

An Improved Boosting Algorithm and its Application to
Text Categorization

Fabrizio Sebastiani
Istituto di Elaborazione

dell’Informazione
Consiglio Nazionale delle

Ricerche
56100 Pisa, Italy

fabrizio@iei.pi.cnr.it

Alessandro Sperduti
Dipartimento di Informatica

Università di Pisa
56125 Pisa, Italy

perso@di.unipi.it

Nicola Valdambrini
Dipartimento di Informatica

Università di Pisa
56125 Pisa, Italy

valdambr@supereva.it

ABSTRACT
We describe AdaBoost.MHKR, an improved boosting al-
gorithm, and its application to text categorization. Boosting
is a method for supervised learning which has successfully
been applied to many different domains, and that has proven
one of the best performers in text categorization exercises
so far. Boosting is based on the idea of relying on the collec-
tive judgment of a committee of classifiers that are trained
sequentially. In training the i-th classifier special emphasis
is placed on the correct categorization of the training docu-
ments which have proven harder for the previously trained
classifiers. AdaBoost.MHKR is based on the idea to build,
at every iteration of the learning phase, not a single classi-
fier but a sub-committee of the K classifiers which, at that
iteration, look the most promising. We report the results
of systematic experimentation of this method performed on
the standard Reuters-21578 benchmark. These experiments
have shown that AdaBoost.MHKR is both more efficient to
train and more effective than the original AdaBoost.MHR

algorithm.

1. INTRODUCTION
Text categorization (TC) is the activity of automatically

building, by means of machine learning (ML) techniques,
automatic text classifiers, i.e. programs capable of labelling
natural language texts with thematic categories from a pre-
defined set C = {c1, . . . , cm}. The construction of an au-
tomatic text classifier requires the availability of a corpus
Co = {〈d′1, C1〉, . . . , 〈d′h, Ch〉} of preclassified documents1,
where a pair 〈d′j , Cj〉 indicates that document d′j belongs
to all and only the categories in Cj ⊆ C. A general in-

1In the following we use variables d1, d2, . . . to indicate
generic documents and variables d′1, d

′
2, . . . to indicate pre-

classified documents.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

ductive process (called the learner) automatically builds a
classifier for the set C by learning the characteristics of C
from a training set Tr = {〈d′1, C1〉, . . . , 〈d′g, Cg〉} ⊂ Co of
documents. Once a classifier has been built, its effective-
ness (i.e. its capability to take the right categorization de-
cisions) may be tested by applying it to the test set Te =
{〈d′g+1, Cg+1〉, . . . , 〈d′h, Ch〉} = Co − Tr and checking the
degree of correspondence between the decisions of the auto-
matic classifier and those encoded in the corpus2.

A wealth of different ML methods have been applied to
TC, including probabilistic classifiers, decision trees, deci-
sion rules, regression methods, batch and incremental lin-
ear methods, neural networks, example-based methods, and
support vector machines (see [17] for a review). In recent
years, the method of classifier committees (or ensembles) has
also gained popularity in the TC community. This method
is based on the idea that, given a task that requires expert
knowledge to be performed, S independent experts may be
better than one if their individual judgments are appropri-
ately combined. In TC, the idea is to apply S different clas-
sifiers Φ1, . . . ,ΦS to the same task of deciding under which
set Cj ⊆ C of categories document dj should be classified,
and then combine their outcome appropriately. Usually, the
classifiers are different either in terms of the indexing ap-
proach followed (i.e. the method by which document repre-
sentations are automatically obtained) [16], or in terms of
the ML method by means of which they have been built [5,
9, 11], or both. A classifier committee is then characterised
by (i) a choice of S classifiers, and (ii) a choice of a combi-
nation function.

The boosting method [2, 3, 12, 13, 14] occupies a special
place in the classifier committees literature, since the S clas-
sifiers Φ1, . . . ,ΦS (here called the weak hypotheses) forming
the committee are obtained by the same learning method
(here called the weak learner) and work on the same text
representation. The key intuition of boosting is that the
S weak hypotheses should be trained not in a conceptu-
ally parallel and independent way, as in the other classifier

2In this paper we make the general assumption that a doc-
ument dj can in principle belong to zero, one or many of
the categories in C; this assumption is indeed verified in
the Reuters-21578 benchmark that we use for our experi-
ments. All the techniques we discuss in this paper can be
straightforwardly adapted to the case in which each docu-
ment belongs to exactly one category.

committees described above, but sequentially, one after the
other. In this way, the training of hypothesis Φi may take
into account how hypotheses Φ1, . . . ,Φi−1 perform on the
training documents, and may concentrate on getting right
those training documents on which Φ1, . . . ,Φi−1 have per-
formed worst.

