

Default Reasoning in a Terminological Logic

Fabrizio Sebastiani & Umberto Straccia
Istituto di Elaborazione dell’Informazione

Consiglio Nazionale delle Ricerche
Via S. Maria, 46 - 56126 Pisa (Italy)
E-mail : 〈lastname〉@iei.pi.cnr.it

Abstract

Terminological Logics (TLs) are knowledge representation formalisms of considerable
applicative interest, as they are specifically oriented to the vast class of application do-
mains that are describable by means of taxonomic organizations of complex objects.
Although the field of TLs has lately been an active area of investigation, only few
researchers have addressed the problem of extending these logics with the ability to
perform default reasoning. Such extensions would prove of paramount applicative
value, as many application domains may be formalized by means of monotonic TLs
only at the price of oversimplification. In this paper we show how we can effectively
integrate terminological reasoning and default reasoning, yielding a terminological
default logic. The kind of default reasoning we embed in our TL is reminiscent of
Reiter’s Default Logic, but overcomes some of its drawbacks by subscribing to the
“implicit” handling of exceptions typical of the Multiple Inheritance Networks with
Exceptions proposed by Touretzky and others.

1 Introduction

Terminological Logics (TLs, variously known as Frame Representation Languages or Con-
cept Description Languages) are knowledge representation formalisms of considerable ap-
plicative interest, as they are specifically oriented to the vast class of application domains
that are describable by means of taxonomic organizations of complex objects.

Unlike better known logics (such as e.g. FOL), the primary syntactic expressions of TLs
are terms , denoting monadic or dyadic relations on the domain of discourse. In general,
the language of a TL consists of a number of term-forming operators by means of which
one may build complex terms starting from a basic repertory of simple terms (namely,
predicate symbols). By virtue of the semantics of such operators, a partial order is induced
on the terms so defined, giving to a terminological KB the characteristic “hierarchical” (or
taxonomic) structure of a directed acyclic graph.

1

The field of TLs has lately been an active area of research, with the attention of resear-
chers especially focusing on the investigation of their logical and computational properties.
Nevertheless, few researchers have addressed the problem of extending these logics with
the ability to perform default reasoning, a kind of non-monotonic reasoning that is to be
applied whenever the rules involved allow for exceptions.

Non-monotonic reasoning has been formally addressed in various ways, leading to the
development of a variety of formalisms, most of which belong to the offspring of Doyle and
McDermott’s Nonmonotonic Logic [6], Reiter’s Default Logic [18] and McCarthy’s Circum-
scription [15]. Each of these formalisms may be seen as extending FOL with non-monotonic
reasoning capabilities of some kind. Given that TLs may be viewed as (pragmatically and
computationally interesting) subsets of FOL, one might be led to think that a simple inte-
gration of default and terminological reasoning could be obtained by simply considering one
of the non-monotonic formalisms mentioned above and restricting it to deal with the cho-
sen TL, rather than with FOL tout court. Unfortunately, these non-monotonic formalisms,
besides having unattractive logical and computational properties, suffer from a problem
that hinders their use in KR contexts requiring that KB construction be accomplished in
an incremental fashion. We call this problem the Exceptions Explicitation Problem (EEP).

Incrementality of KB construction is a highly desirable property for KB management
systems. Large KBs are the result of an evolutionary process, both because knowledge
entry is a time-consuming process and because knowledge may simply become available at
later stages of this process. When a large KB is built by this “stepwise refinement” process,
it is highly desirable that the refinement consists in the plain, piecemeal addition of new
knowledge chunks rather than in a time-consuming revision (with the possibly ensuing
deletion) of pre-existing chunks. The effect of the EEP is exactly that of making purely
additive knowledge acquisition impossible.

1.1 The EEP and Default Logic

Let us discuss, by means of a concrete example, what the EEP is in the context of Default
Logic (DL)1. Let us consider the well-known “penguin” example. It may be represented
by means of the DL rule

Bird(x) : Flies(x)

(x)
(1)

(“if x is a bird, and it is consistent to assume that it flies, then infer that it flies”, i.e.
“birds typically fly”). Let us consider an exception to the rule, “penguins are birds that
typically do not fly”, and let us represent it by means of the following:

∀x Penguin(x) ⇒ Bird(x) (2)

1To this respect, other formalisms such as Nonmonotonic Logic and Circumscription behave in a com-
pletely analogous way, and will therefore not be discussed.

2

Penguin(x) : ¬Flies(x)
¬Flies(x) (3)

There is a problem hidden in this set of expressions: in DL the addition of the assertion
Penguin(opus) to the set (1)÷(3) generates two different “sets of conclusions” (“exten-
sions”, in DL terminology): in one of them Opus flies while in the other Opus does not fly,
depending on whether we “first” consider rule (1) or rule (3), respectively; this is contrary
to intuitions, as our knowledge of the animal world makes us strongly prefer the conclusion
according to which Opus does not fly.

Hence DL seems, at first sight, inadequate to account for this kind of reasoning, as it
generates a situation of ambiguity in the representation of a state of affairs that is all but
ambiguous to us2. At first sight, it might seem possible to overcome this problem without
departing from DL; what one needs to do is explicitly consider exceptions in each default
rule they involve. Accordingly, a set of expressions that induces a correct behaviour of DL
for our example is the following:

Bird(x) : Flies(x) ∧ ¬Penguin(x)

Flies(x)
(4)

∀x Penguin(x) ⇒ Bird(x)

Penguin(x) : ¬Flies(x)
¬Flies(x)

At this point, given Penguin(opus), rule (4) does not allow one to conclude Flies(opus);
this leaves us with one extension only, an extension that contains only the conclusions we
would actually subscribe to.

However, this solution looks like an ad hoc patch rather than a real solution. In fact,
we would like the conclusion according to which Opus does not fly to already follow from
the set (1)÷(3), as these already represent the fact that penguins are exceptional birds as
far as the ability to fly is involved; consequently, the revision of rule (1) to yield (4) seems
a redundant re-assertion of this fact. Besides, one should note that, until the KB did not
contain any reference to penguins, rule (1) was more than adequate. It is the introduction
of (2) and (3) that has obliged us to transform rule (1) into (4); in the more general case,
the acquisition of new knowledge obliges us to revise previously acquired knowledge. It is
then evident that the realization of default reasoning by means of DL is undermined by
the impossibility to update KBs by simple piecemeal additions of new knowledge chunks.
In semantic terms this means the impossibility, unlike in traditional logical formalisms, to
characterize the denotational semantics of the modified KB in a compositional way, i.e. as
a combination of the denotations of the original KB and of the newly acquired knowledge.

2The generation of multiple extensions in DL may otherwise be due to an inherent ambiguity of the
state of affairs being represented. A very famous example of this is the so-called “Nixon diamond”.

3

But the need to explicitly represent exceptions brings about other, even more compelling
problems, having to do with the way in which, at the time of the introduction of a new item
of knowledge into the KB, it is to be determined which items are to be modified and which
are not. It turns out that this operation cannot be realized by simply performing a number
of matchings between the formula to be introduced and the other formulae in the KB; on
the contrary, it requires in general a DL theorem proving operation. This may clearly be
seen by taking a look at our example: the relation between the precondition of rule (1)
and the precondition of rule (3) has been determined by relying on the fact that Bird(x)
is derivable from Penguin(x) through (2); the transformation of rule (1) into rule (4) is
then realized in order to “inhibit” not rule (1) in itself, but the inferential chain that would
lead us to conclude Flies(x) from Penguin(x). In general, given a DL knowledge base,
it is not even determined a priori whether there exist one, several or no inferential chains
that lead to the undesired conclusion (in our case, one, several or no inferential chains
between Penguin(x) and Flies(x)); in case several such chains exist, each of them has to
be inhibited by means of a call to the DL theorem prover.

That the phase of KB construction requires repeated calls to the DL theorem prover
in order to maintain the consistency of the KB that is being built, is in itself rather
implausible; but the whole endeavour becomes absurd once we consider that first-order
DL is undecidable! This means that, unless the construction of the KB is realized in a
completely static (non incremental) way, the problem of knowledge acquisition in DL (and,
analogously, in the other non-monotonic formalisms mentioned previously) is an unsolvable
problem.

