) =M(Γ) ∪ LT . The net effect is that the
LT component of T (Γ) remains fixed throughout the phase of knowledge acquisition (in
the same sense in which the logical axioms are fixed for a given logical system), while the
only component that varies is theM(Γ) component.

6The mapping function may be modified without difficulty in case one wants to opt for top-down
chaining and/or on-path preclusion. Our notion of derivability is very similar to the one proposed in [6];
it differs from it in the fact that in [6] item (1) of the two definitions specifies that, if degΓ(σ) = 1, then
Γ � σ if and only if σ ∈ ΓA (i.e. unlike in our definition, it is not necessary that the edge with opposite
polarity does not belong to ΓA). The modifications that could be made to our formalism in order to obtain
the behaviour described in [6] would be trivial, and will not be considered.

9

It may be shown that T is sound and complete, in the sense that each conclusion
derivable from a MINE Γ is also derivable from T (Γ), and vice-versa.

At this point a question arises naturally: how can a non-monotonic system be map-
ped into FOL, a notoriously monotonic system, while at the same time maintaining non-
monotonicity? Isn’t this a contradiction in terms? In order to hint that this is a plausible
state of affairs, let us recall that Circumscription (one of the most credited non-monotonic
formalisms) is nothing else but a mapping function from theories of a formalism F1 (FOL)
into theories of another formalism F2 (second order logic), and that in this case too the
target formalism is monotonic. In our case (and in the case of Circumscription too), non-
monotonicity is a property of the mapping function, and not of the target formalism. In
fact, if Γ and Γ′ are MINEs such that Γ∪Γ′ is the MINE obtained through the union of the
respective components (that is: Γ∪ Γ′ = 〈ΓI ∪ Γ′

I ,ΓC ∪ Γ′
C ,ΓA ∪ Γ′

A〉),M is such that the
translation of Γ is not in general a logical consequence of the translation of Γ∪ Γ′; that is,
in general M(Γ ∪ Γ′) �|=M(Γ). This is a necessary condition for any function aspiring to
translate a non-monotonic formal system into a monotonic one; if S1 is a non-monotonic
system based on language L, E and E ′ are sets of expressions on L, and K is the translation
function of sets of expressions of L into sets of expressions of a monotonic system S2, then
K must be such that in general it is not the case that K[E ∪ E ′] |=S2 K[E].

In order to prove our result, we will proceed in the following way. First of all, we will
define the mapping function M; we will then define LT , the Logical Theory of Multiple
Inheritance with Exceptions, and will then show that belonging to the set of conclusions
of a MINE Γ is equivalent to being a logical consequence in LT (a notion we will indicate
with the symbol “|=LT ”) of MΓ7. All this will be described in a semi-informal way in
Sections 4.1 and 4.2, and subsequently formalized in Section 4.3.

4.1 The M function

The purpose of the M function is that of translating a MINE Γ = 〈I, C,A〉 into a set
of formulae M(Γ) constituting a first order representation of the graph formed by the
nodes and edges of Γ. In order to obtain this, first of all let us represent every node p
in ΓI ∪ ΓC by an individual constant p of the first order language. The edges of ΓA are
instead represented through instances of the binary predicates ISDA (“IS Directly A”)
and ISDNA (“IS Directly Not A”): the formulae ISDA(p, q) and ISDNA(p, q) represent
then the fact that edges p→ q and p �→ q, respectively, belong to ΓA. Let us notice that,
in order for ΓA to be represented adequately, the following conditions must obtain:

• the predicate ISDA must be such that p → q ∈ ΓA if and only if every model of
M(Γ) is also a model of ISDA(p, q);

• the predicate ISDNA must be such that p �→ q ∈ ΓA if and only if every model of
M(Γ) is also a model of ISDNA(p, q).

7Let us recall that in the language of mathematical logic, α |=A β is short for A ∪ {α} |= β, where α
and β are formulae and A is a theory of the language in question.

