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Abstract

Default systems based on the notion of “model-preference” have recently been pro-
posed by Selman and Kautz to give a semantic account of the phenomena involved in
default reasoning and to provide a formal justification for the limited cognitive load
that default reasoning seems to require of human beings. In this paper we argue that
the way these formal systems have been defined makes them inadequate for the task
of reasoning in the presence of both certain information and defeasible information.
We propose a modification to the original framework and argue that it formalizes
correctly the interaction between these two fundamentally different kinds of informa-
tion. We then show that the proposed modification has also a positive effect on the
complexity of model-preference default reasoning.

1 Introduction

Default reasoning plays an important role in everyday practical reasoning. Agents, be they
natural or artificial, typically face situations in which they have to act and make decisions
on the basis of a body of knowledge that is far from being an exhaustive description
of the domain of discourse; this is a direct consequence both of the limited capacity of
their physical repositories of knowledge, and of the fact that the processes involved in the
acquisition of knowledge (both from external sources—e.g. books—and internal ones—e.g.
speculative reasoning) are computationally demanding and time consuming.

Nevertheless, action and decision-making often require more knowledge than our agents
actually possess, thus forcing them to make up for the limited coverage of their knowledge
bases by means of “default” assumptions. As the name implies, “assumptions” have an
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epistemic status that is far from being solid, as they can actually be invalidated by further
reasoning or by the future acquisition of empirical data. These phenomena are well-known
in cognitive science, and have sometimes been taken to imply that a great deal of hu-
man reasoning does not conform to the canons of “logic” and hence escapes attempts at
formalization [5]. Doubtless, the overall effectiveness of human reasoning testifies to the ef-
fectiveness of this modality of reasoning too: humans are much quicker at finding surrogates
of missing knowledge than at actually acquiring this knowledge, either through reasoning
or empirical investigation. And, above all, once these surrogates have been found, humans
are much quicker at reasoning on the resulting complete, albeit epistemically shakier, de-
scription of the domain of discourse than they would be had they to rely on the smaller
part of this description that they trust as being accurate tout court. This observation is at
the heart of the recent interest that the knowledge representation community has shown in
vivid knowledge bases [1, 8, 9], i.e. exhaustive descriptions of the domain of discourse consi-
sting of collections of atomic formulae1. Reasoning on these KBs, which may be considered
as “analogues” of the domain being represented, is easily shown to be efficient.

It is precisely in the face of such empirical considerations that the bad computational
properties of current formalisms that attempt to formalize default reasoning (such as the
ones based on Circumscription [11, 12] or on Autoepistemic Logic [13, 6]) are particularly
disturbing: arguably, a formalism for default reasoning not only should account for the
conclusions that agents draw in the presence of incomplete information, but it also should
possess radically better computational properties than formalisms aimed at reasoning tasks
at which humans are notoriously inefficient (such as e.g. first order logic in the case of
deductive reasoning). Moreover, it is certainly not plausible that, in order to arrive at
knowledge bases upon which fast reasoning can be carried out, humans use a dramatically
inefficient reasoning method.

These considerations lead us to look with special interest at formalizations of default re-
asoning that emphasize computational tractability. In their recent paper “The complexity
of model-preference default theories” [18], Selman and Kautz describe DH+

a , a tractable
system for performing inferences on theories of Acyclic Horn Defaults. Their framework
has the added appeal of possessing a strong model-theoretic flavour2, which allows tho-
rough investigations in the mechanisms underlying the inference processes. It is by means
of such investigations, however, that one can discover that the systems of [18] have an odd
behaviour when confronted with knowledge bases that consist of both certain information
and default information. This is especially disturbing, as we surely would like to account
for the fact that agents, although making heavy use of default reasoning, normally do also

1In formally introducing vivid KBs [8] actually situates his discussion in the framework of the first order
predicate calculus; hence, for him a vivid KB is “a collection of ground, function-free atomic sentences,
inequalities between all different constants (. . . ), universally quantified sentences expressing closed world
assumptions (. . . ) over the domain and over each predicate, and the axioms of equality”. As our discussion
will be situated in the framework of the propositional calculus, we will take this definition of vivid KB
instead.