1.2 The EEP and MINEs

While the general non-monotonic formalisms mentioned above are affected by the EEP,
this is not true of the formalisms for Multiple Inheritance Networks with Exceptions (MI-
NEs), a popular, albeit less general, class of non-monotonic KR languages oriented to the
representation of taxonomic knowledge (see e.g. [1, 2, 5, 10, 11, 12, 21, 22]). Such languages
are less expressive than the more general non-monotonic formalisms mentioned above, in
the sense that they only allow for monadic predicate symbols, a limited use of negation and
no disjunction at all. For our purposes, it is also essential to observe that their monotonic
fragment is far less expressive than TLs as, having no term constructors in their syntactic
apparatus, they only allow the definition of taxonomies of simple predicate symbols.

MINEs do not suffer from the EEP because they implement an implicit handling of ex-
ceptions by exploiting the partial ordering given by the taxonomy: as a first approximation
we can say that, in case of “conflicts” (i.e. contradictory conclusions being supported), a
“default rule” a → b (“a’s are typically b’s”) is “preferred” to another default rule c 	→ b
(“c’s are typically not b’s”) if the precondition of the first precedes the precondition of
the second in the ordering. In other words, the implicit handling of exceptions obeys the
so-called specialization principle, according to which conflicts are to be solved by preferring
the properties belonging to a subclass over those belonging to a superclass.

In this paper we will show how we can effectively extend TLs in such a way that they

4

allow a brand of default reasoning that obeys the specialization principle, thus creating a
logic that combines the tools for describing taxonomic organizations of complex objects
which are typical of TLs, the ability to describe default information which is typical of
general nonmonotonic formalisms, and the incrementality in KB construction which is
typical of MINEs. Such an endeavour constitutes perhaps the first completely formal
realization of the notion of “frame” as originally proposed by Minsky [16], a notion that was
intended to describe a highly structured aggregate of knowledge allowing the description of
“prototypical” knowledge and resulting in KBs of taxonomic form. We will call our logic
T DL− (Terminological Default Logic—the “-” superscript distinguishes it from an earlier
version). The T DL− logic is (intentionally!) a minimal logic, in the sense that it includes
the minimal set of TL operators and of default rule types that are needed to highlight
the problems resulting from the interaction between default knowledge and terminological
knowledge. The extension to other TL operators and to other forms of default rules (such
as e.g. those involving numeric restrictions) is conceptually easy, but would not tell us
much with respect to the issue of the integration of default and terminological reasoning.

This paper is organized as follows. In Section 2 we formally introduce the syntax
and the semantics of the monotonic fragment of T DL−. In Section 3 we deal with the
non-monotonic part of T DL−, describing the notion of “extension” of a set of T DL−

formulae (i.e. the set of conclusions that may be derived from these formulae) and some
of its properties, including some relations with Default Logic. In Section 4 we discuss an
algorithm that computes an extension of a set of T DL− formulae (when it exists), and
discuss the issue of the computational complexity of T DL−. In Section 5 we argue that
T DL− effectively contains MINEs, by presenting a translation of MINEs into T DL− which
preserves semantics. Section 6 concludes.

2 The monotonic fragment of T DL−

The T DL− logic, like many other TLs, allows the specification of three fundamental types
of terms: frames, slots and individual constants. Frames (also known as concepts) are terms
denoting sets of individuals, and are, so to speak, the first-class citizens of T DL−. Slots
(also known as roles) are terms denoting binary relations between individuals; their func-
tion is to allow the specification of structural constituents of frames. Individual constants
denote individuals of the domain of discourse.

From a syntactic point of view, frames (resp. slots) are either unary (resp. binary)
predicate symbols or complex terms built by the application of frame-forming (resp. slot-
forming) operators to other frames and/or slots3. For example, the set of predicate symbols
might contain the unary predicate symbols Triangle, Polyhedron and Regular polyhedron,
denoting the sets of triangles, polyhedra and regular polyhedra, respectively, and the bi-
nary predicate symbol Side, denoting all those pairs of individuals 〈x, y〉 such that the

3The T DL− logic does not actually include slot-forming operators; however, we mention their existence
in order to indicate that our framework applies in a straightforward way to TLs that do include such
operators.

5

individual denoted by y is one of the sides of the individual denoted by x. This would
allow, in the logic we will introduce next, the definition of more complex frames such as:

• the frame (∀ Side.Triangle), denoting the set of those individuals whose sides are
all triangles (i.e. the set of tetrahedra);

• the frame (¬ Triangle), denoting the set of those individuals that are not triangles;

• the frame (Regular polyhedron � (∀ Side.Triangle)), denoting the set of those
regular polyhedra whose sides are all triangles (i.e. the set of regular tetrahedra);

and to subsequently define other frames by using those defined before.
In order to introduce the syntax of T DL− we will need three disjoint alphabets: an

alphabet I of individual constants (with metavariables i, i1, i2, . . .), an alphabet MP of
monadic predicate symbols (with metavariables M , M1, M2, . . .) and an alphabet DP
of dyadic predicate symbols (with metavariables D, D1, D2, . . .). The syntax of T DL−

frames is specified by the following definition.

Definition 1 A frame in T DL− is defined by the following BNF clauses:

F1, F2 → (F1 � F2) | M | (¬M) | (∀S.F1) | ⊥ | �
S → D

We will use metavariables F, F1, F2, . . . ranging on frames and metavariables S, S1, S2, . . .
ranging on slots.

Let us now switch to the formal semantics of T DL− frames. The meaning of the
linguistic constructs introduced above may be given in terms of the notion of extension
function.

Definition 2 An interpretation I over a nonempty set of individuals D is a function
that maps elements of MP into subsets of D, elements of DP into subsets of D × D,
and elements of I into elements of D such that I(i1) 	= I(i2) whenever i1 	= i2. We
will say that I is an extension function iff I(⊥) = ∅, I(�) = D, I(¬M) = D \ I(M),
I(F1 � F2) = I(F1) ∩ I(F2), I(∀S.F) = {x ∈ D | ∀y : 〈x, y〉 ∈ I(S) ⇒ y ∈ I(F)}.

Our language also allows the expression of assertions, stating that individual constants are
instances of frames and pairs of individual constants are instances of slots.

Definition 3 An assertion is an expression of the form F [i] or S[i1, i2], where i1, i2 are
elements of I, F is a frame and S is a slot. An extension function I over a nonempty
domain D satisfies an assertion F [i] iff I(i) ∈ I(F), and satisfies an assertion S[i1, i2] iff
〈I(i1), I(i2)〉 ∈ I(S).

6

We will use metavariables α, α1, α2, . . . ranging on assertions and metavariablesA,A1, A2, . . .
ranging on sets of assertions. For example, the following expressions are assertions.

(Polyhedron � (¬Regular polyhedron)) [poly034726]
Triangle [trian6253265]
Side [trian6253265, poly034726]

We next introduce a feature of the language that allows us to associate names to complex
frames, with the net effect that we will be able to define new frames using these names
instead of the corresponding complex frames.

Definition 4 A naming is an expression of the form M
.
= F or of the form M<·F , where

F is a frame and M an element of MP ; in either case, we will say that M is the name
of F . An extension function I over a nonempty domain D satisfies a naming M

.
= F iff

I(M) = I(F), and satisfies a naming M<·F iff I(M) ⊆ I(F).

We will use metavariables η, η1, η2, . . . ranging on namings and metavariables N,N1, N2, . . .
ranging on sets of namings. For example, the following expressions are namings.

Irregular polyhedron
.
= (Polyhedron � (¬Regular polyhedron))

Regular tetrahedron
.
= (Regular polyhedron � (∀Side.Triangle))

Regular polygon <· Polygon

Namings of type M
.
= F define necessary and sufficient conditions for an individual to

be in the denotation of M , while the conditions defined by namings of type M<·F are
necessary but not sufficient.

Hence, in a TL knowledge is represented by either namings or assertions. The notion
of a Terminological Knowledge Base (or T-set, for short) can then be specified as follows.

Definition 5 A T-set is a pair Ω = 〈A,N〉, where A is a set of assertions and N is a set
of namings.