10

In order to accomplish this, let us consider for every edge p → q ∈ ΓA a formula of type
ISDA(p, q). It will be apparent in the proof of Lemma 1 that we need these formulae to
be all and the only instances of the ISDA predicate to be true in the models ofM(Γ); in
order to accomplish this, we impose that the following axiom holds8:

∀x∀y ISDA(x, y)⇔
∨

p →q∈ΓA

(x = p ∧ y = q) (8)

Analogously, if we want to represent negative edges by means of the predicate ISDNA,
we obtain the formula

∀x∀y ISDNA(x, y)⇔
∨

p�→q∈ΓA

(x = p ∧ y = q) (9)

In order to obtain a one-to-one correspondence between the network and its FOL repre-
sentation, we have also to consider that, in any MINE, nodes are considered as symbols
referring to individuals “implicitly” different from each other; this is often an unstated
assumption in such languages, but it is nevertheless “wired” in the reasoning machinery
that implements them. As a consequence, also individual constants must be interpreted as
referring each to a different individual: that is, we do not want that models ofM(Γ) may
exist that associate syntactically different constants to the same individual of the domain
of discourse. In order for this to hold, we impose that the axiom

∧

{p,q}∈ΓI∪ΓC

(p �= q) (10)

holds, an axiom that formalizes what is usually known as the “unique names assumption”.
This concludes the definition of theM function, a function that may then be concisely

described by means of the following definition.

Definition 7 Let Γ be a MINE; M is the function that maps Γ into the FOL axiom

(∀x∀y ISDA(x, y)⇔ ∨
p →q∈ΓA

(x = p ∧ y = q))∧
(∀x∀y ISDNA(x, y)⇔ ∨

p�→q∈ΓA
(x = p ∧ y = q))∧

(
∧

{p,q}∈ΓI∪ΓC
(p �= q))

Note that the size of the axiom is at most O(n2), where n is the number of nodes in Γ.
At this point we may already discuss how incrementality is achieved in our framework.

In the preceding section we have hinted at the fact that the LT component of T (Γ) remains

8This axiom turns out to be equivalent [9] to the minimization of the predicate ISDA by means of the
Circumscription axiom Circum(

∧
p→q∈ΓA

ISDA(p, q); ISDA; ()); alternatively, this minimization may be
seen as the completion of the ISDA predicate.

11

fixed throughout the phase of knowledge acquisition, while the only component that varies
is the M(Γ) component. We may now see that the way in which this component varies
is informed by the principles of incrementality and compositionality. In fact, if one needs
to add the equivalent of an edge r → s (resp. r �→ s) to a knowledge base T (Γ), one
needs only to add the formula (x = r ∧ y = s) as a further operand of the disjunction∨

p→q∈ΓA
(x = p ∧ y = q) (resp.

∨
p�→q∈ΓA

(x = p ∧ y = q)), and the formula (r �= s) to the
conjunction

∧
{p,q}∈ΓI∪ΓC

(p �= q). As required, knowledge acquisition becomes a matter of
simple piecemeal additions of new chunks of knowledge to the pre-existing KB.

4.2 The Logical Theory of Multiple Inheritance with Exceptions

Now that we have defined the M function, let us build a first order theory LT such that
a formula of type ISA(x, y) (resp. ISNA(x, y)) is derivable fromM(Γ) in LT if and only
if x → y (resp. x �→ y) belongs to C(Γ), the set of conclusions of Γ. The LT theory
will roughly consist of the definitions of the predicates ISA and ISNA in terms of the
predicates ISDA and ISDNA we have seen in the preceding section. This definition
is rather complex; hence, it will be introduced in an incremental way, stepping through
the definition of some other auxiliary predicates representing the existence of particular
conditions on the topology of Γ.

In order to do so, let us first start by defining two predicates ΠP (x, t, y) and ΠN(x, t, y)
representing the derivability in Γ of a path (positive or negative, respectively) with initial
node x and terminal node y passing from node t. As a consequence, the following conditions
must obtain:

• the predicate ΠP must be such that Γ � x → γ1 → t → γ2 → y, for some γ1 and
γ2, if and only if every model ofM(Γ) ∪ LT is also a model of ΠP (x, t, y);

• the predicate ΠN must be such that Γ � x → γ1 → t → γ2 � → y, for some γ1 and
γ2, if and only if every model ofM(Γ) ∪ LT is also a model of ΠN(x, t, y).