In experiments conducted over three different TC test col-
lections, Schapire et al. [15] have shown the AdaBoost.MH
boosting algorithm (an adaptation of Freund and Schapire’s
AdaBoost algorithm [3] using a one-level decision tree as
the weak learner) to outperform Sleeping Experts, a clas-
sifier that had proven quite effective in the experiments
of [1]. Further experiments by Schapire and Singer [14]
showed AdaBoost.MH to outperform, aside from Sleep-
ing Experts, a Näıve Bayes classifier, a standard Roc-
chio classifier, and Joachims’ PrTFIDF classifier [6]. Weiss
et al. [18] have used boosting with slightly more complex
decision trees as the weak learners, and in doing so have
outperformed all other text categorization approaches on
Reuters-21578, the standard benchmark of text categoriza-
tion. Boosting has also been used in [11], where the authors
have reported a significant (13%) improvement in effective-
ness over the pure weak learner. Boosting approaches are
thus, on a par with support vector machine classifiers [7], the
currently best performers in the TC arena (see [17, Table 6]
for a comparative list of published results on Reuters-21578
and other TC benchmarks). Improving on the results of
boosting is thus a challenging problem for text categoriza-
tion.

In this work we present an improved boosting algorithm,
that we call AdaBoost.MHKR, and describe the experi-
mental results we have obtained on the Reuters-21578 text
categorization benchmark. AdaBoost.MHKR is based on
a different method to create weak hypotheses. At each iter-
ation s, AdaBoost.MHKR outputs not a single hypothesis,
but a sub-committee of the K(s) hypotheses which, at that
iteration, look the most promising. The rest of the paper is
structured as follows. In Section 2 we describe in detail the
AdaBoost.MH algorithm, which may be considered rep-
resentative of the “standard” way of doing boosting and
which we will use as our baseline. In Section 3 we turn to
describing our improved boosting algorithm. The results of
its experimentation on Reuters-21578 are described in Sec-
tion 4; Section 4.3 briefly discusses our parallel implementa-
tions of AdaBoost.MH and AdaBoost.MHKR. Section 5
concludes.

2. BOOSTING AND ADABOOST.MH

Boosting is a method for generating a highly accurate clas-
sification rule (also called final hypothesis) by combining a
set of moderately accurate hypotheses (also called weak hy-
potheses).

AdaBoost.MH (see Figure 1) is a boosting algorithm
proposed by Schapire and Singer [14] for the text categoriza-
tion task and derived from AdaBoost, Freund and Schapire’s
general purpose boosting algorithm [3]. The input to the
algorithm is a training set Tr = {〈d′1, C1〉, . . . , 〈d′g, Cg〉},
where Cj ⊆ C is the set of categories to each of which d′j
belongs.

AdaBoost.MH works by iteratively calling a weak learner
to generate a sequence Φ1, . . . ,ΦS of weak hypotheses; at
the end of the iteration the final hypothesis Φ is obtained
by a linear combination Φ =

∑S
s=1 αsΦs of these weak hy-

potheses (the choice of the αs parameters will be discussed
later). A weak hypothesis is a function Φs : D × C → IR,
where D is the set of all possible documents. We interpret
the sign of Φs(dj , ci) as the decision of Φs on whether dj

belongs to ci, i.e. Φs(dj , ci) > 0 means that dj is believed
to belong to ci while Φs(dj , ci) < 0 means it is believed not
to belong to ci. We instead interpret the absolute value of
Φs(dj , ci) (indicated by |Φs(dj , ci)|) as the strength of this
belief.

At each iteration s AdaBoost.MH tests the effective-
ness of the newly generated weak hypothesis Φs on the
training set and uses the results to update a distribution
Ds of weights on the training pairs 〈d′j , ci〉. The weight
Ds+1(d

′
j , ci) is meant to capture how effective Φ1, . . . ,Φs

were in correctly deciding whether the training document
d′j belongs to category ci or not. By passing (together with
the training set Tr) this distribution to the weak learner,
AdaBoost.MH forces this latter to generate a new weak
hypothesis Φs+1 that concentrates on the pairs with the
highest weight, i.e. those that had proven harder to clas-
sify for the previous weak hypotheses.

The initial distribution D1 is uniform. At each iteration
s all the weights Ds(d

′
j , ci) are updated to Ds+1(d

′
j , ci) ac-

cording to the rule

Ds+1(d
′
j , ci) =

Ds(d
′
j , ci) exp(−αs · Cj [ci] · Φs(d

′
j , ci))

Zs
(1)

where Cj [ci] is defined to be 1 if ci ∈ Cj and -1 otherwise,
and

Zs =
m∑

i=1

g∑
j=1

Ds(d
′
j , ci) exp(−αs · Cj [ci] · Φs(d

′
j , ci)) (2)

is a normalization factor chosen so that
∑m

i=1

∑g
j=1Ds+1(d

′
j , ci) =

1. If αs is positive (this will indeed be the case, as discussed
below), Equation 1 is such that the weight assigned to a
pair 〈d′j , ci〉 misclassified by Φs is increased, as for such a
pair Cj [ci] and Φs(d

′
j , ci) have different signs and the fac-

tor Cj [ci] · Φs(d
′
j , ci) is thus negative; likewise, the weight

assigned to a pair correctly classified by Φs is decreased.

2.1 Choosing the weak hypotheses
In AdaBoost.MH each document dj is represented as a

vector 〈w1j , . . . , wrj〉 of r binary weights, where wkj = 1
means that term tk occurs in document dj and wkj = 0
means that it does not; {t1, . . . , tr} is the set of terms
that occur in at least one document in Tr. Of course, Ad-
aBoost.MH does not make any assumption on what con-
stitutes a term; single words, stems of words, or phrases are
all plausible choices.