We will use metavariables Ω,Ω1,Ω2, . . . and Ψ,Ψ1,Ψ2, . . . ranging on T-sets4. The notion
of satisfiability of a T-set Ω, and that of a model of a T-set Ω, may be defined as follows.

Definition 6 Let Ω = 〈A,N〉 be a T-set, and I an extension function over a nonempty
domain D. I is a model of Ω iff I satisfies all the assertions in A and all the namings in
N . A T-set Ω is satisfiable iff it has a model (otherwise, we say Ω is unsatisfiable).

We are now ready to introduce the most important notions of our TL, those of subsumption
and support, two notions that are conceptually analogous to the notion of “logical conse-
quence” in standard logics. Intuitively, given two monadic predicate symbols M1 and M2

and a T-set Ω, we say that M1 subsumes M2 in Ω when Ω allows us to draw the conclusion
that M1 is “more general” than M2. We say that a T-set Ω supports an assertion α when
Ω allows us to draw the conclusion that α.

4For brevity of notation, in the rest of the paper we will sometimes consider a T-set Ω as a set of
assertions and namings, rather than as an ordered pair 〈A, N〉 of sets; we will thus write Ω ∪ α as short
for 〈A ∪ {α}, N〉, and Ω ∪ η a short for 〈A, N ∪ {η}〉.

7

Definition 7 Let Ω be a satisfiable T-set, and let M1, M2 be two elements of MP . We
say that M1 is subsumed by M2 in Ω (written M1 �Ω M2) iff for every model I of Ω it is
true that I(M1) ⊆ I(M2). We say that Ω supports an assertion α (written Ω |= α) iff α
is satisfied by all models of Ω.

Finally, in order to better understand the nonmonotonic extension of our logic, we need to
introduce the notion of the transitive closure of a T-set Ω.

Definition 8 Let Ω = 〈A,N〉 be a satisfiable T-set. The transitive closure of Ω, written
TC(Ω), is the set Ω′ = 〈A ∪ {α | Ω |= α}, N〉.

It is easy to show that TC is monotonic (i.e. if Ω ⊆ Ω′, then TC(Ω) ⊆ TC(Ω′)), and that
TC is in fact a closure (i.e. TC(Ω) = TC(TC(Ω))).

3 Default reasoning in T DL−

Up to now we have described the monotonic fragment of T DL−. Let us now discuss the
addition of non-monotonic features.

Definition 9 A default is an expression of the form M �→ S.F , where M is an element
of MP , S is a slot and F is a frame.

We will use metavariables δ, δ1, δ2, . . . ranging on defaults and metavariables ∆,∆1,∆2, . . .
ranging on sets of defaults.

Informally, M �→ S.F means: “if i is an M such that i′ is an S-filler of i and the
assumption that i′ is an F does not lead to a contradiction, assume it”. For example, the
default IU �→ FM.I means: “if i is an Italian university, i′ is one of its faculty members,
and the assumption that i′ is Italian does not lead to a contradiction (i.e. we do not know
that he is not an Italian), assume it”.

The particular syntax we have chosen for defaults is due to the following reasons:

1. an analysis of the literature concerning the interaction between frames and default
knowledge, ranging from the more informal and “impressionistic” proposals (such as
those of e.g. [16, 19]) to more formally motivated ones [4, 17], reveals that default
rules with consequents in a “slot-filler” form have always been identified as the most
natural way in which to convey default frame-like knowledge5;

2. this type of default rules is sufficient to highlight the problems resulting from the
interaction between default knowledge and terminological knowledge; on the other
hand, the extension to other forms of defaults (such as e.g. those involving numeric
restrictions) is conceptually easy, but does not teach us much with respect to the
issue of the integration between default and terminological reasoning.

5Note that the availability of the “naming” mechanism is such that it is “virtually” possible to express
default rules of type F1 �→ S.F2; this is accomplished by first defining m to be equivalent to F1 by means
of a naming M = F1, and then using the default M �→ S.F2.

8

We may now define what we mean by a T DL− theory.

Definition 10 A T DL− theory is a pair T = 〈Ψ,∆〉, where Ψ is a satisfiable finite T-set,
and ∆ is a finite set of defaults.

We are now able to define what the extensions of a T DL− theory are. Informally, by the
term “extension” we mean the set of assertions and namings that we can reasonably believe
to be true as a consequence of the theory. For instance, if we knew that the University of
Bellosguardo is an Italian university, that Professor Dolcevita is one of its faculty members,
and that the faculty members of Italian universities are typically Italian, we would like to
conclude (formally: to be included in the corresponding extension) that Dolcevita is an
Italian.

Our definition of “extension” is similar to the one given by Reiter for Default Logic,
i.e. an extension is a fixpoint of a consequence relation. However, unlike in Default Logic,
“wired” in our definition is the specialization principle: in the presence of conflicting de-
faults, the one with the more specific premise will be preferred. For instance, suppose that,
besides the fact that the faculty members of Italian universities are typically Italian, we
also knew that the faculty members of South Tyrolean universities are typically not Italian;
knowing that South Tyrolean universities are Italian universities6, that the University of
Pflunders is a South Tyrolean university, and that Professor Katzenjammer is one of its
faculty members, we will be able to derive, as desired, that Katzenjammer is not Italian. It
is crucial to note that such a conclusion could not be drawn if we simply confined ourselves
to employing the terminological subset of Default Logic (or, for that matter, of any general
non-monotonic formalism): the specialization principle embodied in Definition 11 plays a
critical role in the inferential behaviour displayed by our formalism.

Definition 11 Let T = 〈Ψ,∆〉 be a T DL− theory. Let Θ be an operator such that, for
any satisfiable T-set Ω, Θ(Ω, T) is the smallest satisfiable T-set satisfying the following
closure conditions:

1. Ψ ⊆ Θ(Ω, T);

2. Θ(Ω, T) = TC(Θ(Ω, T));

3. for all defaults M1 �→ S.F1 ∈ ∆, for all the assertions M1[i1] ∈ Θ(Ω, T) such that
S[i1, i2] ∈ Θ(Ω, T), it happens that F1[i2] ∈ Θ(Ω, T) unless there exists a unary
predicate symbol M2 such that

(a) M2[i1] ∈ Ω, M2 �Ω M1;

(b) M2 �→ S.F2 ∈ ∆;

(c) Ω ∪ {(F1 � F2)[i2]} is unsatisfiable.

6South Tyrol is, in fact, a German-speaking region of Italy.

9

A satisfiable T-set E is an extension of the T DL− theory T iff E = Θ(E , T), i.e. iff E is a
fixpoint of the operator Θ.

Conditions (1.) and (2.) are obviously to be satisfied if we want “extensions” to be “sets
of conclusions” according to the sense generally accepted in KR. Condition (3.) embodies
the specialization principle: if a default M1 �→ S.F1 is “applicable” and (3a.)÷(3c.) there
is no evidence contradicting the conclusion of the default (i.e. i1 does not belong to any
subclass of M1 which is the premise of a default whose conclusion would be inconsistent
with F1), then the default may be safely applied and the conclusion drawn.

We now consider an example to show how Definition 11 works, and, in particular, how
T DL− employs an implicit handling of exceptions.

Example 1 Let T = 〈Ψ,∆〉 be the T DL− theory that formalizes our “Professors” exam-
ple, with Ψ = 〈{IU[b], FM[b, d], STU[p], FM[p, k]}, {STU<·IU}〉 and ∆ = {IU �→ FM.I, STU �→
FM.(¬I)}. Let E = TC(Ψ ∪ {(¬I)[k], I[d]}). It is not hard to show that Θ(E , T) = E and
that E satisfies the conditions of Definition 11; therefore E is an extension of T .

It is important to observe that the same example may be formalized (for example) in
Default Logic only at the price of a cumbersome operation of “exceptions explicitation”, i.e.
by imposing the following defaults and set of axioms.

IU(x) ∧ FM(x, y) : I(y) ∧ ¬STU(x)

I(y)
(5)

STU(x) ∧ FM(x, y) : ¬I(y)
¬I(y) (6)

∀x STU(x) ⇒ IU(x) (7)

IU(b) ∧ FM(b, d) ∧ STU(p) ∧ FM(p, k) (8)

As rule (5) shows, in Default Logic we must make explicit the fact that a South Tyrolean
university is an exceptional Italian university with respect to the citizenship of its faculty
members; in T DL− this is not necessary, and this, as hinted in Section 1, allows KB
update to be completely additive.