In order for ΠP and ΠN to have the desired characteristics, let us define them by means
of a “literal” translation of Definitions 4 and 5. The translation of Definition 4 is obtained
by imposing that the following formula (which has been subdivided in several numbered
subformulae and indented so as to highlight its structural affinity with the definition)
belongs to LT .

∀x∀t∀y ΠP (x, t, y)⇔
((x = t ∧ ISDA(x, y) ∧ ¬ISDNA(x, y)) 1.

∨ (((∃t′ΠP (x, t, t′) ∧ t �= t′ ∧ ISDA(t′, y)) 2.(a)− (b)
∨ (∃t′ΠP (x, t′, t) ∧ t �= t′ ∧ ISDA(t, y)))∧
¬ISDNA(x, y) (d)

∧ (∀v∃v′(ΠP (x, v′, v) ∧ ISDNA(v, y)) (e)
⇒ (∃zISDA(z, y) ∧ (z = x ∨ ΠP (x, z, v))))))

12

At this point we may characterize the conclusion that can be drawn from a positive path,
by means of a predicate ISA(x, y), by adding to LT the simple formula

∀x∀y (ISA(x, y)⇔ ∃t ΠP (x, t, y))

This mirrors the fact that, in any MINE Γ, x→ y may be inferred if and only if a positive
path is derivable that has x as initial node and y as terminal node. The predicate ΠN is
defined in a completely analogous way to ΠP .

This concludes the definition of LT , a FOL theory that may then be concisely described
by means of the following definition.

Definition 8 The Logical Theory of Multiple Inheritance with Exceptions (LT) is the
FOL theory LT ≡ {A1, A2, A3, A4}, where:

• A1 ≡ ∀x∀t∀y ΠP (x, t, y)⇔
((x = t ∧ ISDA(x, y) ∧ ¬ISDNA(x, y))

∨ (((∃t′ΠP (x, t, t′) ∧ t �= t′ ∧ ISDA(t′, y))∨
(∃t′ΠP (x, t′, t) ∧ t �= t′ ∧ ISDA(t, y)))∧
¬ISDNA(x, y)∧
(∀v∃v′(ΠP (x, v′, v) ∧ ISDNA(v, y))
⇒ (∃zISDA(z, y) ∧ (z = x ∨ ΠP (x, z, v))))))

• A2 ≡ ∀x∀t∀y ΠN(x, t, y)⇔
((x = t ∧ ISDNA(x, y) ∧ ¬ISDA(x, y))

∨ (((∃t′ΠP (x, t, t′) ∧ t �= t′ ∧ ISDNA(t′, y))∨
(∃t′ΠP (x, t′, t) ∧ t �= t′ ∧ ISDNA(t, y)))∧
¬ISDA(x, y)∧
(∀v∃v′(ΠP (x, v′, v) ∧ ISDA(v, y))
⇒ (∃zISDNA(z, y) ∧ (z = x ∨ ΠP (x, z, v))))))

• A3 ≡ ∀x∀y (ISA(x, y)⇔ ∃t ΠP (x, t, y));

• A4 ≡ ∀x∀y (ISNA(x, y)⇔ ∃t ΠN(x, t, y))

4.3 An equivalence result

So far we have describedM(Γ) and LT , the two components of a (non-monotonic) function
that maps MINEs into sets of FOL formulae. At this point the only thing we have to do
is to describe the properties of T (Γ) ≡ M(Γ) ∪ LT . By exploiting the acyclicity of our
MINEs, we are able to prove the following fundamental lemma by finite induction on the
degree of paths.

Lemma 1 (Correspondence) Let Γ be a MINE and M be any first order interpretation
such that M |=LT M(Γ). Then, for all 〈x, y〉 ⊆ (ΓI ∪ ΓC)× (ΓI ∪ ΓC):

13

1. x→ y ∈ C(Γ)⇐⇒M |=LT ISA(x, y)

2. x �→ y ∈ C(Γ)⇐⇒M |=LT ISNA(x, y)

The proofs of Lemma 1 and of the lemmas that follow are given in the appendix. The
following lemma derives immediately from Lemma 1.