The weak hypotheses AdaBoost.MH deals with have the
form

Φs(d
′
j , ci) =

{
c0i if wkj = 0
c1i if wkj = 1

(3)

where tk ∈ {t1, . . . , tr} and c0i and c1i are real-valued con-
stants. The choices for tk, c0i and c1i are in general differ-
ent for each iteration, and are made according to an error-
minimization policy described in the rest of this section.

Schapire and Singer [13] have proven that the Hamming
loss of the final hypothesis Φ, defined as the percentage of
pairs 〈d′j , ci〉 for which sign(Cj [ci]) �= sign(Φ(d′j , ci)), is at

most ΠS
s=1Zs. The Hamming loss of a hypothesis Φs is a

———————————————————————————————————————-

Input: A training set Tr = {〈d′1, C1〉, . . . , 〈d′g, Cg〉}
where Cj ⊆ C = {c1, . . . , cm} for all j = 1, . . . , g.

Body: Let D1(d
′
j , ci) =

1

mg
for all j = 1, . . . , g and for all i = 1, . . . ,m

For s = 1, . . . , S do:
• pass distribution Ds(d

′
j , ci) to the weak learner;

• get the weak hypothesis Φs from the weak learner;
• choose αs ∈ IR;

• set Ds+1(d
′
j , ci) =

Ds(d
′
j , ci) exp(−αs · Cj [ci] · Φs(d

′
j , ci))

Zs

where Zs =

m∑
i=1

g∑
j=1

Ds(d
′
j , ci) exp(−αs · Cj [ci] · Φs(d

′
j , ci))

is a normalization factor chosen so that

m∑
i=1

g∑
j=1

Ds+1(d
′
j , ci) = 1

Output: A final hypothesis Φ(d, c) =
S∑

s=1

αsΦs(d, c)

———————————————————————————————————————-

Figure 1: The AdaBoost.MH algorithm.

measure of its classification effectiveness; therefore, a rea-
sonable (although suboptimal) way to maximize the effec-
tiveness of the final hypothesis Φ is to “greedily” choose each
weak hypothesis Φs (and thus its parameters tk, c0i and c1i)
and each parameter αs in such a way as to minimize the nor-
malization factor Zs.

Schapire and Singer [14] define three different variants of
AdaBoost.MH, corresponding to three different methods
for making these choices:

1. AdaBoost.MH with real-valued predictions (here nick-
named AdaBoost.MHR);

2. AdaBoost.MH with real-valued predictions and ab-
staining (AdaBoost.MHRA);

3. AdaBoost.MH with discrete-valued predictions
(AdaBoost.MHD).

In this paper we concentrate on AdaBoost.MHR, since it
is the one that, in the experiments of [14], has been experi-
mented most thoroughly and has given the best results; the
modifications to AdaBoost.MHR that we discuss in Sec-
tion 3 straightforwardly apply also to the other two variants.
AdaBoost.MHR chooses weak hypotheses of the form de-
scribed in Equation 3 by a two step-process:

1. for each term tk ∈ {t1, . . . , tr} it pre-selects, among
all weak hypotheses that have tk as the “pivot term”,
the one (indicated by Φk

best) for which Zs is minimum;

2. among all the hypotheses Φ1
best, . . . ,Φ

r
best pre-selected

for the r different terms, it selects the one (indicated
by Φs) for which Zs is minimum.

Step 1 is clearly the key step, since there are a non-enumerable
set of weak hypotheses that have tk as the pivot term. Schapire

and Singer [13] have proven that, given term tk and category

ci, Φk
best is obtained when αs = 1 and cxi = 1

2
ln

(
W xik

1
W xik

−1

)
,

where

W xik
b =

g∑
j=1

Dt(d
′
j , ci) · [[wkj = x]] · [[Cj [ci] = b]] (4)

for b ∈ {1,−1}, x ∈ {0, 1}, i ∈ {1, . . . ,m} and k ∈ {1, . . . , r},
and where [[π]] indicates the characteristic function of pred-
icate π (i.e. the function that returns 1 if π is true and 0
otherwise). For these values of αs and cxi we obtain

Zs = 2
m∑

i=1

1∑
x=0

(W xik
1 W xik

−1)
1
2 (5)

Choosing 1
2

ln

(
W xik

1
W xik

−1

)
as the value for cxi has the effect that

Φs(dj , ci) outputs a positive real value in the two following
cases:

1. wkj = 1 (i.e. tk occurs in dj) and the majority of the
training documents in which tk occurs belong to ci;

2. wkj = 0 (i.e. tk does not occur in dj) and the majority
of the training documents in which tk does not occur
belong to ci.

In all the other cases Φs outputs a negative real value. Here,
“majority” has to be understood in a weighted sense, i.e. by
bringing to bear the weightDt(d

′
j , ci) associated to the train-

ing pair 〈d′j , ci〉. The larger this majority is, the higher the
absolute value of Φs(dj , ci) is; this means that this absolute
value represents a measure of the confidence that Φs has in
its own decision.

In practice, the value cxi = 1
2

ln

(
W xik

1 +ε

W xik
−1 +ε

)
is chosen in

place of cxi = 1
2

ln

(
W xik

1
W xik

−1

)
, since this latter may produce

outputs with a very large or infinite absolute value when the
denominator is very small or zero3.

