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Abstract. We here expand on a previous paper concerning the role of logic in information
retrieval (IR) modelling. In that paper, among other things, we had pointed out how different
ways of understanding the contribution of logic to IR have sprung from the (always unstated)
adherence to either the total or the partial knowledge assumption. Here we make our analysis
more precise by relating this dichotomy to the notion of vividness, as used in knowledge
representation, and to another dichotomy which has had a profound influence in database
theory, namely the distinction between the proof-theoretic and the model-theoretic views of a
database, spelled out by Reiter in his “logical reconstruction of database theory”. We show
that precisely the same distinction can be applied to logical models of IR developed so far.
The strengths and weaknesses of the adoption of either approach in logical models of IR are
discussed.

1 Introduction

Logical models of information retrieval have been actively investigated in the last ten years. The
reason behind this interest in logic on the part of IR theorists springs from a substantial dissati-
sfaction with the insights into the very nature of information, information content, and relevance,
that mainstream IR research gives. A few years ago William Cooper, one of the major researchers
in the history of information retrieval, sharply summarised the status of IR theory by saying that
“(. . . ) deep down inside it’s shallow” [2, page 201]. And the fact that things have not changed
since then is witnessed by Alan Smeaton’s recent comment on logical modelling of IR: “(. . . ) it is
without doubt that if there is ever to be a really significant breakthrough in information retrieval,
it will come from this kind of fundamental and basic work” [35, page 13].

We indeed think that there are two main IR-related issues to which logic might provide better
answers than current approaches.

The first issue has to do with the quantitative view of information content that the received
wisdom of IR embodies. According to this view the degree of similarity (or the probability of
relevance, depending on the adopted model) of a document to a given request may be estimated,
by and large, by computing the occurrence frequency of words in the request, in the document
candidate for retrieval, and in the collection of documents being searched1. If on one hand these
quantitative methods are still unsurpassed (see e.g. [11]) in terms of effectiveness (i.e. in terms of
their ability to weed the irrelevant documents from the relevant ones), on the other hand they do
not constitute, in all evidence, a satisfactory explanation of the fundamental notions of IR. In other
words, it is implausible that the very notion of information content of a document may ultimately
come down to word counts, irrespective of the syntactic, semantic and pragmatic role that each
individual word occurrence plays; the dominant view in linguistic semantics is that information
content must be more than that, even if we are not yet able to put our fingers on it. Quantitative

1 For instance, the fact that a term occurs frequently in a document adds weight to the hypothesis that
this term is “important” to the document meaning; conversely, the fact that a term appears frequently
in the document collection subtracts weight to the hypothesis that this term is important to the meaning
of individual documents in which it occurs.



     

models thus provide a phenomenology, rather than a theory, of information content and relevance2.
It is exactly the search for a theory that has driven many IR “theorists” to the investigation of
logical models of IR. Far from believing that the ultimate IR system will be a theorem prover,
many of these investigators are convinced that logic, by its strong reliance on the semantic aspect
of the formulae it deals with, may foster our understanding of the fundamental (and inherently
semantic) notions of information, information content and relevance.

The second issue has to do with the separation of concerns that current practice in IR has
de facto established between the issues of 1) representing the content of documents and requests
(indexing), and 2) reasoning with such representations in order to establish the relevance of the
former to the latter (matching). In fact, in present-day IR, indexing techniques are only loosely
bound to the matching techniques that use the representations built by them; for instance, the same
method for computing the representations of documents/requests (e.g. tf ∗ idf weighting) is being
used in conjunction with widely different matching techniques, and the same matching technique
(e.g. the cosine measure) is being used in conjunction with representations of documents/requests
obtained by widely different methods (see [29] for an example of this “combinatoric” coupling of
indexing and matching). In logic, IR theorists find instead a framework in which representation and
reasoning are not independently motivated, but are, in some sense, one and the same thing. Logic
prompts IR theorists not only to clearly specify the semantics of the representation language
for documents/requests and the semantics of relevance, but also to ensure that the way actual
representations are arrived at is consistent with this semantic specification!

In a previous paper [34] we analysed the literature on logical models of IR from the point
of view of their compliance with the well-formedness criteria that are standard in applied logic.
In [34, Section 6.1] we argued that, from this literature, two different ways of understanding the
contribution of logic to IR modelling emerge, and that each of them is based on the (unstated)
adoption of either the total knowledge or the partial knowledge assumption.