We can use Example 1 to show that T DL− is in fact non-monotonic.

Proposition 1 T DL− is non-monotonic, i.e. there exists a T DL− theory T = 〈Ψ,∆〉,
an extension E of T , a T-set Ψ′ and a set of defaults ∆′, such that for no extension E ′ of
T ′ = 〈Ψ ∪ Ψ′,∆ ∪ ∆′〉 it is true that E ⊆ E ′.

Proof. Let T be the T DL− theory of Example 1 and E its (unique) extension. Let
Ψ′ ={STU[b]} and ∆′ = ∅. It is easy to see that the only extension of T ′= 〈Ψ∪Ψ′,∆∪∆′〉
is E ′ = TC(Ψ ∪ Ψ′ ∪ {(¬I)[k], (¬I)[d]}). Therefore E 	⊆ E ′.

10

We go on to discuss some properties of the notion of extension as formalized in Definition 11.
The following proposition parallels the one given by Reiter for Default Logic, stating that
extensions are “maximal” sets.

Proposition 2 Let T = 〈Ψ,∆〉 be a T DL− theory, and let E1 and E2 be extensions of T .
If E1 ⊆ E2, then E1 = E2.

In some cases, there exists an easy one-to-one relation between our notion of extension and
that of Default Logic.

Definition 12 Let T = 〈Ψ,∆〉 be a T DL− theory. Let the set of conflicts CT of T be the
set

CT =
⋃

S{〈M1,M2〉 | M1 �→ S.F1 ∈ ∆,M2 �→ S.F2 ∈ ∆,
(F1 � F2) is unsatisfiable,
for some i1, i2 S[i1, i2] ∈ Ψ,
M1 �Ψ M2}

We will say that T is conflict-free iff CT = ∅.

Conflict-free T DL− theories are interesting because they can be translated into normal
default theories of Default Logic:

Definition 13 Let T = 〈Ψ,∆〉 be a conflict-free T DL− theory. Its translation into Default
Logic is the normal default theory TDL = 〈ΨDL,∆DL〉, where ΨDL is the obvious translation
of namings and assertions into first order logic and ∆DL is obtained by translating defaults
M �→ S.F ∈ ∆ into normal defaults

M(x) ∧ S(x, y) : F ′(x)

F ′(x)
(9)

where F ′ is the obvious translation of the frame F into first order logic.

The following proposition shows the relation between conflict-free T DL− theories and
Default Logic theories.

Proposition 3 Let T = 〈Ψ,∆〉 be a conflict-free T DL− theory and TDL its translation
into Default Logic. Then E is an extension of T iff Tcl(EDL) is an extension of TDL,
where Tcl is the transitive closure function over sets of first order formulas and EDL is the
translation of E into first order logic.

Since every normal Default Logic theory has an extension, from Proposition 3 it follows
immediately that:

Proposition 4 Every conflict-free T DL− theory has an extension.

11

Note that it is not easy to give a translation for generic T DL− theories into Default
Logic, since we would need to explicit the exceptions, as rule (5) shows. Furthermore, it
is not easy to discover the exceptions. Consider in fact the T-set 〈{M1[i], M2[i], S1[i, i],
S2[i, i], M2<·M1}, {M1 �→ S1.(∀S2.(¬M3)), M2 �→ S1.M3}〉. The default M2 �→ S1.M3

is exceptional to the default M1 �→ S1.(∀S2.(¬M3)) in a non-obvious way. Therefore, it
seems that in order to give a translation into Default Logic we need to compute an entire
extension, and only after this we may be able to discover the exceptions.

Similarly to what happens in most non-monotonic formalisms, some T DL− theories
have more than one extension; in particular, the number of extensions can be exponential
with respect to the size of the T DL− theory, as the following proposition shows.

Proposition 5 There exists a conflict-free T DL− theory T such that the number of ex-
tensions of T is exponential with respect to the size of T .

Proof. This proposition is proven by considering the T DL− theory T = 〈Ψ,∆〉 (which we
will call multiple Nixon Diamond).

Ψ = 〈{M ′
k[ij] | 1 ≤ j ≤ n, 1 ≤ k ≤ 2} ∪ {Sk[ij, ij] | 1 ≤ j, k ≤ n}, ∅〉

∆ = {M ′
1 �→ Sj.Mj | 1 ≤ j ≤ n} ∪ {M ′

2 �→ Sj.(¬Mj) | 1 ≤ j ≤ n}

T contains n2 embedded Nixon Diamonds. Since for every Nixon Diamond we have two
possibilities (i.e. whether the corresponding S’s of the i’s are M ’s or not), T has 2n

2

extensions. Therefore, considering that |T | = |Ψ| + |∆| is O(n), the number of extensions
of T is exponential with respect to the size of T .

Although the number of extensions can be very large in the worst case, as the multiple
Nixon Diamond example shows, in actual knowledge representation applications this num-
ber need not be computationally discouraging. Furthermore, we might observe that this
exponential number of extensions is not a characteristic of T DL− itself, but is rather a
common characteristic of almost all non-monotonic formalisms. The multiple Nixon Dia-
mond can be easily formulated in these formalisms, and gives rise to the same phenomenon;
for example, the set of formulae and rules of Default Logic:

Aj(ai) for 1 ≤ i ≤ n and 1 ≤ j ≤ 2

Sj(ai, ai) for 1 ≤ i, j ≤ n

A1(x):Pi(x)
Pi(x)

for 1 ≤ i ≤ n

A2(x):¬Pi(x)
¬Pi(x)

for 1 ≤ i ≤ n

gives rise to the same number of extensions. Unfortunately, it is also true that:

12

Proposition 6 There exists a T DL− theory with no extensions.

This is proven by showing that the sample theory T = 〈Ψ,∆〉, with Ψ = 〈{M1[i], S[i, i]},
{M1

.
= (F1 � F2), M2

.
= (F1 � (F2 � F3))}〉 and ∆ = {M1 �→ S.F3,M2 �→ S.⊥}, has no

extensions. Our studies show that it would not be easy to find sublanguages of T DL− such
that the existence of at least one extension is always guaranteed: in fact, removing from
T DL− the causes that are responsible for the non-existence of an extension for theory T
would dramatically curtail the expressive power of the language itself.

4 Computing an extension of a T DL− theory

In this section we will discuss the properties of the EXT (nondeterministic) algorithm that
computes (when it exists) an extension of a T DL− theory.

4.1 Correctness and completeness issues

The EXT algorithm is heavily dependent on the decision of the monotonic fragment of
T DL−, i.e. of the �Ω and |= relations. It is well-known (see [9]) that in most TLs (and the
monotonic fragment of T DL− is no exception), deciding �Ω can be reduced to the decision
of |=, and that the decision of |= can in turn be reduced to deciding if Ω is unsatisfiable.

There exists a well-known technique, based on constraint propagation (see [9]), for de-
ciding unsatisfiability in TLs. By using this technique, it may be shown that it is decidable
whether a finite and “acyclic” T-set (i.e. a T-set that contains no namings in which the
definiendum is defined, either directly or indirectly, in terms of itself) is unsatisfiable. By
considering acyclic T DL− theories only, we can profitably exploit this result.

Definition 14 Let T = 〈Ψ,∆〉 be a T DL− theory. Then T is acyclic iff Φ = {η | η is a
naming in Ψ} ∪ {M<·F | M �→ S.F ∈ ∆} is acyclic.

Definition 15 Let T = 〈Ψ,∆〉 be an acyclic T DL− theory and let i1, i2 be individual
constants. An instantiated default of T is a triple γ = 〈i1, i2, δ〉 with δ = M �→ S.F and
δ ∈ ∆. We also define the function Consequent to be such that Consequent(γ) = F [i2].

We will use metavariables γ, γ1, γ2, . . . ranging on instantiated defaults and metavariables
Γ,Γ1,Γ2, . . . ranging on sets of instantiated defaults.