Lemma 2 (Completion) Let Γ be a MINE and M be any first order interpretation such
that M |=LT M(Γ). Then, for all 〈x, y〉 ⊆ (ΓI ∪ ΓC)× (ΓI ∪ ΓC):

1. x→ y �∈ C(Γ)⇐⇒M |=LT ¬ISA(x, y)

2. x �→ y �∈ C(Γ)⇐⇒M |=LT ¬ISNA(x, y)

By combining Lemma 1, Lemma 2 and the Consistency Lemma for “�” proven in [6] we
obtain

Lemma 3 (Consistency) Let Γ be a MINE and let M be any first order interpretation
such that M |=LT M(Γ). Then, for all 〈x, y〉 ⊆ (ΓI ∪ ΓC)× (ΓI ∪ ΓC):

1. M |=LT ISA(x, y) =⇒ M |=LT ¬ISNA(x, y)

2. M |=LT ISNA(x, y) =⇒ M |=LT ¬ISA(x, y)

Hence, this lemma shows the correct relation that exists between ISA and ISNA.
The results dealt with in the preceding lemmas presuppose the existence of at least

one model of M(Γ) with respect to LT . We can prove that, in fact, such a model always
exists. The following lemma is proven in a constructive way, i.e. by deriving the required
model from Γ itself.

Lemma 4 Let Γ be a MINE. Then there exists a first order interpretation M such that
M |=LT M(Γ).

Finally, we may summarize the results of Lemmas 1-4 into the following theorem that
completely characterizesM(Γ) |=LT .

Theorem 1 Let Γ be a MINE. Then the following propositions hold

1. x→ y ∈ C(Γ)⇐⇒M(Γ) |=LT ISA(x, y)

2. x �→ y ∈ C(Γ)⇐⇒M(Γ) |=LT ISNA(x, y)

3. x→ y �∈ C(Γ)⇐⇒M(Γ) |=LT ¬ISA(x, y)

4. x �→ y �∈ C(Γ)⇐⇒M(Γ) |=LT ¬ISNA(x, y)

5. M(Γ) |=LT ISA(x, y) =⇒M(Γ) |=LT ¬ISNA(x, y)

14

6. M(Γ) |=LT ISNA(x, y) =⇒M(Γ) |=LT ¬ISA(x, y)

Clauses (1) and (2) of Theorem 1 show that T is a complete translation of MINEs into FOL,
in the sense that, for each conclusion that can be derived from a MINE Γ, an equivalent
conclusion is derivable from T (Γ).

They also show that the translation is sound, in the sense that, for each conclusion that
may be derived from T (Γ), an equivalent conclusion is derivable from Γ itself. However,
this latter statement must be interpreted with a caveat: some formulae that can be derived
from T (Γ) have in fact no equivalent conclusions derivable from Γ, in the sense that their
would-be equivalents are not even expressible in the MINE formalism. For instance, in the
case of a MINE Γ such that C(Γ) comprises the edge p→ q, the set of formulae derivable
from T (Γ) will indeed contain the formula ISA(p, q), but will also contain formulae that do
not correspond to conclusions of Γ: among these, formulae containing connectives (such as
e.g. ISA(p, q)∧ ISA(p, q)), formulae containing instances of predicates different from ISA
and ISNA (such as e.g. ∃t ΠP (p, t, q)), tautologies of the first order predicate calculus,
etc. This is an obvious consequence of the fact that we are dealing with a translation of
a formalism into an expressively richer one, and does not invalidate the substance of our
claim; because of this we have substantially ignored the issue elsewhere in this paper.

A related comment may be made for clauses (3) and (4) of Theorem 1, in that formulae
of the form ¬ISA(x, y) and ¬ISNA(x, y) do not find a direct analogue in the MINE
formalism: the result is that the non-derivability of a conclusion (e.g. it is not derivable
that birds are typically yellow) finds its translation in the derivability of the negated
conclusion (e.g. it is not the case that birds are typically yellow). This can be seen as a
completion of the theory with respect to the ISA and ISNA predicates.

In order to better understand the properties of the T translation, we end this section
by reporting a few examples.