At a first approximation, the total knowledge assumption means that everything about the
problem domain is assumed to be known. Although this characterisation may look a bit strong
at first sight, it is not once one interprets “everything” as “everything that can be stated in the
logical language used for the representation of the problem domain”. For instance, the traditional
Boolean model of IR (in which the logical language for the representation of documents is that
of Boolean conjunctions of propositional letters) is a model in which total knowledge is implicitly
assumed. To see this, assume that the set of propositional letters (i.e. the controlled indexing
language) is L = {t1, . . . , tn}. The key observation is that, if a document di is represented e.g. by
the conjunction t2 ∧ t5 ∧ t7, this is assumed to mean not only that di is about t2, t5 and t7, but
also that di is not about ti for i �= 2, 5, 7. In other words, the truth value of everything that can be
specified in the language about di (i.e. whether, for a given tj , di is or is not about tj) is assumed
known.

The total knowledge assumption is present, although better hidden, also in some of the models
that make use of formal tools traditionally viewed as means of representing uncertainty (even
though uncertainty is closely associated to the notion of the partiality of knowledge!). For instance,
in the extended Boolean model of [30] or in the probabilistic model of [26], documents are represented
as conjunctions of weighted terms, where the weight wij ∈ [0, 1] of term i in document j is taken to
represent the “discrimination power” of the term [31] or its probability of occurrence in a generic
relevant document [26]. Here, the key observation is that the weight of any term, whatever its
interpretation, is always assumed known. In other words, the presence of uncertainty in these
models is, in the precise sense exposed above, only apparent: every sentence that can be expressed
in the representation language is either known to be true or known to be false.

The partial knowledge assumption, instead, makes explicit the fact that not all that is re-
presentable in the chosen logical language is assumed to be known. For instance, one may con-
ceive a variant of the Boolean model of IR in which, given the usual set of propositional letters

2 Word frequency distributions constitute a rich source of information for text analysis, and are exploited
not only in information retrieval but also in quantitative stylistics, lexicography, and linguistics; see
e.g. [1] for an example of such applications.
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L = {t1, . . . , tn}, a document representation t2 ∧ t5 ∧ t7 for document di is taken to mean, among
other things, that it is not known whether di is or is not about tj for j �= 2, 5, 7. In other words,
models relying on the partial knowledge assumption do not take commitments concerning what is
not explicitly represented. Adherence to the partial knowledge assumption entails reasoning in the
presence of incomplete information, which is the standard way of performing inference in logic.

For what we have said up to now (and, for that matter, for what we had said in [34, Section
6.1]), the distinction between total-knowledge and partial-knowledge models of IR might as well
come down to the better known distinction between adopting either a closed world assumption
(CWA) or an open world assumption, respectively (see e.g. [17, Chapter 7]). In this paper we argue
that our distinction amounts to more than that, in that total-knowledge models of IR assume not
only that everything about the problem domain is known, but also that it is represented in vivid
form [13, 14]. The consequence is that adopting either the total-knowledge or the partial-knowledge
assumption means taking an implicit stand as to what, logically speaking, a (representation of a)
document collection is: more precisely, the two different positions relate to the dichotomy between
the model-theoretic and the proof-theoretic models of databases, exposed in a paper by Reiter [24].
The aim of this paper is to show how this latter dichotomy may usefully be applied to the case of
logical models of IR, and how advantages and disadvantages of either approach that have already
been discussed in the DB literature apply, and to what extent, to the IR case.

The paper is structured as follows. In Section 2 we briefly discuss the notion of “vividness”,
and how it relates to the model-theoretic and the proof-theoretic views of databases. In Section 3
we discuss how this dichotomy applies to IR too, show how proposed logical models of IR have
de facto adhered to either camp, and discuss the advantages and disadvantages that these models
incur into by way of this adherence. Section 4 discusses the issue of how “model-theoretic” models
may be recasted in proof-theoretic form. Section 5 concludes.

2 Vividness, the model-theoretic, and the proof-theoretic models of
databases

2.1 Vivid knowledge bases and total-knowledge models of IR

Implicit in the discussion of the previous section is the fact that partial-knowledge models implicitly
assume that the problem knowledge cannot be encoded by means of a complete theory of the chosen
logic3, and therefore tend to rely on reasoning methodologies involving deduction (possibly of a
probabilistic kind) that make use of a knowledge base representing the incomplete theory (see
e.g. [18, 32]). Such a theory has more than one model, and deduction may as usual be seen as a
compact way of handling them all.