Definition 16 Let T = 〈Ψ,∆〉 be an acyclic T DL− theory, Ω a set of namings and as-
sertions, and γ = 〈i1, i2,M1 �→ S.F1〉 an instantiated default of T . Then γ is an applicable
default of T in Ω iff

1. Ω |= M1[i1];

2. S[i1, i2] ∈ Ψ;

13

Let T = 〈Ψ,∆〉 be an acyclic T DL− theory;
begin

Ω0 ← Ψ;n ← 0;
repeat

n ← n + 1;ω0 ← Ψ; Γ0 ← ∅; i ← 0;
repeat

Ai
T ← (AT (ωi) ∩ AT (Ωn−1)) \ Γi;

if not empty(Ai
T)

then choose γ from Ai
T ;

Γi+1 ← Γi ∪ {γ};
ωi+1 ← ωi ∪ {Consequent(γ)};

endif
i ← i + 1;

until empty(Ai−1
T);

Ωn ← ωi−1;
until Ωn = Ωn−1;

end

Figure 1: The EXT algorithm computes an extension of a T DL− theory.

3. for all M2 such that M2 �Ω M1, M1 	�Ω and 〈i1, i2,M2 �→ S.F2〉 is an instantiated
default of T , with Ω |= M2[i1], it is true that Ω ∪ {(F1 � F2)[i2]} is satisfiable.

We will write AT (Ω) as short for the set of applicable defaults of T in Ω.
Given an acyclic T DL− theory T = 〈Ψ,∆〉 and a satisfiable, finite and acyclic set of

namings and assertions Ω, ∆ and Ψ are finite sets; hence, the following proposition holds.

Proposition 7 Let T = 〈Ψ,∆〉 be an acyclic T DL− theory and Ω a finite and acyclic
set of namings and assertions. Then the set of instantiated defaults of T and AT (Ω) are
recursive sets.

Let us now discuss the EXT algorithm for computing extensions. The extension is built
by a series of subsequent approximations. Each approximation Ωn is built from the first
component Ψ of an acyclic T DL− theory T by using applicable defaults, one at time. At
each step, the instantiated default to be applied is chosen from those which have not yet
been considered and which were applicable in the previous approximation and still are
in the current state of the current approximation. When no more instantiated defaults
are applicable, the algorithm continues with the next approximation. If two successive
approximations are the same set, the algorithm is said to converge.

The choice of which instantiated default to apply at each step of the inner loop in-
troduces in general a degree of nondeterminism. Generality requires this nondeterminism,
since T DL− theories need not have unique extensions (see Proposition 5). The algorithm
is detailed in Figure 1.

To see how this algorithm works, let us consider the following example.

14

Example 2 Let T = 〈Ψ,∆〉 be a T DL− theory, with

Ψ = {M1[i], F1[i], S[i, i],M2
.
= (F1 � F2)}

∆ = {M1 �→ S.F2,M2 �→ S.F3}

Let γ1 = 〈i, i,M1 �→ S.F2〉 and γ2 = 〈i, i,M2 �→ S.F3〉 be instantiated defaults of T . The
application of the EXT algorithm to T would yield the following sequence of steps:

1. Ω0 = ω0 = Ψ,Γ0 = ∅, AT (ω0) = AT (Ω0) = A0
T = {γ1};

2. ω1 = ω0 ∪ {Consequent(γ1)},Γ1 = {γ1};

3. AT (ω1) = {γ1, γ2}, A1
T = ∅;

4. Ω1 = ω1;

5. ω0 = Ψ,Γ0 = ∅, AT (ω0) = A0
T = {γ1}, AT (Ω1) = {γ1, γ2};

6. ω1 = ω0 ∪ {Consequent(γ1)},Γ1 = {γ1};

7. AT (ω1) = {γ1, γ2}, A1
T = {γ2};

8. ω2 = ω1 ∪ {Consequent(γ2)},Γ1 = {γ1, γ2};

9. AT (ω2) = {γ1, γ2}, A2
T = ∅;

10. Ω2 = ω2;

... a sequence similar to (5)-(10)

16. Ω3 = Ω2 = Ψ ∪ {F2[i], F3[i]}.

The following correctness and completeness theorem states that all and only the extensions
of a T DL− theory T can be computed by the algorithm. Before proceeding to its proof,
we need to state

Lemma 1 Let T = 〈Ψ,∆〉 be a T DL− theory with extension E, and let Γ be a set of in-
stantiated defaults of T . Let us define Consequent(Γ) to be equal to

⋃
γ∈Γ{Consequent(γ)}.

Then E = TC(Ψ ∪ Consequent(AT (E))).

which can be shown by proceeding as for Reiter’s Theorem 2.5, described in [18]. We can
now state and prove the main theorem.

Theorem 1 (Correctness and completeness) Let T = 〈Ψ,∆〉 be an acyclic T DL−

theory. E is an extension of T iff the application of the EXT algorithm to T has a con-
verging computation such that Ωn = Ωn−1 and TC(Ωn) = E.

Proof.
(“if”) Consider the last current state ωni

. It follows that

15

1. ωni
= Ωn = Ωn−1 and TC(Ωn) = E;

2. Ani
T = ∅ = (AT (ωni

) ∩ AT (Ωn−1)) \ Γni
;

3. E = TC(Ψ ∪ Consequent(AT (E))).

From Ani
T = ∅ it follows that AT (E) ⊆ Γni

. We will show that E is an extension of T by
proving that Θ(E , T) = E. By construction and from the definition of TC it follows that
point (1.) and point (2.) of Definition 11 hold for E.

Let us first prove that E ⊆ Θ(E , T). Suppose instead that E 	⊆ Θ(E , T). Therefore,
by point (3.), there exists γ ∈ AT (E) such that Consequent(γ) ∈ E and Consequent(γ) 	∈
Θ(E , T). From Definition 11 it follows that if γ ∈ AT (E), then Consequent(γ) ∈ Θ(E , T);
a contradiction. Let us now prove that Θ(E , T)) ⊆ E. Suppose instead that Θ(E , T)) 	⊆ E.
Therefore, there exists γ ∈ AT (E) such that Consequent(γ) ∈ Θ(E , T), but Consequent(γ) 	∈
E; a contradiction, since point (3.) holds.

(“only if”) Let E be an extension of T . By Lemma 1, it is true that E = TC(Ψ ∪
Consequent(AT (E))). Since, by Definition 11, Θ(E , T)) = E is minimal, there exists
a sequence Ω0, . . . ,Ωn−1, such that Ω0 = Ψ, and, for 1 ≤ i ≤ n − 1, Ωi−1 ⊆ Ωi ⊆
Ψ ∪ Consequent(AT (E)), and if Consequent(γ) ∈ Ai, then γ ∈ AT (Ωi−1). Now it easy to
see that we can choose adequately γ ∈ AT (E) such that the sequence Ω0, . . . ,Ωn−1,Ωn, with
Ωn−1 = Ωn, represents a converging series of approximations of the EXT algorithm.

The following is an example of a non-converging computation.

Example 3 Consider the acyclic T DL− theory T of Proposition 6. It turns out that each
approximation Ωi is such that Ω2k = Ψ and Ω2k+1 = Ψ∪{F3[i]}, for each k ≥ 0. Therefore
Ω2k 	= Ω2k+1 for each k ≥ 0, and the computation never stops.

The next corollary follows from Theorem 1.

Corollary 1 The set of extensions of an acyclic T DL− theory is recursively enumerable.

4.2 Complexity issues

Finally, we discuss some issues related to the computational complexity of T DL−. In
order to do so, first of all we will restrict our attention to TLs for which deciding if an
instantiated default is applicable is computable in polynomial time; for all the other TLs,
the problem of computing an extension is obviously intractable. For our purposes, let T =
〈Ψ,∆〉 be a T DL− theory and F a frame. F is a simple frame wrt Ψ iff F is a conjunction
of unary predicate symbols or negated unary predicate symbols which do not appear as
names in Ψ. We will say that T is a restricted T DL− theory iff

1. Ψ contains only assertions of the form F [i], where F is a simple frame wrt Ψ;

16

2. Ψ contains only namings of the form M
.
= F , where F is a unary predicate symbol

(or the negation of a unary predicate symbol) which is not a name in Ψ, or axioms
of the form M<·F , where M is not a name in Ψ;

3. ∆ is a set of defaults of the form M �→ S.F , where F is a simple frame wrt Ψ.