The output of the final hypothesis is the value

Φ(dj , ci) =

S∑
s=1

αsΦs(dj , ci) (6)

obtained by summing the outputs of the weak hypotheses.

3. AN IMPROVED BOOSTING ALGORITHM
AND ITS APPLICATION TO TEXT CAT-
EGORIZATION

We here propose a new method, called AdaBoost.MHKR

(for AdaBoost.MH with K-fold real-valued predictions) that
differs from AdaBoost.MHR in the policy according to
which weak hypotheses are chosen. AdaBoost.MHKR is
based on the construction, at each iteration s of the boost-
ing process, of a complex weak hypothesis (CWH) consist-
ing of a sub-committee of simple weak hypotheses (SWHs)

Φ1
s, . . . ,Φ

K(s)
s , each of which has the form described in Equa-

tion 3. These are generated by means of the same process
described in Section 2.1, but for the fact that at iteration s,
instead of selecting and using only the best term tk (i.e. the
one which brings about the smallest Zs), we select the best
K(s) terms and use them in order to generate K(s) SWHs

Φ1
s, . . . ,Φ

K(s)
s . Our CWH is then produced by grouping

Φ1
s, . . . ,Φ

K(s)
s into a sub-committee

Φs(dj , ci) =
1

K(s)

K(s)∑
q=1

Φq
s(dj , ci) (7)

that uses the simple arithmetic mean as the combination
rule. For updating the distribution we still apply Equa-
tions 1 and 2, where Φs is now defined by Equation 7. The
final hypothesis is computed by plugging Equation 7 into
Equation 6, thus obtaining

Φ(dj , ci) =

S∑
s=1

αs
1

K(s)

K(s)∑
q=1

Φq
s(dj , ci) (8)

The idea of using the K(s) best terms, instead of simply
using the top-ranked one, comes from the analysis of the
scores assigned to terms t1, . . . , tr at different iterations of
AdaBoost.MHR. Here, by the score of a term tk at iter-
ation s we mean the value that Zs would take if tk were
chosen as the pivot term for iteration s; as described in Sec-
tion 2.1, at each iteration the term with the lowest score
is thus chosen as the pivot. Figure 2 plots, for four sam-
ple iterations (3, 10, 50 and 99) of AdaBoost.MHR, the
score of each term as a function of the rank position the
term has obtained for that iteration in our experiments on
Reuters-21578. It can be noted that, while in the first iter-
ations (especially Iteration 3) the best terms have a score

3In [14] the value for ε is chosen by 3-fold cross validation on
the training set, but this procedure is reported to give only
marginal improvements with respect to the default choice of
ε = 1

mg
.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Sc
or

e

Term rank

Iteration 3

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Sc

or
e

Term rank

Iteration 10

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Sc
or

e

Term rank

Iteration 50

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Sc
or

e

Term rank

Iteration 99

Figure 2: Plots, obtained at four sample iterations,
of Zs as a function of the rank position that the term
has obtained for that iteration (terms are ranked on
the X axis; higher values of X thus correspond to
the worst-scoring terms). These plots show how the
term scores Zs asymptotically tend to 1, even for the
best terms, as the number s of iterations grows.

markedly different from each other and from the worst ones
(as indicated by the initial steep ascent of the curve), in the
last iterations the differences among scores are very small (as
indicated by the very flat profile of the curve) and the scores
tend to become equal to 1 for all terms. This means that,
as boosting progresses, the score Zs is increasingly unable
to discriminate well among different terms.

In AdaBoost.MHKR we choose, at each iteration, K(s)
top-ranked terms that have similar scores and that would
have been good candidates for selection in the next K(s)
AdaBoost.MHR iterations. In this way we can build a fi-
nal hypothesis composed of S′ SWHs (of the form of Equa-
tion 3) grouped into S CWHs at a computational cost com-
parable to the one required by AdaBoost.MHR to generate
a committee of S SWHs, with S′ � S. In fact, as obvious
from what we said in Section 2.1, most of the computa-
tion required by the boosting process is devoted to calcu-
lating the term scores, and by using only the top-scoring
term AdaBoost.MHR exploits these hard-won scores only
to a very small extent. On the contrary, AdaBoost.MHKR

tries to put these scores to maximum use by using more
term scores, hence more information on how documents and
categories are associated, immediately, without waiting for
further iterations4.

This analysis is valid only if the scores for the K(s) terms
are very close to each other (lest the original purpose of
boosting is lost), so that it would not make a substantial
difference for AdaBoost.MHR to choose one or the other
as the pivot. This is the reason why we require the number
K of SWHs that form the CWH Φs to be a function of s.
As evident from the plots in Figure 2, in the first iterations
we will need K to be small, since the scores for the best
terms are quite different among each other, while in the last
iterations we can have larger values of K, since the differ-
ences in scores are minimal. In the experiments described in
Section 4 we have used the simple heuristics of adding a con-
stant C to K(s) every N iterations, using a fixed value for
N and using a value of 1 for K(1), i.e. K(s) = 1 + C� s−1

N
�.

Finally, note that the fact that the scores of the K(s)
terms are very close to each other substantially justifies our
use of the arithmetic mean, rather than a weighted linear
combination, as a combination rule.