Total-knowledge models (see e.g. [4, 5, 6, 21, 22]) are instead built along the assumption that
the problem knowledge can be encoded by means of a complete theory of the chosen logic. However,
a key point that we missed to observe in [34, Section 6.1] is that these models assume that, of this
complete theory, the simplest representation possible is always available, where this representation
is what Levesque [13, 14] calls a vivid knowledge base, i.e. a set of (possibly negated) ground,
atomic statements. An example of a vivid knowledge base for the language of propositional logic
built upon the alphabet T = {t1, t2} is the set KB = {t1,¬t2}: it is a complete theory (its only
satisfying interpretation is the truth value assignment that assigns T to t1 and F to t2), and it also
vivid, unlike e.g. its equivalent knowledge base KB′ = {¬(t1 ⊃ t2)}. Levesque observes that, when
a knowledge base is in vivid form, it basically consists in an “analogue” of its unique satisfying
interpretation, and therefore may be reasoned upon by methods quicker that theorem proving,
much in the same way in which a photograph of a tree in front of a house immediately allows us

3 In logic, a complete theory is a deductively closed set of formulae Γ such that, for any formula α in the
language, either α ∈ Γ or ¬α ∈ Γ . An incomplete theory is a deductively closed set of formulae for which
this property does not hold. Therefore, a (consistent) theory has a unique satisfying interpretation iff
it is complete, while it has more than one satisfying interpretation iff it is incomplete.
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to reach the conclusion, with no complex chains of either disjunctive or implicational reasoning,
that there is a tree in front of a house4.

It is exactly the vividness of the representations upon which total-knowledge models are built
that allows them to disregard proof theory and theorem proving, favouring instead approaches
to document relevance estimation based on the explicit manipulation of the vivid data structure
that represents the complete theory. For instance, in the “imaging” models of [4, 5, 6] documents
are represented as in the Boolean model, but the problem domain is additionally represented by a
probability density function µ(t) on the set of n terms occurring in the document collection (again,
taken to represent the “importance” of the term relative to other terms in the collection), and
by a real-valued function σ(t1, t2) on the set of pairs of terms (taken to represent the “semantic
relatedness” between the two terms). Here, not only the “importance” of all terms is always
assumed known, but it is represented explicitly as a vector of weights of length n; not only the
“semantic relatedness” between any two terms is always assumed known, but it is represented
explicitly as an n× n bidimensional matrix of weights. Should any of these items of knowledge be
not explicitly available, and therefore be inferred on demand from the application of inference rules
to other items of knowledge, the vividness property would be lost, and the methods for reasoning
on vivid representations would no more be applicable5.

2.2 Vivid knowledge bases and data bases

Levesque [13] observed that a vivid knowledge base, being free from disjunctive, implicational
or quantified knowledge, is akin to a relational database, where reasoning is basically achieved
simply by the lookup of the required information in a table where all available information is
stored in ready-to-use form. This suggests the existence of a connection between total-knowledge
logical models of IR and databases. This connection may be better appreciate in the context of
the distinction between the proof-theoretic and the model-theoretic view of databases exposed by
Reiter in his seminal paper [24]. According to

1. the model-theoretic view, a database is an interpretation I of a first-order logical language L,
a query is a formula α of L, and query evaluation may be seen in terms of checking the truth
of α in I;

2. the proof-theoretic view, a database is a set Γ of formulae of a first-order logical language L,
a query is a formula α of L, and query evaluation may be seen in terms of proving that α
belongs to the deductive closure of Γ .

Reiter argues that the proof-theoretic view of databases is more fruitful than the model-theoretic
one. The latter, in fact, shows its limits in the impossibility of dealing with incomplete knowledge
(since first-order interpretations are complete specifications of a state of affairs), null values (since
no “undefined” truth value is catered for by first order semantics), and, above all, domain kno-
wledge. In the next section we will discuss how these issues impact on logical models of information
retrieval.

4 To take propositional logic as an example, one may observe that deciding whether α logically follows
from a knowledge base Γ in vivid form may be achieved by checking whether Γ is a satisfying truth
assignment for α, a substantially easier task that doing unrestricted theorem proving. The careful reader
will remember this observation when reading Footnote 9.