It may be shown that, in the case of restricted T DL− theories, deciding if an instantiated
default is applicable is computable in polynomial time.

Unfortunately, notwithstanding the restrictions on T DL− theories, the problem of com-
puting an extension is a computationally hard problem.

Theorem 2 Finding an extension of a restricted T DL− theory (or determining that it has
no extension) is NP-Hard.

Proof. The proof of this theorem depends on the following reduction of the NP-Complete
3SAT problem to the problem of determining an extension. For a propositional formula
σ in 3CNF consider the restricted T DL− theory Tσ obtained exactly from the expressions
which appear in the following rules.

1. for every symbol P which occurs in σ, the following expressions appear in Tσ, where
A is a new unary predicate symbol and i an individual constant: A �→ P , A �→ (¬P),
A[i];

2. for each clause X∨Y ∨Z of σ, the following expressions appear in Tσ, where A, B, F
and Fxyz are new unary predicate symbols: A

.
= (¬X) (also, we will substitute P for

(¬(¬P))), A �→ (Fxyz � ((¬Y) � (¬Z))), Fxyz �→ (F � (¬B)), F<·Fxyz and F �→ B.

We will show that σ is satisfiable iff Tσ has an extension. As a consequence, the problem
of determining if a restricted T DL− theory has an extension is also NP-Hard.

(“if”) Suppose that Tσ has an extension E. By rule (1.) it follows that every unary
predicate symbol in σ or its negation appears in E. Furthermore, it must not be the case
that F [i] ∈ E because otherwise rules of type (2.) would have the consequence that B[i] ∈ E
and thus no expression introduced by rules of type (2.) could create an assertion of type
F [i]. Therefore, no set of expressions introduced by rules of type (2.), corresponding to
clauses in σ, can all be applicable in E. Therefore, every clause of σ is satisfied by a model
which “agrees” with E.

(“only if”) Suppose M is a model of σ. Let Ω be the set of assertions X[i] such
that M is a model of the literal X, together with A[i]. Then E = TC(Ω) is an extension
of Tσ. Note that E is dependent on expressions introduced by rule (1.) and that none of
expressions introduced by rule (2.) apply.

5 T DL− and its relationships with MINEs

In this section we will discuss the relationships between T DL− and the formalisms for
Multiple Inheritance Networks with Exceptions (MINE). In particular, we will show that

17

there exists a translation Ξ of a MINE Υ into a T DL− theory Ξ(Υ) such that a formula
x ❀ y of the MINE formalism belongs to a conclusion set S of Υ if and only if Ξ(Υ) has
an extension E to which Ξ(x ❀ y) belongs.

5.1 Our MINE Language

Our language and inferential system for MINEs is a variation of one proposed by Horty [10],
from which it differs only slightly in its definition of “inheritable path” (Definition 22, Case
1 - to be found later on in this section).

Definition 17 (MINE) Let C be a finite set of nodes, and let A be a finite set of positive
edges x→ y and negative edges x 	→ y, where x ∈ C and y ∈ C. Let “❀” be the union of
the “→” and “	→” relations, i.e. x ❀ y iff either x→ y or x 	→ y. A Multiple Inheritance
Network with Exceptions (MINE) is a pair Υ = 〈C,A〉 such that “❀” is a strict partial
order.

By ΥC and ΥA we will refer to the components C and A of Υ, respectively.
Given a MINE Υ, we want to characterize the set of conclusions that may be derived

from Υ. However, in order to do so we have to introduce the notion of “path”.

Definition 18 (Path) A chain in a MINE Υ is a sequence π = x1 ❀ . . . ❀ xn of edges in
ΥA, for n ≥ 2. A positive path in a MINE Υ is a chain π = x1 → x2 → . . .→ xn−1 → xn
(n ≥ 2) in Υ consisting of positive edges only. A negative path in a MINE Υ is a chain
π = x1 → x2 → . . . → xn−1 	→ xn (n ≥ 2) in Υ consisting of a (possibly empty) sequence
of positive edges followed by one negative edge. The node x1 is called initial node of π, and
will also be denoted by B(π); the node xn is called terminal node of π, and will also be
denoted by E(π). The polarity of an edge is given by its positive or negative sign, and the
polarity of a path is given by the polarity of its last edge. The conclusion derived from the
path is the edge formed by the initial node of a path, its terminal node and its polarity.

We will use metavariables π, π1, π2, . . . ranging on paths and metavariables Π,Π1,Π2, . . .
ranging on sets of paths.

Intuitively, paths are those chains from which it is somehow possible to draw conclu-
sions. For example, in the MINE KB = 〈{opus, penguin, bird, flies, swims}, {opus →
penguin, penguin→ bird, bird→ flies, penguin 	→ flies, f lies 	→ swims}〉, the chain

opus→ penguin→ bird→ flies (10)

is a positive path, from which we can draw the conclusion opus → flies (“As there is no
information to the contrary, we assume that Opus flies”), while from the negative path

opus→ penguin 	→ flies (11)

18

we may conclude opus 	→ flies (“As there is no information to the contrary, we assume
that Opus does not fly”). The chain

opus→ penguin 	→ flies 	→ swims (12)

is not a path; in fact, no reasonable conclusion may be drawn from it with respect to the
fact whether opus can swim or not. Similar empirical considerations suggest to define the
notion of “conclusion” with respect to paths only, and not with respect to chains in general.

As we have seen, MINEs such as KB have paths from which contradictory conclusions
may be derived; unfortunately, this generates situations of ambiguity in the representation
of states of affairs all but ambiguous to us. In order to eliminate these situations, what
we will do is to define which are, given a MINE Υ, the paths from which we may derive
“reliable” conclusions, and that must consequently be given priority over others. For
example, in a MINE such asKB1 this will allow us to give path (11) priority over path (10),
hence to inhibit the undesired conclusion according to which opus flies. In our terminology,
paths from which we may derive “reliable” conclusions will be called inheritable paths. To
be inheritable, a path must satisfy a number of conditions; the first of them is that the
path must be constructible.

Definition 19 (Constructibility) A context is a pair 〈Υ,Π〉, where Υ is a MINE and
Π is a set of paths. A positive path π1 = x → π′ → u → y is constructible in a context
〈Υ,Π〉 iff

1. x→ π′ → u ∈ Π, for some (possibly empty) positive path π′;

2. u→ y ∈ ΥA.

A negative path π2 = x→ π′ → u 	→ y is constructible in a context 〈Υ,Π〉 iff

1. x→ π′ → u ∈ Π, for some (possibly empty) positive path π′;

2. u 	→ y ∈ ΥA.

However, a constructible path will not be classified as inheritable if the conclusion that
could be drawn from it conflicts with the conclusion that could be drawn from another
constructible path. This is made formal by the following definition.

Definition 20 (Conflicting paths) For any (possibly empty) positive paths π′ and π′′,
the paths π1 = x → π′ → y and π2 = x → π′′ 	→ y are said to conflict with each other. A
path π1 is conflicting in 〈Υ,Π〉 iff Π contains a path π2 that conflicts with π1.

The second restriction governing inheritability is that a constructible path cannot be clas-
sified as inheritable in a context in which it is “preempted”. This restriction is supposed to
reflect the idea that an ideal reasoner should not classify an argument as persuasive whe-
never his context of reasoning provides him with a better reason for accepting a conflicting
argument.

19

Definition 21 (Preemption) A positive path π = x → π′ → u → y is preempted in a
context 〈Υ,Π〉 iff there is a node v ∈ ΥC such that

1. x→ π′′ → v → π′′′ → u ∈ Π;

2. v 	→ y ∈ ΥA.

A negative path π = x→ π′ → u 	→ y is preempted in a context 〈Υ,Π〉 iff there is a node
v ∈ ΥC such that

1. x→ π′′ → v → π′′′ → u ∈ Π;

2. v → y ∈ ΥA.

At this point, we can assemble our three preliminary concepts into a formal definition of
inheritability.