4. EXPERIMENTAL RESULTS

4.1 Experimental setting
We have conducted a number of experiments to test the

validity of the method proposed in Section 3. For these
experiments we have used the “Reuters-21578, Distribution
1.0” corpus5, which consists of a set of 12,902 news sto-
ries, partitioned (according to the “ModApté” split we have
adopted) into a training set of 9,603 documents and a test set
of 3,299 documents. The documents have an average length
of 211 words (that become 117 after stop word removal) and

4The added cost of a single AdaBoost.MHKR iteration is
due to the need of ranking the r terms, which is an O(r log r)
problem, rather than just finding the top-scoring one, which
is an O(r) problem. However, sinceK(S) is typically smaller
than log r, it is cheaper to repeat K(S) times the search for
a top-scoring term, which means that we are still in O(r).
5The Reuters-21578 corpus may be freely down-
loaded for experimentation purposes from
http://www.research.att.com/~lewis/reuters21578.html

are labelled by 118 categories; the average number of cat-
egories per document is 1.08, ranging from a minimum of
0 to a maximum of 16. The number of positive examples
per category ranges from a minimum of 1 to a maximum of
3964. We have run our experiments on the set of 90 cat-
egories that have both at least 1 positive training example
and at least 1 positive test example, as this is the most
widely used category set in the literature on Reuters-21578
experimentation.

As the set of terms t1, . . . , tr we use the set of words oc-
curring at least once in the training set. This set is identified
by previously removing punctuation and then removing stop
words. Neither stemming nor explicit number removal have
been performed. As a result, the number of different terms
is 17,439.

Classification effectiveness has been measured in terms
of the classic IR notions of precision (Pr) and recall (Re)
adapted to the case of document categorization. In our ex-
periments we have evaluated both the “microaveraged” and
the “macroaveraged” versions of Pr and Re. As a measure
of effectiveness that combines the contributions of both Pr
and Re, we have used the well-known F1 function [10].

4.2 The experiments
In order to compare the effectiveness of AdaBoost.MHR

and AdaBoost.MHKR we have implemented both algo-
rithms and run them in the same experimental conditions in
a number of different experiments. An alternative method
might have been to just experiment AdaBoost.MHKR and
compare the results with the ones published in [14]. We de-
cided to avoid this latter method because of a number of
reasons that would have made this comparison difficult:

• [14] uses an older version of the Reuters benchmark,
called Reuters-22173. This benchmark is known to
suffer from a number of problems that make its re-
sults difficult to interpret, and the research commu-
nity is now universally oriented towards the use of the
better version Reuters-21578. No experiments using
both collections have been reported in the literature,
so there is no indication as to how results obtained on
these two different collections might be compared.

• [14] uses also bigrams (i.e. statistical phrases of length
2), apart from single words, as terms, while we use
unigrams (i.e. single words) only.

Our experiments were conducted by varying a number of pa-
rameters, such as the number of iterations S in the boosting
process, the C and N parameters in the AdaBoost.MHKR

updating rule for K(s), and the reduction factor of the term
space reduction process. Term space reduction refers to the
process of identifying, prior to the invocation of the learn-
ing algorithm, a subset of the r′ � r terms that are deemed
most useful for compactly representing the meaning of the
documents. After such a reduction each (training or test)
document dj is represented by a vector 〈w1j , . . . , wr′j〉 of

weights shorter than the original; the value ρ = r−r′
r

is
called the reduction factor. Feature selection is usually ben-
eficial in that it tends to reduce both overfitting (i.e. the
phenomenon by which a classifier tends to be better at clas-
sifying the data it has been trained on than at classifying
other data) and the computational cost of training the clas-
sifier. We have used a “filtering” approach to term space

reduction [8]; this consists in scoring each term by means of
a term evaluation function and then selecting the r′ features
with the highest score. We have used

χ2
max(tk) = max

i=1,... ,m

g · [P (tk, ci)P (tk, ci) − P (tk, ci)P (tk, ci)]
2

P (tk)P (tk)P (ci)P (ci)
(9)

as our term evaluation function6, since it is known from the
literature to be one of the best performers at high reduction
factors [20]. We have conducted various experiments by us-
ing reduction factors ρ of .96, .90, .00 (a reduction factor
ρ = .00 means that no term reduction has been performed).

The results obtained with AdaBoost.MHKR for these
three reduction factors are shown in Table 1, while the equiv-
alent experiments for AdaBoost.MHR are reported in Ta-
ble 2. Note that the two tables do not have the same amount
of rows; the reason for this is a lack of computational re-
sources that prevented us from making more thorough ex-
periments, especially in the cases that are computationally
most demanding (i.e. the experiments with AdaBoost.MHR

or with low reduction factors). In Table 1, the 3rd and 4th
columns indicate the values used for the parameters C and
N used for determining K(s), while the 4th column indi-
cates the total number S′ of generated SWHs, computed
as S′ =

∑S
s=1K(s) =

∑S
s=1(1 + C� s−1

N
�). For instance,

Row 1 in Table 1 specifies that the Fµ
β and FM

β results in-
dicated were obtained by a final hypothesis built after 50
AdaBoost.MHKR iterations in which K(s) was increased
by 1 every 5 iterations; this resulted in a total of 275 SWHs
being generated.