5 Interestingly enough, an analysis of the major traditional (non-logical) models of IR (e.g. [27, 30, 31])
reveals that the total knowledge assumption (or its non-logical equivalent) seems to be “wired” into
information retrieval since its very inception, no doubt because of its greater computational tractability.
This does not mean that the designers of IR models or systems are unaware of the fact that the basic
quantities of IR, such as the “importance” of a term, cannot be determined with certainty; it means
that the systems (viewed as cognitive agents) are!
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3 Model-theoretic and proof-theoretic models of information retrieval

The very idea of a logical model of IR, put forth by van Rijsbergen in [39], relies on the estimation
of the formula P (d → r), where d and r are logical formulae representing the document under
consideration and the request, respectively, P (α) stands for “the probability of α”, and → is
the conditional connective of the logic in question. As discussed in [34], this proposal has been
interpreted by researchers to mean widely different things, and has originated two broad classes
of models, total-knowledge models and partial-knowledge models.

It is the contention of this paper that the difference between total-knowledge and partial-
knowledge models may exactly be seen in terms of Reiter’s distinction between viewing databases
model-theoretically or proof-theoretically.

Let us discuss total-knowledge models first. It suffices to analyse any model in this category
(we will use as examples the “imaging” model developed in [5]) to recognise the basic traits of
Reiter’s model-theoretic view:

– the reliance on a logic L endowed with a model-theoretic semantics for its language L. In [5], L
is the C2 conditional logic, L is the language of propositional letters6, and the semantics is a
model-theoretic semantics based on possible worlds and the “imaging” principle (see e.g. [15]);

– the “representation” of the data encoding the problem domain (i.e. documents, requests, terms,
. . . ) not by the exclusive means of formulae of L, but also by means of a data structure repre-
senting a semantic interpretation I of L, similarly to Point (1) in Section 2.2. In [5] documents
(and requests) are represented by propositional letters, terms are represented by possible
worlds (on which a probability density function µ(t) is defined, representing the importance of
the term relative to other terms in the collection) and the semantic relatedness between terms
is represented by a real valued function σ(t1, t2);

– a reasoning method not aimed at determining validity in L, but aimed instead at determining
truth in the unique satisfying interpretation I, usually by the explicit manipulation of I itself7.
In [5], P (d → r) is computed by revising µ(t) in a d- and σ-dependent way to yield µ′(t), and
to subsequently compute P (r) on µ′(t); no use of the proof theory of C2 is made.

Partial-knowledge models follow instead not only the fundamental traits of Reiter’s proof-theoretic
view of databases, but also the standard guidelines of applied AI-style knowledge representation.
We will take as example the model presented in [32] to illustrate the following basic features:

– the reliance on a logic L endowed with a model-theoretic semantics for its language L. In [32],
L is the P-Mirtl probabilistic description logic, L is its language of “concepts” and “roles”,
and the semantics is, again, a model-theoretic semantics based on possible worlds;

– the representation of the data encoding the problem domain by the exclusive means of for-
mulae of L, similarly to Point (2) in Section 2.2. In [32] documents, requests and terms are
represented by concepts, and their relative “importance” is represented by qualifying concepts
probabilistically;

– a reasoning method aimed at determining validity in L, i.e. truth in the many interpretations
satisfying the representation of the problem domain. In [32], P (d → r) is computed by finding
the real number v ∈ [0, 1] for which P (d → r) = v is valid in the theory representing the
problem domain8.

6 The C2 logic was originally defined on a full propositional language [37].
7 The total knowledge assumption is so widespread in information retrieval (see Footnote 5) that these

two notions are often collapsed in IR models: Wong and Yao [41], for instance, state that “The notion
of relevance in the Boolean model is interpreted as a strict logical implication: a document is retrieved
only if it logically satisfies a request.” See [34] for a thorough discussion of this point.

8 The Datalog-inspired approach of Fuhr [7] is a particular case of the proof-theoretic approach, because
its semantics, being informed by the closed world assumption, is such that the theory that represents the
problem domain is complete, as in the model-theoretic approach. In Reiter’s scheme, the approach of [7]
would thus be classified as proof-theoretic with absence of incomplete information, while the above-
discussed approach of [32] would be labelled proof-theoretic with presence of incomplete information. A
position similar to the one of [7] is adopted in [19].
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At this point, a discussion of the relative advantages and disadvantages of the two opposing views
is in order.