Definition 22 (Inheritability) A path π is inheritable in a context 〈Υ,Π〉 (written 〈Υ,Π〉 (
π) iff

Case 1 : π ∈ ΥA. Then 〈Υ,Π〉 (π iff π conflicts with no path in Π consisting of a single
edge in ΥA.

Case 2 : π is a compound path. Then 〈Υ,Π〉 (π iff

1. π is constructible in 〈Υ,Π〉; and

2. π is not conflicting in 〈Υ,Π〉; and

3. π is not preempted in 〈Υ,Π〉.

Finally,

Definition 23 (Extension) The set of paths Π is an extension of the MINE Υ iff Π =
{π | 〈Υ,Π〉 (π}. A conclusion set S of Υ is the set of conclusions of paths of an extension
of Υ.

A set of conclusions that may be drawn from a MINE Υ is a set that represents the
knowledge “implicitly” present in the KB.

As mentioned earlier on in this section, our inferential system for MINEs differs from
Horty’s [10] only for Definition 22, Case 1. In fact, in Horty’s case, Case 1 of Definition 22
would read:

Case 1 : π ∈ ΥA. Then 〈Υ,Π〉 (π

i.e. elements of ΥA are always inheritable, even if they are conflicting in ΥA. We have
modified his definition in order to obtain extensions without conflicting paths; according
to Horty’s definitions, instead, extensions can include conflicts at the single edge level.
Note that in [20] we have introduced the same condition in the definition of “derivable
path” for skeptical MINEs (Definition 4, Case 1 of [20]).

20

5.2 Translation of MINEs into T DL− theories

We are now able to give a translation of MINEs into T DL−. Let Υ be a MINE, and
let P (Υ) be the set of all paths of Υ. For every path πi in P (Υ), let us introduce two
new monadic predicate symbols, M+

i and M−
i , into MP . For every node x in Υ, let us

introduce a new monadic predicate symbol Mx and an individual constant ix.
Informally, what we want to do is to make My[ix] (resp. ¬My[ix]) hold in an extension

E of the translation Ξ(Υ) of Υ whenever x → y (resp. x 	→ y) holds in the corresponding
extension of Υ.

Definition 24 Let πi and πj be two positive paths of P (Υ); πj is an alternative of πi in
P (Υ) (and vice versa) iff

1. B(πi) = B(πj) and E(πi) = E(πj);

2. there exists an edge in πj which does not appear in πi, or vice versa.

Informally, πi is an alternative path of πj whenever πi and πj are not the same path, and
have the same initial and terminal nodes.

Definition 25 Let π = x1 → . . .→ xn (n ≥ 3) be a path in P (Υ). Then π′ = x1 → . . .→
xj (2 ≤ j ≤ n) is a subpath of π in P (Υ). Let us also define π� as the T DL− frame
(Mx1 � . . . �Mxn).

Definition 26 (Translation) Let Υ be a MINE. The translation Ξ(Υ) of Υ into T DL−

is defined as Ξ(Υ) = 〈Ψ,∆〉, where

Ψ = {Mx[ix] | x→ y ∈ ΥA or x 	→ y ∈ ΥA} ∪ (13)

{Isa(ix, ix) | x→ y ∈ ΥA or x 	→ y ∈ ΥA} ∪ (14)

{Mx<·M+
j | πj = x→ y ∈ P (Υ)} ∪ (15)

{M+
i <·M+

j | πj = πi → xn ∈ P (Υ)} ∪ (16)

{M−
j <·M+

i | πj is an alternative of πi in P (Υ)} (17)

∆ = {Mx �→ Isa.My | x→ y ∈ ΥA} ∪ (18)

{Mx �→ Isa.¬My | x 	→ y ∈ ΥA} ∪ (19)

{M+
i �→ Isa.π�i �Mn | πj = πi → xn ∈ P (Υ)} ∪ (20)

{M+
i �→ Isa.π�i � ¬Mn | πj = πi 	→ xn ∈ P (Υ)} ∪ (21)

{M+
i �→ Isa.π�i �M−

i | πi is an alternative of πj in P (Υ)} ∪ (22)

{M−
i �→ Isa.π�j �Mn | πk = πj → xn ∈ P (Υ) and (23)

πj is a subpath of πi} ∪
{M−

i �→ Isa.π�j � ¬Mn | πk = πj 	→ xn ∈ P (Υ) and (24)

πj is a subpath of πi}

21

Instead of explaining every clause of the translation Ξ, we will try to convey the main idea
underlying it.

Our aim is to capture in the translation Ξ the correct behaviour of the MINE inferen-
tial mechanism once it is confronted with the notorious problematic cases of inheritance
reasoning.

For inheritable positive paths, the problematic case is the co-presence of the following
types of paths:

• π = x→ πl → u→ y;

• π′ = x→ π′l → v 	→ y and

• π′′ = x→ π′l → v → π′′l → u.

Note that π′′ is an alternative path of x → πl → u, whereas π′′ and x → π′l → v are
subpaths of π. Then path π would be inheritable in a context iff

1. x→ πl → u is inheritable;

2. there is no inheritable alternative path π′′ = x → π′l → v → π′′i → u with v 	→ y ∈
ΥA.

Now observe that

1. Condition 1 is captured by Clause 16 and Clause 20 (applied to path π);

2. Condition 2 is captured by Clause 17 (applied to path π′′), by Clause 22 (applied to
path π′′) and by Clause 24 (applied to path π′ with x→ π′l → v as subpath).

As for inheritable negative paths, the analogous of Condition 1 is captured by Clauses 16
and 21, whereas the analogous of Condition 2 is captured by Clauses 17, 22 and 23.

Finally, Clauses 13, 14, 15 and 18 (for positive edges) and Clause 19 (for negative edges)
handle the inheritability of single edges (positive and negative).

We then have the translation theorem

Theorem 3 Let Υ be a MINE. Then S is a conclusion set of Υ iff Ξ(Υ) has an extension
E such that:

1. x→ y ∈ S iff My[ix] ∈ E and My 	= Mx;

2. x 	→ y ∈ S iff ¬My[ix] ∈ E and My 	= Mx.

Proof (Sketch). We will sketch the proof only for the “if” part of Clause 1 of the Theorem;
the other cases are similar. Let S be a conclusion set of Υ, obtained from the extension Π
of Υ. Let E be the set TC(Ψ ∪ Λ) where α ∈ Λ iff

22

1. α = My[ix], x→ y ∈ S and Mx 	= My;

2. α = ¬My[ix], x 	→ y ∈ S and Mx 	= My;

3. α = M−
i [iB(π)] and π ∈ Π.

We now show that E = Θ(E , T); thus x → y ∈ S implies that My[ix] ∈ E and that
Mx 	= My. First at all, it is easy to see that E satisfies Conditions 1 and 2 of Definition 11.
Let us then show that E ⊆ Θ(E , T). For My[ix] ∈ E we have x→ y ∈ S. Thus, there is a
path πi = x → σ → y ∈ Π. It can be shown that Condition 3 of Definition 11 is satisfied
for the default M+

i �→ Isa.π�i �My and M+
i [ix] ∈ E. Thus, My[ix] ∈ Θ(E , T). Finally, let

us show that Θ(E , T) ⊆ E Suppose instead that Θ(E , T) 	⊆ E. Then it can be shown that
there is My[ix] 	∈ E such that My[ix] ∈ Θ(E , T) and x → y ∈ S. Therefore, My[ix] ∈ E; a
contradiction.

The sense of this theorem will be best illustrated by means of an example7.