Example 1 Let Γ be a MINE such that ΓA = {o → P, P → B,B → F}, a MINE that
encodes our previous “birds” example. The edge o → F belongs to C(Γ); in keeping with
this, the formula ISA(o, F) is a logical consequence of T (Γ). If we add the edge P �→ F to
ΓA, the edge o→ F no more belongs to C(Γ), which instead includes o � → F ; accordingly,
the formula ISA(o, F) is no more a logical consequence of T (Γ), which instead now includes
ISNA(o, F). This shows that the T function is non-monotonic.

Example 2 Let Γ be a MINE such that ΓA = {n → Q, n → R,Q → P,R �→ P}, a
MINE that encodes the famous “Nixon diamond”. Neither n → P nor n �→ P belong
to C(Γ), corresponding to the fact that, according to the “skeptical” approach, whether
Nixon is a pacifist or not cannot reasonably be concluded from the information contained
in an inherently ambiguous network such as Γ. Accordingly, the formula ¬ISA(n, P) ∧
¬ISNA(n, P) is a logical consequence of T (Γ) (this is a direct consequence of Lemma 2).

Example 3 Let Γ be a MINE such that ΓA = {r → N, r �→ R,N → Q,N → R,Q →
P,R �→ P}, a MINE that encodes an extended version of the “Nixon diamond” (where the

15

predicate N may be interpreted as “member of the Nixon family”), reported as Figure 5 of
[19]. Both r → Q and r → P belong to C(Γ), corresponding to the fact that the ambiguity
whether Richard is a pacifist or not can now be resolved thanks to the information that
Richard is not a republican, although typical Nixons are. Accordingly, both ISA(r,Q) and
ISA(r, P) are logical consequences of T (Γ).

5 Conclusion

We have described an approach to non-monotonic reasoning that combines the advantages
(in terms of incrementality of the knowledge acquisition phase) that are offered by MINE
representation languages, with those (in terms of semantic clarity) that are offered by a
formally solid apparatus such as First Order Logic. We have achieved this by specifying
a first order representation LT of the MINE formalism, and a mapping function M that
maps a MINE Γ into a set of FOL formulae. In our framework, a KB is obtained by adding
to LT the result of the application of M to a particular MINE, thus obtaining the FOL
knowledge base T (Γ) = M(Γ) ∪ LT . The net effect is that the LT component of T (Γ)
remains fixed throughout the phase of knowledge acquisition, while the only component
that varies is the M(Γ) component. We have shown how this variation is achieved by
performing simple piecemeal additions of new chunks of knowledge to the pre-existing KB,
thereby accomplishing incrementality and compositionality. We have also shown that T
is a sound and complete mapping, as each conclusion derivable from a MINE Γ is also
derivable from T (Γ), and vice-versa.

An interesting side-effect of this result is that MINE-like reasoning can be performed
by means of the ordinary and widely available first order theorem provers. A simple
interface may be devised that allows the user to convey his information to the KB in
terms of the simpler MINE representation language; it is then the interface that takes
the charge of implementing the T translation function, performing the required additive
modifications to axioms (8),(9) and (10). We are currently exploring the possibility of an
efficient implementation of this framework by using the “theory resolution” technique for
first order theorem proving devised by Stickel [17], which allows us to “wire” the LT theory
into a resolution-based theorem prover, thereby freeing the knowledge base management
system from the need to handle the axioms of LT directly.

References

[1] Proceedings of the Third International Workshop on Nonmonotonic Reasoning, Lake
Tahoe, CA, 1990.

[2] Douglas E. Appelt and Kurt Konolige. A nonmonotonic logic for reasoning about spe-
ech acts and belief revision. In Michael Reinfrank, Johan de Kleer, Matthew L. Gin-

16

sberg, and Erik Sandewall, editors, Nonmonotonic reasoning, pages 164–175. Springer,
Heidelberg, FRG, 1989.

[3] Nino Cocchiarella. Predication versus membership in the distinction between logic as
language and logic as calculus. Synthese, 77:37–72, 1988.

[4] Matthew L. Ginsberg, editor. Readings in nonmonotonic reasoning. Morgan Kau-
fmann, Los Altos, CA, 1987.