The advantage that accrues from the adoption of the model-theoretic perspective is of a “berry-
picking” nature: rather than exploiting logic (and the tools provided by meta-logic such as the
notions of logical consequence, validity, and the like), one picks one particular intuition embodied
by one particular logic and applies it in what is essentially an extra-logical context. This is the case
of [5], that, rather than exploiting the inferential power of the C2 conditional logic in performing
inference, borrows the particular graph-theoretic topology of C2’s semantic structures and applies
it to the revision of a probability density function for establishing relevance. This is also the case
of [21], that equates the distance that separates a document from “perfect” relevance to a request,
to the distance that separates the nodes representing the document and the request, respectively,
in a graph that resembles the “Kripke structures” used for giving semantics to modal logic. In
not making use of proof-theory (and, hence, of inference) these approaches exploit the underlying
total knowledge assumption, thus avoiding the added computational burden that the existence of
multiple interpretations, which would accrue from the partiality of knowledge, brings about.

Another advantage that should be mentioned is the fact that insights from more traditional
(non-logical) models of IR may be incorporated in a total-knowledge model without effort, as these
other models are also based on the total knowledge assumption. For instance, the idf measure of
the discrimination power of terms may be incorporated in any total-knowledge model that requires
relative term importance to be measured, as both the former and latter models are based on the
common premise that the “weight” of a given term, whatever its interpretation, is always known.

The advantages deriving from the adoption of a proof-theoretic perspective, instead, are due to
the fact that this perspective opens the way to the exploitation of domain knowledge in establishing
relevance. As explained by Reiter [24, page 193], the very possibility of a proof-theoretic view
of DBs “by itself (. . . ) would not be a very exciting result. (. . . ) The idea bears fruit only in
its capacity for generalization”. And the usefulness of opening up the retrieval process to the
incorporation of additional sources of information is amply recognized also from the IR community:
Wong and Yao [41, page 41], for instance, champion the adoption of the “subjective” view of
probability also on the grounds that “it provides an effective means to incorporate semantic
information into the retrieval process”.

We think that the importance of incorporating domain knowledge becomes especially evident
once one considers that the knowledge that should be brought to bear in the retrieval process may
either be

– endogenous, i.e. with an internal origin. This is the case of all types of knowledge that can
be estimated (rather than computed deterministically) through a process of automatic infor-
mation extraction from the document or from the document collection. Examples of this are
the discriminating power of a term (in textual retrieval), the shapes of objects portrayed in
photographs (in image retrieval), or the individual words pronounced by speakers (in speech
retrieval);

– exogenous, i.e. with an external origin. This is the case of all types of knowledge that, either
inherently or due to the limitations of current technology, cannot be extracted automatically,
but have to be provided “manually”, i.e. from an external source; examples of this are the
author of a photograph (in image retrieval) or the nationality of a non-native speaker (in
speech retrieval).

Traditional information retrieval research, from Luhn [16] onwards, has assumed that retrieval
should be based on endogenous knowledge only. Today, this assumption is increasingly challenged
by the emergence of novel applications such digital libraries and multimedia search engines, and by
the increasing convergence of research fields that had traditionally led a separate existence, such
as IR, DBs, and on-line library catalogues. In these newer contexts, the integration of different
sources of knowledge is essential. In order to achieve the level of effectiveness that nowadays users
demand, resource discovery, the reincarnation of IR in the open-ended context of digital libraries,
and multimedia document retrieval, cannot rely exclusively on endogenous knowledge, but need
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to be supported by additional, exogenous information, supplied either by the authors themselves
(e.g. under HTML “META” tags), or by third-party cataloguers. To address requests such as

black and white photographs of successful actors of silent movies

an IR system should rely both on endogenous knowledge (knowing whether the image is a black and
white one; (maybe) knowing whether a person is portrayed) and exogenous knowledge (knowing
whether the portrayed person was an actor; whether he or she was successful; whether he or she
has actually played in silent movies).

To allow the integration of exogenous and endogenous knowledge, a proof-theoretic approach
is essential, as its fundamental assumption that knowledge is incomplete allows different sources of
knowledge to be smoothly integrated, by simply adding together the corresponding sets of formulae
in an incremental fashion.

4 From model- to proof-theory

Is it possible to recast in proof-theoretic terms a model of IR originally designed along model-
theoretic guidelines, and viceversa? Is it worthwhile? An answer to the latter question is implicit
in our discussion of the “berry-picking” advantages of the model-theoretic approach and of the
“exogenous knowledge” advantages of the proof-theoretic one: one might want to embody in one’s
model the intuitions coming from the model-theoretic semantics of a given logic (e.g. the “imaging”
principle exploited in [5]) and, at the same time, want to incorporate exogenous knowledge in the
model. The former question then becomes crucial. It should be clear that the first option (i.e.
model → proof) is possible, while the latter (i.e. proof → model) is not, the reason being that
total knowledge is just a particular case of partial knowledge, but not vice-versa; a situation
in which the knowledge of the domain is only partial is far more complex from the reasoning
viewpoint, and this is well reflected in the smaller computational complexity of model checking
with respect to theorem proving9.