Example 4 Consider the MINE Υ = 〈{p, r, s, q}, {p → r, p → q, r → q, q → s, r 	→ s〉.
The translation Ξ of Υ into T DL− is Ξ(Υ) = 〈Ψ,∆〉, where:

• the T-set Ψ is composed of the union of the following sets:

– {Mp[ip],Mr[ir],Mq[iq]}, from line (13) of Definition 26;

– {Isa[ip, ip], Isa[ir, ir], Isa[iq, iq]}, from line (14) of Definition 26;

– {Mp<·M+
pr,Mp<·M+

pq,Mq<·M+
qs,Mr<·M+

rq}, from line (15) of Definition 26;

– {M+
pq<·M+

pqs,M
+
pr<·M+

prq,M
+
prq<·M+

prqs,M
+
rq<·M+

rqs}, from line (16) of Definition 26;

– {M−
prq<·M+

pq,M
−
pq<·M+

prq}, from line (17) of Definition 26;

• the set of defaults ∆ is composed of the union of the following sets:

– {Mp �→ Isa.Mr,Mp �→ Isa.Mq,Mr �→ Isa.Mq,Mq �→ Isa.Ms}, from line (18)
of Definition 26;

– {Mr �→ Isa.¬Ms}, from line (19) of Definition 26;

– {M+
pr �→ Isa.(Mp�Mr�Mq),M

+
prq �→ Isa.(Mp�Mr�Mq�Ms),M

+
pq �→ Isa.(Mp�

Mq �Ms),M
+
rq �→ Isa.(Mr �Mq �Ms)}, from line (20) of Definition 26;

– {M+
pr �→ Isa.(Mp �Mr � ¬Ms)}, from line (21) of Definition 26;

– {M+
prq �→ Isa.(Mp �Mr �Mq �M−

prq),M
+
pq �→ Isa.(Mp �Mq �M−

pq),M
+
prqs �→

Isa.(Mp �Mr �Mq �Ms �M−
prqs),M

+
pqs �→ Isa.(Mp �Mq �Ms �M−

pqs)}, from
line (22) of Definition 26;

7In this example, for brevity of notation we will indicate a path by means of the sequence of letters of
the nodes belonging to it. So, the positive path p → q → s will be indicated by pqs, while the negative
path p → q 	→ s will be indicated by pqs.

23

– {M−
prqs �→ Isa.(Mp �Mr �Mq),M

−
prqs �→ Isa.(Mp �Mr �Mq �Ms),M

−
prq �→

Isa.(Mp�Mr �Mq),M
−
prq �→ Isa.(Mp�Mr �Mq �Ms),M

−
pqs �→ Isa.(Mp�Mq �

Ms),M
−
rq �→ Isa.(Mr �Mq �Ms)}, from line (23) of Definition 26;

– {M−
prqs �→ Isa.(Mp �Mr � ¬Ms),M

−
prq �→ Isa.(Mp �Mr � ¬Ms), }, from line

(24) of Definition 26.

It can be easily shown that the set of paths Π = Υ∪ {p→ r → q, p→ r 	→ s} is the unique
extension of Υ, and therefore S = Υ ∪ {p 	→ s} is the unique conclusion set of Υ. Let E
be the (consequentially unique) extension of Ξ(Υ). It is easy to verify that Ms[ip] 	∈ E and
that ¬Ms[ip] ∈ E, consistently with Theorem 3.

6 Conclusion

In this paper we have shown how we can extend terminological logics in such a way that they
allow a brand of default reasoning that obeys the specialization principle, thus creating a
formalism (which we have dubbed T DL−) that combines the tools for describing taxonomic
organizations of complex objects which are typical of TLs, the ability to describe default
information which is typical of general nonmonotonic formalisms, and the incrementality
in KB construction which is typical of MINEs.

This has been obtained by relying on the notion of “extension of a T DL− theory”, a
notion that has been defined in the style pioneered by Reiter in his Default Logic, i.e. as a
fixpoint of a consequence relation. We have also studied a number of properties of T DL−

related to issues such as the existence and the uniqueness of extensions, the relationships
of T DL− with Default Logic and MINEs, and the complexity of T DL− reasoning.

The language of T DL− has been designed with the aim of providing a minimal fra-
mework allowing to study the interaction of terminological and default information in a
meaningful way. Quite obviously, extensions to this framework may be conceived that
enable the expression of default information of a nature different from the one considered
here.

References

[1] Fahiem Bacchus. A modest but semantically well founded inheritance reasoner. In Pro-
ceedings of IJCAI-89, 11th International Joint Conference on Artificial Intelligence,
pages 1104–1105, Detroit, MI, 1989.

[2] Craig Boutilier. On the semantics of stable inheritance reasoning. Technical Report
KRR-TR-89-11, Department of Computer Science, University of Toronto, Toronto,
Ontario, 1989.

[3] Ronald J. Brachman and Hector J. Levesque, editors. Readings in knowledge repre-
sentation. Morgan Kaufmann, San Mateo, CA, 1985.

24

[4] Gerhard Brewka. The logic of inheritance in frame systems. In Proceedings of IJCAI-
87, 10th International Joint Conference on Artificial Intelligence, pages 483–488, Mi-
lano, Italy, 1987.

[5] James P. Delgrande. A semantics for a class of inheritance networks. In Proceedings
of CSCSI/SCEIO-90, 8th Biennial Conference of the Canadian Society for Computa-
tional Studies of Intelligence, pages 54–60, Ottawa, Ontario, 1990.

[6] Jon Doyle and Drew McDermott. Nonmonotonic logic I. Artificial Intelligence, 13:41–
72, 1980. [a] Also reprinted in [7], pp. 111–126.

[7] Matthew L. Ginsberg, editor. Readings in nonmonotonic reasoning. Morgan Kau-
fmann, Los Altos, CA, 1987.

[8] John Haugeland, editor. Mind design. The MIT Press, Cambridge, MA, 1981.

[9] Bernhard Hollunder. Hybrid inferences in KL-ONE-based knowledge representation
systems. In Proceedings of the 14th German Workshop on Artificial Intelligence, pages
38–47, Eringerfeld, FRG, 1990.

[10] John F. Horty. A credulous theory of mixed inheritance. In Maurizio Lenzerini, Daniele
Nardi, and Maria Simi, editors, Inheritance hierarchies in knowledge representation
and programming languages, pages 13–28. Wiley, Chichester, UK, 1991.

[11] John F. Horty, Richmond H. Thomason, and David S. Touretzky. A skeptical theory
of inheritance in nonmonotonic semantic networks. Artificial Intelligence, 42:311–348,
1990.

[12] Thirunarayan Krishnaprasad, Michael Kifer, and D.S. Warren. On the declarative
semantics of inheritance networks. In Proceedings of IJCAI-89, 11th International
Joint Conference on Artificial Intelligence, pages 1099–1103, Detroit, MI, 1989.

[13] Maurizio Lenzerini, Daniele Nardi, and Maria Simi, editors. Inheritance hierarchies in
knowledge representation and programming languages. Wiley, Chichester, UK, 1991.

[14] Vladimir Lifschitz, editor. Programs with common sense - Papers by John McCarthy.
Ablex, Norwood, NJ, 1990.

[15] John McCarthy. Circumscription - a form of nonmonotonic reasoning. Artificial
Intelligence, 13:27–39, 1980. [a] Also reprinted in [7], pp. 145–151. [b] Also reprinted
in [14], pp. 142–155.

[16] Marvin Minsky. A framework for representing knowledge. In Patrick J. Winston,
editor, The psychology of computer vision, pages 211–277. McGraw-Hill, New York,
NY, 1975. [a] An extended version appears in [3], pp. 245–262, and in [8], pp. 95–128.

25

[17] Robert A. Nado and Richard E. Fikes. Semantically sound inheritance for a formally
defined frame language with defaults. In Proceedings of AAAI-87, 6th Conference
of the American Association for Artificial Intelligence, pages 443–448, Seattle, WA,
1987.

[18] Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
[a] Also reprinted in [7], pp. 68–93.

[19] R. Bruce Roberts and Ira P. Goldstein. The FRL manual. Technical Report 409, The
Artificial Intelligence Laboratory, MIT, Cambridge, MA, 1977.

[20] Fabrizio Sebastiani and Umberto Straccia. Incremental acquisition of knowledge for
non-monotonic reasoning. Computers and Artificial Intelligence, 13:377–396, 1994.

[21] Bart Selman and Hector J. Levesque. The tractability of path-based inheritance. In
Proceedings of IJCAI-89, 11th International Joint Conference on Artificial Intelli-
gence, pages 1140–1145, Detroit, MI, 1989. [a] Also reprinted in [13], pp. 83–96.

[22] David S. Touretzky, John F. Horty, and Richmond H. Thomason. A clash of intuitions:
the current state of nonmonotonic multiple inheritance systems. In Proceedings of
IJCAI-87, 10th International Joint Conference on Artificial Intelligence, pages 476–
482, Milano, Italy, 1987.

26