[5] John F. Horty and Richmond H. Thomason. Mixing strict and defeasible inheritance.
In Proceedings of AAAI-88, 7th Conference of the American Association for Artificial
Intelligence, pages 427–432, St. Paul, MN, 1988.

[6] John F. Horty, Richmond H. Thomason, and David S. Touretzky. A skeptical theory
of inheritance in nonmonotonic semantic networks. In Proceedings of AAAI-87, 6th
Conference of the American Association for Artificial Intelligence, pages 358–363,
Seattle, WA, 1987. [a] An extended version appears as [7].

[7] John F. Horty, Richmond H. Thomason, and David S. Touretzky. A skeptical theory
of inheritance in nonmonotonic semantic networks. Artificial Intelligence, 42:311–348,
1990.

[8] Maurizio Lenzerini, Daniele Nardi, and Maria Simi, editors. Inheritance hierarchies in
knowledge representation and programming languages. Wiley, Chichester, UK, 1991.

[9] Vladimir Lifschitz. Computing circumscription. In Proceedings of IJCAI-85, 9th
International Joint Conference on Artificial Intelligence, pages 121–127, Los Angeles,
CA, 1985. [a] Also reprinted in [4], pp. 167–173.

[10] Vladimir Lifschitz. Towards a metatheory of action. In Proceedings of KR-91, 2nd
International Conference on Principles of Knowledge Representation and Reasoning,
pages 376–386, Cambridge, MA, 1991.

[11] Alan K. Mackworth and Raymond Reiter. A logical framework for depiction and
image interpretation. Artificial Intelligence, 41:125–155, 1989.

[12] Michael Reinfrank, Johan de Kleer, Matthew L. Ginsberg, and Erik Sandewall, editors.
Nonmonotonic reasoning. Springer, Heidelberg, FRG, 1989.

[13] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32:57–95, 1987. [a] Also reprinted in [4], pp. 352–371.

[14] Erik Sandewall. Nonmonotonic inference rules for multiple inheritance with excep-
tions. Proceedings of the IEEE, 13:1345–1353, 1986.

[15] Fabrizio Sebastiani. On heterogeneous model-preference default theories. In Pro-
ceedings of CSCSI/SCEIO-90, 8th Biennial Conference of the Canadian Society for
Computational Studies of Intelligence, pages 84–91, Ottawa, Ontario, 1990.

17

[16] Bart Selman and Hector J. Levesque. The tractability of path-based inheritance. In
Proceedings of IJCAI-89, 11th International Joint Conference on Artificial Intelli-
gence, pages 1140–1145, Detroit, MI, 1989. [a] Also reprinted in [8], pp. 83–96.

[17] Mark E. Stickel. Automated deduction by theory resolution. Journal of Automated
Reasoning, 1:333–355, 1985.

[18] David S. Touretzky. The mathematics of inheritance systems. Pitman, London, UK,
1986.

[19] David S. Touretzky, John F. Horty, and Richmond H. Thomason. A clash of intuitions:
the current state of nonmonotonic multiple inheritance systems. In Proceedings of
IJCAI-87, 10th International Joint Conference on Artificial Intelligence, pages 476–
482, Milano, Italy, 1987.

A Proofs

Proof of Lemma 1
Hereafter, individual constants will sometimes be called “nodes”, given the biunivocal
correspondence between ΓI ∪ ΓC and the set of individual constants of our FOL language.
We will allow the use of the symbol degΓ(x, y) instead of degΓ(σ) whenever σ is a path
with initial node x and terminal node y.

We will only prove clause (1), as the proof of clause (2) is completely analogous. Let
us consider the right-hand side of axiom A1 in Definition 8, deprived of its top-level con-
nectives:

x = t ∧ ISDA(x, y) ∧ ¬ISDNA(x, y) (11)

((∃t′ΠP (x, t, t′) ∧ t �= t′ ∧ ISDA(t′, y))

∨ (∃t′ΠP (x, t′, t) ∧ t �= t′ ∧ ISDA(t, y))) (12)

∀v∃v′ (ΠP (x, v′, v) ∧ ISDNA(v, y))

⇒ (∃z ISDA(z, y) ∧ (z = x ∨ ΠP (x, z, v)) (13)

¬ISDNA(x, y) (14)

That is, the right-hand side of axiom A1 in Definition 8 is exactly (11)∨((12)∧(13)∧(14)).