2A semantics for Selman and Kautz’s model-preference default systems that fully embraces the model-
theoretic credo is described in [17]
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possess information upon which they rely with special confidence. Accordingly, a reasoning
system should enforce a correct interaction between certain knowledge and default kno-
wledge, and account for the different impact that the two kinds of knowledge have on the
overall reasoning process. It is these considerations which inform the attempt, described
in this paper, to tune model-preference default systems in such a way as to make them
behave correctly with respect to the distinction between certain knowledge and defeasible
knowledge.

In order to make this paper self-contained, in Section 2 we give a brief overview of
D+, the most general system described in [18], of which DH+

a is a tractable subset3. In
Section 3 we argue that the two methods proposed in [18] for dealing with the co-presence
of certain information and defeasible information in D+ are, for different reasons, both
inadequate, and characterize two interesting classes of reasoning tasks that are mishandled
by both methods; we proceed to spell out our modifications to D+ and to argue that the
system so obtained handles well the interaction between certain knowledge and defeasible
knowledge (including the two classes of reasoning tasks that had revealed problematic for
the original version of D+). In Section 4 we examine the effects of our modifications on
the computational complexity of model-preference default reasoning; such modifications
allow us to establish new results for reasoning in the presence of both certain knowledge
and defeasible knowledge, and to discover that the presence of certain knowledge has a
beneficial effect on the efficiency of the reasoning process. Section 5 concludes.

2 An overview of Selman and Kautz’s system D+

Roughly speaking, the idea around which the systems of [18] revolve is that the import of a
default d ≡ α → q is to make a model (that is, a complete specification of what the domain
of discourse is like) where both α and q are true be preferred to another model where α is
true but q is not. By combining the effects of the preferences due to the single defaults, a
set of defaults identifies a set of “maximally preferred” models; these models, isomorphic as
they are to vivid knowledge bases, are meant to represent possible ways in which the agent
may “flesh out” his body of certain knowledge by the addition of defeasible knowledge.
For instance, according to a set of defaults such as {a → b, b → c}, the model where a, b
and c are all true would be a maximally preferred model. However, the systems in [18] also
account for the fact that a more specific default should override a less specific one, and
they do so by “inhibiting”, where a contradiction would occur, the preference induced by
the less specific default; this is meant to prevent a set of defaults such as {a → b, b → c,
ab → ¬c, a¬b → ¬c} to generate maximally preferred models where a and c are both true.

The first thing we need to do in order to introduce D+ in detail is to describe what the

3In this paper we will implicitly rule out from consideration the system D, as its lack of commitment to
any specificity ordering between defaults (see below) makes it less interesting than the other systems of [18].
The other systems discussed in [18], DH+ and DH+

a , are restrictions of D+ to the Horn case and to the
Horn Acyclic case, respectively; all modifications that are described in this paper apply straightforwardly
to these more restricted systems.
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language for representing knowledge in D+ is. Let P = {p1, p2, . . . , pn} be a finite set of
propositional letters, and L be the language of formulae built from P and the connectives
¬, ∧ and ∨ in the standard way. We define a default d to be an expression of the form
α → q, where q is a literal (i.e. a propositional letter p in P or its negation ¬p) and α is a
set of literals4. We will also use the standard definition of a model for P as a function M
: P �→ {True, False}; accordingly, we will say that M satisfies a theory T of L (written
as M |= T ) iff M assigns True to each formula in T , formulae in T being evaluated with
respect to M in the standard manner.

The above-mentioned specificity ordering between defaults is captured by stipulating
that, given a set of defaults (or default theory) D, a default d ≡ α → q in D is blocked at
a model M iff there exists a default d′ in D such that d′ ≡ α ∪ β → ¬q and M |= α ∪ β.
A default d ≡ α → q is then said to be applicable to a model M iff M |= α and d is not
blocked at M . If d is applicable at M , the model d(M) is defined as the model which is
identical to M with the possible exception of the truth assignment to the propositional
letter occurring in q, which is assigned a truth value such that d(M) |= q.