In the case of DBs, the feasibility of the “model → proof” option is well shown by Reiter [24],
who describes a mapping from an interpretation I of a first order language to a first order theory
Γ such that I and Γ provide model-theoretic and proof-theoretic characterisations, respectively,
of the same database. Reiter’s move is well-known in logic (although the relationship was appa-
rently not noticed by Reiter himself), as it is an instance of what is called a standard translation.
In general, a standard translation may be seen as the representation of the model theory of a
logic L in the language (hence, in the proof theory) of a logic L′ �= L10. In the IR literature, a
mapping conceptually similar to Reiter’s (again, the relationship with standard translation, and
with Reiter’s work, was not noticed by the authors) is present in [3, 28] and [33], each dealing
with recasting the C2-based “imaging” models of [4, 5, 6] in terms of a probabilistic logic (Fuhr’s
Probabilistic Datalog [7] in the case of [3, 28], Halpern’s L3 logic [9] in the case of [33]).

As shown in [24], in order for these mappings to be faithful, it is generally necessary to introduce
various axioms whose aim is to restrict the number of satisfying interpretations of the resulting
theory to just one, i.e. the interpretation I from which the whole process began11. Similarly to the
Reiter case, [33] introduces the following (1) domain closure axioms (saying that the only existing
individuals are those referred to from within the database), (2-3) unique names axioms (saying
that different individual constants refer to different individuals), and (4) completion axioms (saying

9 This is basically the same difference between (a) a problem in P and (b) one in NP, as these may
be characterized as (a) one in which a solution may be found polynomially, and (b) one in which a
candidate solution may be checked polynomially [8]. Check also [10].

10 The first and most famous example is the standard translation of modal logic into first order logic,
proposed by van Benthem [38]; a general framework for doing standard translations is presented in [23].

11 Some of these axioms are unneeded, and hence not introduced, in [3, 28], as they are already “wired”
in the logical language (Probabilistic Datalog) onto which the mapping is performed.
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that the only individuals that enjoy a given property are those for which this property is explicitly
predicated).

Term(t1) ∧ . . . ∧ Term(tn)
Doc(d1) ∧ . . . ∧ Doc(dm)
∀x.[x = t1 ∨ . . . ∨ x = tn ∨ x = d1 ∨ . . . ∨ x = dm] (1)
t1 �= t2 ∧ t1 �= t3 ∧ . . . ∧ tn−1 �= tn (2)
d1 �= d2 ∧ d1 �= d3 ∧ . . . ∧ dm−1 �= dm (3)
∀x.¬(Document(x) ∧ Term(x)) (4)

Interesting to our purposes is to note that by removing (or “typing”) one or more of these classes
of axioms from the theory, one may let exogenous knowledge in. For instance, typing our domain
closure axioms means substituting (1) with (5) and/or (6):

∀x.Doc(x) ⊃ (x = d1 ∨ . . . ∨ x = dm) (5)
∀x.Term(x) ⊃ (x = t1 ∨ . . . ∨ x = tn) (6)

which would allow other non-term and non-document entities (i.e. authors) to be talked about,
thus enabling exogenous knowledge to be plugged in.

5 Concluding remarks

In this paper we have elaborated on one of the findings of [34], arguing that the distinction bet-
ween total-knowledge and partial-knowledge models of IR may more fruitfully be interpreted in
terms of Levesque’s notion of vividness and Reiter’s distinction between the model-theoretic and
the proof-theoretic models of databases. This finding has several implications, especially for the
possibility of incorporating knowledge originating from different sources into information retrieval
systems, a necessity rather than a possibility in advanced information seeking environments such
as multimedia document retrieval systems.

Quite independently of the practical impact on these advanced applications, we think that the
present findings contribute in shedding light on some of the current theorizing on IR. To quote
Robertson, we need to spell out the assumptions that underlie systems and models

“not because mathematics per se is necessarily a Good Thing, but because the setting up
of a mathematical model generally presupposes a careful formal analysis of the problem
and specification of the assumptions, and explicit formulation of the way in which the
model depends on the assumptions. (. . . ) It is only the formalization of the assumptions
and their consequences that will enable us to develop better theories.” [25, page 128]
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