(⇐) We show that, if M |= ISA(x, y), then x → y ∈ C(Γ). As M |= T (Γ) and M |=
ISA(x, y), then, by axiom A3 in Definition 8, there exists a node t1 such that M |=
ΠP (x, t1, y). We show by induction on n = degΓ(x, y) that, if M |= ΠP (x, t1, y), then
Γ � x→ δ1 → t1 → δ2 → y for some δ1 and δ2, hence x→ y ∈ C(Γ).

Case n=1: Let M |= ΠP (x, t1, y), and let degΓ(x, y) = 1. By axiom A1 in De-
finition 8, M is a model of (11), while it is not a model of the conjunction of

18

(12), (13) and (14). Since M is a model of (11), it follows that x = t1 and
M |= ISDA(x, y)∧¬ISDNA(x, y); hence, because of the biunivocal correspondence
between the edges of Γ and the instances of ISDA and ISDNA, it also follows that
x→ y ∈ ΓA and x �→ y �∈ ΓA. From Definition 4, it follows that Γ � x → y.

It is worth to observe that, if we had not minimized the predicates ISDA and
ISDNA by means of axioms (8) and (9), there would not be a biunivocal correspon-
dence between the edges of Γ and the instances of ISDA and ISDNA. Without the
minimization of predicates ISDA and ISDNA that is enforced by axioms (8) and
(9), if e.g. M |= ISDA(x, y), then it would not necessarily follow that x → y ∈ ΓA;
hence, in our case, from M |= ISDA(x, y)∧¬ISDNA(x, y) it would not necessarily
follow that x → y ∈ ΓA and x �→ y �∈ ΓA; as a consequence, Lemma 1 would not
hold.

inductive step: Let the thesis hold for degΓ(x, y) < n; let us show that it also holds
for degΓ(x, y) = n. Let M |= ΠP (x, t1, y), and let degΓ(x, y) = n. By axiom A1 in
Definition 8, if M is a model of (11), then, similarly to the case of n = 1, it is true
that Γ � x→ y. If, instead, M is not a model of (11), then M must be a model of the
conjunction of (12), (13) and (14). Hence, with no loss of generality, from (12) we may
say that there exists a node t2 �= t1 such that M |= ΠP (x, t2, t1) ∧ ISDA(t1, y); from
(14), it is true that M |= ¬ISDNA(x, y); last, from (13), it is true that for any node
v1 for which there exists a node v2 such that M |= ΠP (x, v2, v1)∧ISDNA(v1, y), there
exists a node z1 such that M |= ISDA(z1, y) and either z1 = x or M |= ΠP (x, z1, v1).
Because of the biunivocal correspondence between the edges of Γ and the instances
of ISDA and ISDNA, there are edges t1 → y ∈ ΓA, x �→ y �∈ ΓA, v1 � → y ∈ ΓA and
z1 → y ∈ ΓA. Hence, it is true that degΓ(x, t1) < degΓ(x, y), as it would otherwise
be true that degΓ(x, t1) ≥ degΓ(x, y) ≥ degΓ(x, t1) + 1. Analogously, it is true that
degΓ(x, v1) < degΓ(x, y). Hence, for inductive hypothesis on M |= ΠP (x, t2, t1),
M |= ΠP (x, v2, v1) and M |= ΠP (x, z1, v1), the following holds:

1. t1 → y ∈ ΓA

2. Γ � x→ σ1 → t1

3. x �→ y �∈ ΓA

4. for all v1 and for all σ2 such that Γ � x→ σ2 → v1 and v1 � → y ∈ ΓA, there exists
a z1 such that z1 → y ∈ ΓA and either z1 = x or Γ � x → γ1 → z1 → γ2 → v1

for some path γ1 and for some path γ2.

Hence, from Definition 4, it is true that Γ � x→ σ1 → t1 → y.