Naturally enough, a preference ordering induced on models by a set of defaults D may
at this point be defined. Given a set of defaults D, the relation “≤+” is defined to hold
between models M and M ′ (written M ≤+ M ′) iff there exists d in D such that d is
applicable at M and such that d(M) = M ′. The relation “≤” is defined as the transitive
closure of “≤+”5. Finally, we will say that a model M is maximally preferred (or maximal)
with respect to a set of defaults D iff for all models M ′ either M ′ ≤ M is the case or
M ≤ M ′ is not the case. We understand the task of reasoning in D+ as that of finding an
arbitrary model which is maximal with respect to a given default theory D.

We will illustrate the way D+ works by means of an example6. Let P = {a, b, c}, D =
{a → b, b → c, ab → ¬c, a¬b → ¬c}. ¬abc, ¬a¬bc, ab¬c and ¬a¬b¬c are all and the
only maximal models. Note that if b → c had not been blocked at ab¬c, then abc would
have been maximal too, contrary to intuitions. The example is represented graphically in
Figure 1.

3 Dealing with heterogeneous theories

In the preceding section we have described the process by which the set of maximal models
is singled out from the set of all models of P through the application of a set of defaults

4For notational convenience we will omit braces in antecedents of defaults. Hence we will write e.g.
ab → ¬c instead of {a, b} → ¬c.

5[18] defines “≤” to be the reflexive transitive closure of “≤+”; that this is redundant may be seen by
inspecting the way “≤” is used in the definition of maximal model.

6In the drawings of the following examples, rectangles will denote models represented in the obvious
way (e.g. a¬bc will represent the function that assigns True to a and c and False to b). Arrows will
represent “≤+” relationships. A slashed arrow will represent what would have been a “≤+” relationship
unless a blocking had not occurred. Also, we will omit arrows corresponding to self-loops (i.e. arrows
starting and ending in the same model) as they do not contribute in supporting the maximality or non-
of a model.
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Figure 1: A simple example

D. It is natural, however, to require that a method be also enforced that allows a theory
T of certain facts to be brought to bear in the process of maximal model selection. For
instance, we might want to represent the situation in which, beside knowing that a →
b, b → c, ab → ¬c and a¬b → ¬c, the agent also knows for sure that a is the case. In
this case ¬abc, ¬a¬bc and ¬a¬b¬c should no longer be maximal models, and ab¬c only
should be endorsed. There are two methods that are described in [18] for bringing to
bear certain knowledge in the process of maximal model selection, and their adequacy to
implement a correct interaction between certain and defeasible knowledge will be a central
concern of this paper. But in order to do so, we will first need to make a short digression
on what we consider an “adequate” method of implementing it.

Until now we have largely proceeded on a formal level only, and are thus in need
of providing some empirical justification for the formalism we have chosen. Although
identifying the task of generating a vivid KB with that of finding a maximally preferred
model sounds fairly intuitive, it is by no means clear why the notion of preference we have
formalized should be “the right notion of preference” at all. What we need is a criterion
of empirical adequacy which is independent of the formalization itself, a criterion that
allows us to judge if our systems actually capture the relevant intuitions behind default
reasoning as generation of a vivid KB. Different theorists might obviously have different
intuitions concerning this issue; nevertheless, we will lay down our cards and describe the
two minimal conditions which we think reasonable for a model M to be maximal with
respect to a theory T and a default theory D:

1. M satisfies the theory T ;

2. if M satisfies the antecedent α of a default d ≡ α → q in D, then it also satisfies its
consequent q, unless it also satisfies the antecedent α∪β of a default d′ ≡ α∪β → ¬q
in D.

Someone might object that there is a lot of “tester’s bias” in this criterion, and that it
seems to have been laid out in order to acritically grant a stamp of adequacy to the formal
definition we have presented in Section 2. We will see that this is not so, and that this
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criterion is demanding enough to rule out the definition of maximality enforced by D+.
Quite immodestly, we will call a model satisfying conditions 1 and 2 an intended model; we
will thus consider a model-preference default system empirically satisfactory iff for every set
of defaults D every intended model is also a maximal model and vice-versa. For instance,
it is easy to check that this is indeed the case in the example of Section 2.