By comparing the results obtained by the two algorithms
for ρ = .96 (upper parts of Tables 1 and 2) we can ob-
serve that AdaBoost.MHKR was able to reach an Fµ

1 value
of 0.740 after only 100 iterations using C = 1 and N =
20. With the same number of iterations AdaBoost.MHR

achieved an Fµ
1 value of only 0.697, and for this number

of iterations AdaBoost.MHKR is superior also in terms of
FM

1 . While this comparison can be considered fair from a
computational point of view, since the computational cost
of each iteration for the two algorithms is basically equiv-
alent, it may be argued that the number of hypotheses se-
lected by AdaBoost.MHKR is actually 300 (as reported
in the 5th column of Table 1) versus the 100 selected by
AdaBoost.MHR (one hypothesis for each iteration). How-
ever, to this respect it should be noted that the effective-
ness AdaBoost.MHKR achieves thanks to these 300 hy-
potheses is not obtained by AdaBoost.MHR even by gen-
erating 16000 hypotheses! Moreover, the best value of Fµ

1

for AdaBoost.MHR was obtained at Iteration 1000; this
means that AdaBoost.MHKR (with C = 1 and N = 20)
reached a better performance with approximately ten times
less computational effort. In the vast majority of the cases,
with the same number of iterations AdaBoost.MHKR out-
performed AdaBoost.MHR.

The results obtained with reduction factors ρ = .90 and
ρ = .96 (middle and lower parts of Tables 1 and 2) con-
firm the above results. Thus, independently from the reduc-

6In Equation 9 probabilities are interpreted on an event
space of documents (e.g. P (tk, ci) indicates the probability
that, for a random document x, term tk does not occur in x
and x belongs to category ci), and are estimated by count-
ing occurrences in the training set. In the same equation g
indicates, as usual, the cardinality of the training set.

ρ S C N S′ Fµ
1 FM

1

.96 50 1 5 275 0.666667 0.513684

.96 97 1 10 520 0.725000 0.565000

.96 50 1 10 150 0.731658 0.549577

.96 50 2 10 170 0.689655 0.512637

.96 50 1 11 140 0.716192 0.565011

.96 50 1 12 130 0.726818 0.558150

.96 50 1 13 122 0.727083 0.550834

.96 50 1 14 116 0.723666 0.540245

.96 50 1 15 110 0.724629 0.532600

.96 50 1 20 90 0.704566 0.511514

.96 50 2 20 110 0.721946 0.531515

.96 50 4 20 170 0.702740 0.515649

.96 100 2 20 340 0.694929 0.544996

.96 100 1 20 300 0.740828 0.557656

.96 197 1 20 1070 0.728946 0.572078

.96 100 1 30 220 0.738643 0.558622

.96 100 2 30 260 0.735571 0.555456

.96 500 1 80 1820 0.724133 0.591866

.96 500 1 200 900 0.738584 0.570910

.90 50 1 12 130 0.726213 0.511327

.90 50 1 13 122 0.728315 0.525439

.90 50 1 15 110 0.723751 0.525064

.90 50 1 16 104 0.717628 0.527743

.90 100 1 30 220 0.752109 0.532758

.90 200 1 20 1100 0.764550 0.558366

.90 500 1 80 1820 0.752034 0.568556

.90 500 1 200 900 0.757198 0.533829

.00 50 1 12 130 0.724138 0.514714

.00 50 1 13 122 0.722528 0.532095

.00 50 1 15 110 0.723751 0.525064

.00 100 1 30 220 0.740409 0.522325

.00 200 1 20 1100 0.764550 0.558366

.00 500 1 200 900 0.750773 0.519780

Table 1: Results obtained by using AdaBoost.MHKR

after performing χ2
max feature selection (ρ indicates

the reduction factor). The number K(s) of SWHs
generated at iteration s is increased by C every N
iterations, which causes a total of S′ SWHs to be
generated in S iterations. The best result is indi-
cated in boldface.

tion factor used in term space reduction, AdaBoost.MHKR

seems to be characterised by a higher effectiveness and a sig-
nificantly higher efficiency.

The fact that AdaBoost.MHKR is more effective than
AdaBoost.MHR could be explained by the greedy approach
followed by AdaBoost.MHR for the selection of the best
hypothesis to include in the final one. In fact, the greedy
approach does not guarantee the optimality of the selection,
and AdaBoost.MHR does not have any possibility to ex-
plore the hypothesis space for the final hypothesis: given
a set of training data, one and only one final hypothesis
is generated for each possible iteration. On the contrary,
AdaBoost.MHKR allows the designer to explore, at least
to a given degree, the hypothesis space for the final hypoth-
esis by setting C and N to different values. Moreover, the
use of CWHs that include an increasing number of SWHs
reduces the variability associated to SWHs which are gener-
ated later in the learning process, thus reducing the impact
on the distribution of hypotheses which may turn out to be
too specific.