(⇒) Let x → y ∈ C(Γ). We show that M |= ISA(x, y). From x → y ∈ C(Γ) it
follows that Γ � x1 → x2 → . . . → xn−1 → xn, for some nodes x1, . . . , xn, with
x1 = x, xn = y and n > 1. Let us show, by induction on m = degΓ(x1 → . . .→ xn),
that M |= ΠP (x1, xj, xn), 1 ≤ j < n, hence M |= ISA(x, y).

19

Case m=1: From Γ � x1 → x2 we obtain x1 → x2 ∈ ΓA and x1 �→ x2 �∈ ΓA. Hence,
M |= ISDA(x1, x2) ∧ ¬ISDNA(x1, x2), and, from (11), M |= ΠP (x1, x1, x2).

inductive step: Let the thesis be true for any path σ′ such that degΓ(σ′) < m; let
us show that it is also true for paths σ = x1 → . . . → xn for which degΓ(σ′) = m,
with m > 1. If n = 2, then, similarly to the case m = 1, we obtain that M |=
ΠP (x1, x1, x2). Otherwise, from Γ � x1 → x2 → . . . → xn−1 → xn, with n > 2 we
obtain:

1. xn−1 → xn ∈ ΓA

2. Γ � x1 → . . .→ xn−1

3. x1 �→ xn �∈ ΓA

4. for all v and for all σ1 such that Γ � x1 → σ1 → v and v � → xn ∈ ΓA there exists
z such that z → xn ∈ ΓA and either z = x1 or Γ � x1 → γ1 → z1 → γ2 → v for
some path γ1 and for some path γ2

For inductive hypothesis on x1 → . . . → xn−1, M |= ΠP (x1, xj, xn−1) holds for any
1 ≤ j < n − 1. Besides, M |= ISDA(xn−1, xn) and M |= ¬ISDNA(x1, xn). Hence,
M is a model for (13). In fact, for any node v1 for which there exists a node v2 such
that M |= ΠP (x1, v2, v1) and M |= ISDNA(v1, xn), from the (⇐) we obtain that
Γ � x1 → σ1 → v1 and v1 �→ xn ∈ ΓA; hence there exists a z such that z → xn ∈ ΓA

and either z = x1 or Γ � x1 → γ1 → z → γ2 → v1 for some γ1 and γ2. But in this
case, for inductive hypothesis, we obtain M |= ISDA(z, xn)∧(ΠP (x1, z, v1)∨z = x1).
It follows that M is a model of (12), (13) and (14), hence M |= ΠP (x1, xj, xn), 1 ≤
j < n.

Proof of Lemma 2
Straightforward.

Proof of Lemma 3
Only clause (1) needs to be proven, as the proof for clause (2) is completely analogous.
From M |= ISA(x, y) we obtain, by Lemma 1, that x → y ∈ C(Γ). Hence, from the
Consistency Theorem for “�” presented in [6], we obtain that x �→ y �∈ C(Γ); hence, from
Lemma 2, M |= ¬ISNA(x, y) holds.

Proof of Lemma 4
Let us build a model M ofM(Γ) with respect to LT in the following way. Let the domain
D be given by D = ΓI ∪ΓC ; besides, for any x ∈ ΓI ∪ΓC , let M(x) = x. Let the following
conditions hold for any set {x, t, y} ⊆ D:

20

• M(ISDA)(x, y) = true if and only if x→ y ∈ ΓA

• M(ISDNA)(x, y) = true if and only if x �→ y ∈ ΓA

• M(ISA)(x, y) = true if and only if x→ y ∈ C(Γ)

• M(ISNA)(x, y) = true if and only if x �→ y ∈ C(Γ)

• M(ΠP)(x, x, y) = true if and only if Γ � x→ y

• M(ΠN)(x, x, y) = true if and only if Γ � x �→ y

• M(ΠP)(x, t, y) = true if and only if Γ � x→ τ1 → t→ τ2 → y

• M(ΠN)(x, t, y) = true if and only if Γ � x→ τ1 → t→ τ2 �→ y

It is straightforward to show that this interpretation is a model of M(Γ) with respect to
LT .

21