We may now switch back to the description of the two methods that are proposed
in [18] in order to account for the interaction between certain and defeasible knowledge.
The first of them consists in encoding certain facts by means of defaults with an empty
antecedent; this style of encoding relies on the fact that the ability to reach a conclusion
starting from an empty set of premises is usually taken as meaning that the conclusion is a
true fact. The situation described above would then be represented by P = {a, b, c}, D =
{φ → a, a → b, b → c, ab → ¬c, a¬b → ¬c}; in this case ab¬ c is in fact the only maximal
model, as shown in Figure 2.

Figure 2: Defaults with empty antecedents

But we feel that this is an unsatisfactory solution, as encoding certain facts as defaults
with empty antecedents exposes them to blockage by more specific defaults, i.e. by items
of knowledge that, although being more specific, have a weaker epistemic status than any
item of certain knowledge. That this solution licenses undesired conclusions is shown by
the following example. Let P = {a, b, c}, D = {a → b, b → c, ab → ¬c, a¬b → ¬c, φ →
a, φ → ¬b}, where the intended interpretation of the last two defaults is “a is certainly the
case” and “¬b is certainly the case”. The only intended model is a¬b¬c but, as shown
in Figure 3, it is not a maximal model. On the contrary, ab¬c is maximal (actually, it
is the only maximal model) but is not intended. Basically, this happens because a → b
is allowed to block φ → ¬b at models where a is true. Instead, we think that an item of
defeasible knowledge should never be allowed to invalidate an item of certain knowledge;
rather, the opposite view should be enforced, with certain knowledge inhibiting the effect of
defeasible knowledge when a contradiction would otherwise occur. The preceding example
shows that, so to speak, this semantics (or, better, this semantics together with the style of
encoding certain knowledge that it encourages) is neither sound nor complete with respect
to the intuitive, pre-theoretical semantics of default reasoning supposedly embodied by our
adequacy criterion.
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Figure 3: Improper behaviour

Let us then consider the second solution to the integration of certain and defeasible kno-
wledge that is described in [18]. This solution relies on a different definition of maximality,
according to which a model is maximal with respect to what we will call a heteroge-
neous theory 〈D, T 〉 (where D is a default theory and T is a theory) iff M |= T and for
all models M ′ such that M ′ |= T either M ′ ≤ M is the case, or M ≤ M ′ is not the
case. In other words, in order to be maximal a model must first of all satisfy T , and
its would-be maximality can only be prevented by another model which itself satisfies
T . We can see that the modified system handles the preceding example correctly: let
P = {a, b, c}, D = {a → b, b → c, ab → ¬c, a¬b → ¬c}, T = {a,¬b}. As remarked above
a¬b¬c is the only intended model; as shown in Figure 4, it is now also the only maximal
model7.

Figure 4: Maximality wrt heterogeneous theories

But we feel that this solution too is unsatisfactory, and again we feel that the reason
lies in an overestimation of the role of defeasible knowledge in its interaction with certain
knowledge. To see what the problems involved are, let us introduce two new definitions. We
will say that there is an internal path between two models M and M ′ (written M ≤i M ′) iff
there exist models M1, . . . , Mn (with M ≡ M1 and M ′ ≡ Mn) such that Mi ≤+ Mi+1 for

7In the drawings of this section grey areas represent the set of models that satisfy T .
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all i = 1, . . . , n− 1 and such that Mi |= T for all i = 1, . . . , n. Conversely, we will say that
there is an external path between two models M and M ′ such that M |= T and M ′ |= T
(written M ≤e M ′) iff there exist models M1, . . . , Mn (with M ≡ M1 and M ′ ≡ Mn) such
that Mi ≤+ Mi+1 for all i = 1, . . . , n−1 and Mj �|= T for some j = 2, . . . , n−1. Intuitively,
an external path is a path which goes through at least one model that does not satisfy T .