ρ S Fµ
1 FM

1

.96 30 0.597000 0.486978

.96 50 0.656354 0.483030

.96 100 0.697740 0.523138

.96 167 0.702300 0.786115

.96 500 0.724986 0.565490

.96 760 0.726772 0.575426

.96 1000 0.728390 0.584169

.96 2000 0.725088 0.597137

.96 3000 0.721169 0.605509

.96 5000 0.722731 0.618689

.96 6000 0.721077 0.621494

.96 7000 0.720186 0.623543

.96 8000 0.717481 0.619853

.96 9000 0.717524 0.621415

.96 10000 0.716788 0.622729

.96 16000 0.713720 0.619019

.90 50 0.652111 0.458944

.90 100 0.708171 0.484279

.90 200 0.737705 0.508982

.90 500 0.753718 0.540283

.00 50 0.643192 0.460704

.00 100 0.704545 0.521491

.00 200 0.726456 0.534055

.00 500 0.742699 0.514699

Table 2: Results obtained by using AdaBoost.MHR

after performing χ2
max feature selection (ρ indicates

the reduction factor). The total number of gener-
ated SWHs is here equal to the number of iterations
(i.e. one hypothesis is generated at each iteration).
The best result is indicated in boldface.

4.3 A parallel implementation of AdaBoost.MHR

and AdaBoost.MHKR

In order to speed up the computation we have realized a
parallel implementation of both AdaBoost.MHR and
AdaBoost.MHKR on a cluster of ten Pentium II 266MHz
PCs. Although AdaBoost.MH is inherently a sequential
algorithm, since each new weak hypothesis is selected on
the basis of a distribution that depends on the previously
selected hypotheses, it is possible to parallelize the compu-
tation required for the choice of the weak hypotheses.

For our parallel implementation we have adopted a FARM
model of computation [4], as outlined in Figure 3. A process
E partitions the set of r terms into M subsets and allocates
each of them to one among M processors W1,W2, . . . ,WM

(called workers). At each iteration s, each processor Wi

finds the best hypothesis (AdaBoost.MHR) or the first
K(s) best hypotheses (AdaBoost.MHKR) among the ones
that hinge on terms allocated to Wi, and forwards its out-
put to process C. C collects and compares the outputs
coming from W1,W2, . . . ,WM , selects the best weak hy-
pothesis Φs (AdaBoost.MHR) or the best K(s) hypothe-

ses Φ1
s, . . . ,Φ

K(s)
s (AdaBoost.MHKR), updates the distri-

bution D accordingly, and sends the updated distribution to
each worker, which will use it in the next round of compu-
tation.

In the implementation of AdaBoost.MHR we have fur-
ther optimized the final hypothesis Φ(dj , ci) =

∑S
s=1 Φs(dj , ci)

by “combining” the weak hypotheses Φ1, . . . ,ΦS according
to their pivot term tk. In fact, note that if {Φ1, . . . ,ΦS}
contains a subset {Φk

1 , . . . ,Φ
k
q(k)} of weak hypotheses that

Figure 3: The FARM model used for the
parallel implementation of AdaBoost.MHR and
AdaBoost.MHKR.

hinge on tk and are of the form

Φk
r (dj , ci) =

{
cr0i if wkj = 0
cr1i if wkj = 1

(10)

for r = 1, . . . , q(k), the collective contribution of Φk
1 , . . . ,Φ

k
q(k)

to the final hypothesis is the same as that of a “combined
hypothesis”

Φ̆k(dj , ci) =

{ ∑q(k)
r=1 c

r
0i if wkj = 0∑q(k)

r=1 c
r
1i if wkj = 1

(11)

In the implementation we have thus replaced
∑S

s=1 αsΦs(dj , ci)

with
∑∆

k=1 Φ̆k(dj , ci), where ∆ is the number of different
terms that act as pivot for the weak hypotheses in {Φ1, . . . ,ΦS}.
We have also done a similar optimization in the implemen-
tation of AdaBoost.MHKR; the only difference is that in
this latter case the factor 1

K(s)
from Equation 8 needs to be

taken into account.
This modification brings about a considerable efficiency

gain in the application of the final hypothesis to a test ex-
ample. For instance, the final hypothesis we obtained with
AdaBoost.MHKR with the parameters set to ρ = .96,
S = 100, C = 1 and N = 20, consists of 300 SWHs, but
the number of different pivot terms is only 168. The reduc-
tion in the size of the final hypothesis which derives from
this modification is usually larger for high reduction factors,
since in this case the number of different terms that can be
chosen as the pivot is smaller.

5. CONCLUSION
We have described AdaBoost.MHKR, a boosting algo-

rithm derived by AdaBoost.MHR by modifying the policy
for the choice of the weak hypotheses, and we have reported
the results of its experimentation on Reuters-21578, the stan-
dard benchmark of text categorization research. The modifi-
cation described applies straightforwardly to AdaBoost.MHRA

and AdaBoost.MHD too. AdaBoost.MHKR is substan-
tially more efficient to train than AdaBoost.MHR, and our
experiments have shown that it is also more effective. This
is even more significant once we note that we have adopted
fairly unsophisticated policies (i) for the combination of the
simple weak hypotheses into one complex weak hypothesis,
and (ii) for the updating of the number K(s) of simple weak
hypotheses that should be selected at iteration s.

There are a number of ways in which we plan to continue
our research. The first, obvious one is to explore more the-
oretically justified policies for performing tasks (i) and (ii)
above. For instance, more refined policies for (ii) could in-
volve e.g. using all the terms whose score differ by at most τ
(with τ determined e.g. by k-fold cross-validation), or letting
K(s) be a function of the derivative of the curve Zs(t).