Our qualms with the (second) definition of maximality described in [18] have to do
with the fact that it still allows defeasible knowledge to override certain knowledge that
contradicts it, and accomplishes this by allowing external paths to support either the ma-
ximality or non- of a model. We therefore proceed to give a new definition of maximality,
one where external paths are ruled out from consideration, and argue that in all cases in
which the original definition differs from the new one, the former yields unintuitive results
while the latter does not.

The basic step of this new definition is actually the relativisation of the preference
ordering “≤+” with respect to a theory T . We hereby define the relation “≤+” wrt a
heterogeneous theory 〈D, T 〉 as the relation which holds between models M and M ′ iff
M |= T, M ′ |= T and there exists d in D such that d is applicable to M and such that
d(M) = M ′. As in the original version, “≤” is defined as the transitive closure of “≤+”,
and M is maximal wrt 〈D, T 〉 iff M |= T and for all M ′ such that M ′ |= T either M ′ ≤ M is
the case or M ≤ M ′ is not the case. It is simple to check that defining maximality this way
is equivalent to substituting “≤i” for “≤” in the original definition. In order to distinguish
between the two notions of maximality we will henceforth speak of ≤i-maximality and
≤-maximality, respectively.

In what cases ≤i-maximality and ≤-maximality yield different results may be checked
by truth table analysis. This analysis, although straightforward, is fairly tedious, and
is then confined to Appendix A. The basic result is that there are two cases in which
≤i-maximality and ≤-maximality differ: we will call instances of the former case type-1
theories and instances of the latter type-2 theories. Let us analyze them orderly.

In type-1 theories we have a model M that is not intended and is not ≤i-maximal but is
≤-maximal. This is caused by the presence of an external path leading from M ′ to M and
supporting the ≤-maximality of M , and by the absence of a similar but internal path to
support its ≤i-maximality. The following example is a type-1 theory. Let P = {a, b, c}, D =
{ab → c, c → ¬a,¬ab → ¬c, b¬c → a}, T = {a, b}. abc is the only intended model and,
as shown in Figure 5, is also the only ≤i-maximal model. abc is also ≤-maximal; note,
however, that also ab¬c is ≤-maximal, although it is not intended.
In type-2 theories we have quite the opposite situation, i.e. there is a model M that is
intended and is ≤i-maximal but is not ≤-maximal. This is caused by the presence of an
external path leading from M to a model M ′ which prevents the ≤-maximality of M , and
by the absence of a similar but internal path to prevent its ≤i-maximality. The following
example is a type-2 theory. Let P = {a, b, c}, D = {b¬c → ¬a,¬ab → c, bc → a}, T =
{a, b}. abc and ab¬c are the only intended models and, as shown in Figure 6, are also the
only ≤i-maximal models; abc is also ≤-maximal but ab¬c is not, although it is intended.
These examples show that also the second solution described in [18] to the problem of
model-preference reasoning in heterogeneous default theories is, so to speak, neither sound
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Figure 5: Improper behaviour. A type-1 theory
.

Figure 6: Improper behaviour. A type-2 theory

(as shown by type-1 theories) nor complete (as shown by type-2 theories) with respect to
the intuitive, pre-theoretical semantics of default reasoning. Quite apart from this, they
also show that the problem lies in paths involving models that do not satisfy the theory T ,
and that ≤i-maximality, by excluding these paths from consideration, actually implements
the correct behaviour.

From an empirical standpoint, the idea that these paths and models should be neglec-
ted is informed by the general principle according to which the co-presence of knowledge
endowed with a higher epistemic status (or, according to the terminology of [2], knowledge
that is more “epistemically entrenched”) should have the reasoning process disregard kno-
wledge endowed with a lower epistemic status that contradicts it. In our case, this means
that the application of a default to a state of affairs which is inconsistent with the certain
knowledge is deemed not only irrelevant but actually misleading, and so is the application
of a default that yields such a state of affairs.