The second is to explore the possibility of using non-
binary weights, such as the ones produced by standard tf ∗
idf term weighting techniques. The idea is that of segment-
ing the [0,1] interval, on which the non-binary weights typi-
cally range, into a fixed number Y of intervals, and searching
a space of weak hypotheses that each realize a Y -ary branch
(instead of the binary branch realized by the weak hypothe-
ses of Equation 3).

The third, more challenging one is to explore variants of
AdaBoost.MHKR in which the evaluation of the weak hy-
potheses is not done in terms of Hamming distance, but in
terms of F1 itself. The reason for this is that in text catego-
rization, unlike in many other machine learning applications,
the number of negative examples of a given category ci is
usually overwhelmingly higher than the number of its pos-
itive examples. This means that, if Hamming distance is
used as a yardstick of effectiveness, the trivial rejector (i.e.
the classifier that “says no” to every 〈dj , ci〉 pair) may well
turn out to be more “effective” than any other classifier in-
duced by machine learning techniques [19]. This means in
turn that learning approaches based on explicit error mini-
mization, as AdaBoost.MH is, may well end up in training
a text classifier to behave very similarly to the trivial rejector
once “error” is understood in terms of Hamming distance.
We conjecture that forcing AdaBoost.MHKR to maximize
the F1 of the weak hypotheses generated, instead of mini-
mizing their Hamming distance, should bring about higher
recall at a comparatively small cost in terms of precision.

6. REFERENCES
[1] W. W. Cohen and Y. Singer. Context-sensitive

learning methods for text categorization. ACM
Transactions on Information Systems, 17(2):141–173,
1999.

[2] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
In Proceedings of ICML-98, 15th International
Conference on Machine Learning, pages 170–178,
Madison, US, 1998.

[3] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[4] A. Hey. Experiments in MIMD parallelism. In
Proceedings of PARLE-89, European Conference on
Parallel Architectures and Languages, pages 28–42,
Eindhoven, NL, 1989.

[5] D. A. Hull, J. O. Pedersen, and H. Schütze. Method
combination for document filtering. In Proceedings of
SIGIR-96, 19th ACM International Conference on
Research and Development in Information Retrieval,
pages 279–288, Zürich, CH, 1996.

[6] T. Joachims. A probabilistic analysis of the Rocchio
algorithm with TFIDF for text categorization. In
Proceedings of ICML-97, 14th International

Conference on Machine Learning, pages 143–151,
Nashville, US, 1997.

[7] T. Joachims. Text categorization with support vector
machines: learning with many relevant features. In
Proceedings of ECML-98, 10th European Conference
on Machine Learning, pages 137–142, Chemnitz, DE,
1998.

[8] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant
features and the subset selection problem. In
Proceedings of ICML-94, 11th International
Conference on Machine Learning, pages 121–129, New
Brunswick, US, 1994.

[9] L. S. Larkey and W. B. Croft. Combining classifiers in
text categorization. In Proceedings of SIGIR-96, 19th
ACM International Conference on Research and
Development in Information Retrieval, pages 289–297,
Zürich, CH, 1996.

[10] D. D. Lewis. Evaluating and optmizing autonomous
text classification systems. In Proceedings of
SIGIR-95, 18th ACM International Conference on
Research and Development in Information Retrieval,
pages 246–254, Seattle, US, 1995.

[11] Y. H. Li and A. K. Jain. Classification of text
documents. The Computer Journal, 41(8):537–546,
1998.

[12] R. E. Schapire. Theoretical views of boosting. In
Proceedings of EuroCOLT-99, 4th European
Conference on Computational Learning Theory, pages
1–10, Nordkirchen, DE, 1999.

[13] R. E. Schapire and Y. Singer. Improved boosting
algorithms using confidence-rated predictions.
Machine Learning, 37(3):297–336, 1999.

[14] R. E. Schapire and Y. Singer. BoosTexter: a
boosting-based system for text categorization.
Machine Learning, 39(2/3):135–168, 2000.

[15] R. E. Schapire, Y. Singer, and A. Singhal. Boosting
and Rocchio applied to text filtering. In Proceedings of
SIGIR-98, 21st ACM International Conference on
Research and Development in Information Retrieval,
pages 215–223, Melbourne, AU, 1998.

[16] S. Scott and S. Matwin. Feature engineering for text
classification. In Proceedings of ICML-99, 16th
International Conference on Machine Learning, pages
379–388, Bled, SL, 1999.

[17] F. Sebastiani. Machine learning in automated text
categorisation: a survey. Technical Report
IEI-B4-31-1999, Istituto di Elaborazione
dell’Informazione, Consiglio Nazionale delle Ricerche,
Pisa, IT, 1999.

[18] S. M. Weiss, C. Apté, F. J. Damerau, D. E. Johnson,
F. J. Oles, T. Goetz, and T. Hampp. Maximizing
text-mining performance. IEEE Intelligent Systems,
14(4):63–69, 1999.

[19] Y. Yang. An evaluation of statistical approaches to
text categorization. Information Retrieval,
1(1-2):69–90, 1999.

[20] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In Proceedings
of ICML-97, 14th International Conference on
Machine Learning, pages 412–420, Nashville, US, 1997.