It might be legitimate, at this point, to ask ourselves whether ≤i-maximality is sufficient
in itself to make D+ and the other [18] systems comply with the adequacy criterion in
Section 3. Somehow surprisingly, the answer is no. This is due to the fact that the
adequacy criterion we have laid out can be met only by formalisms that make “→” enjoy
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contraposition, the property of some conditional notions “⇒” (e.g. material implication in
classical logic, strict implication in modal logic) according to which a ⇒ b entails ¬b ⇒ ¬a.
We indeed think that the pre-theoretical notion of default implication (if only there exists
such a thing) does enjoy contraposition, and this is why we did not yield to the temptation
of adding “. . . or unless ¬q belongs to T” to clause 2 of the criterion, an addition that would
have exempted a formalism from endorsing contraposition. Neither the systems of [18] nor
their modifications as resulting from ≤i-maximality endorse it. Nevertheless, modifying
them to this effect would be an easy matter (essentially, this would involve redefining d(M)
to be a set of models rather than a single model). More importantly, contraposition is not
an issue which is specific to the interrelation of certain and defeasible knowledge (it is
surely pertinent also to defeasible knowledge alone), and therefore falls outside the scope
of this paper. We may then legitimately consider ≤i-maximality as having successfully
accomplished the goal of meeting the adequacy criterion.

4 Complexity issues

As one of the most important contributions of [18] is the establishment of complexity
results for reasoning in model-preference default theories, it would be useful to understand
whether these results carry over to systems where ≤i-maximality is used, and whether new
results can be established for such systems. As ≤-maximality and ≤i-maximality coincide
when the theory T is empty, we will be interested in results concerning the case when T is
non-empty. These two cases, that we will dub the “homogeneous” and the “heterogeneous”
case, respectively, have been shown in [18] to have, in general, different complexity. For
example, the problem of reasoning in DH is linear in the homogeneous case, while in the
heterogeneous case it is polynomial if T is a set of literals and NP-hard if T is a set of
Horn clauses. Also, for some of these systems results are known for the homogeneous case
but not for the heterogeneous case; in particular, for the homogeneous case NP-hardness
results for D and DH+ and a polynomial result for DH+

a are reported in [18], but the
corresponding results for the heterogeneous case are still unknown.

As remarked in [18], the problem of finding a model which is maximal wrt a pair 〈D, T 〉
is best viewed as a search problem [3]. The main result of this paper is that, for any model-
preference default system considered in [18] and variations thereof, if T is a set of literals
and ≤i-maximality is used, the search problem in the heterogeneous case is no harder
than the homogeneous case. The result is based on the key observation that, in both
cases, only internal paths are allowed (internal to the set of all models of the language
P in the former case, and to the set of all models satisfying T in the latter), whereas,
according to ≤-maximality, external paths are allowed in the heterogeneous case but not
in the homogeneous case.

Theorem 1 The search problem for S i with HD-theories 〈D, T 〉 (with T a set of literals)
belongs to the same complexity class of the search problem for S with empty T , where S is
any model-preference default system discussed in [18] and S i is the version of S relying on
≤i-maximality.
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In [16] we prove this theorem by giving an algorithm that, given an HD-theory 〈D, T 〉
(where T is a set of literals) defined on some alphabet P , builds a default theory D′

defined on P−PT (where PT is the set of propositional letters in P that occur in T ) such
that, whenever a model M is ≤-maximal wrt D′, the model M ∪ T is ≤i-maximal wrt
〈D, T 〉8. This algorithm is linear in the number of occurrences of literals in D. Essentially,
what the algorithm does is inspecting the set D, eliminating from it any default that does
not contribute to the determination of ≤i-maximality (either because its consequent is in
T , or because its antecedent or its consequent are inconsistent with T ) and eliminating
from the antecedents of the remaining defaults all literals that already appear in T . The
models of P that satisfy T and the preference relations between them that are induced by
D form a graph that is isomorphic to the one formed by the models of P−PT and by the
preference relations between them that are induced by D′. Due to the isomorphism, there
is a one-to-one correspondence between ≤i-maximal models endorsed by the former graph
and ≤-maximal models endorsed by the latter.

Table 1 summarizes complexity results in the heterogeneous case (with T a set of
literals) for the main model-preference default systems.

D DH DH+ DH+
a

≤ ? P ? ?
≤i NP-hard linear NP-hard P

Table 1: The complexity of simple heterogeneous theories

Also, note that although the homogeneous and heterogeneous case have the same theo-
retical complexity, the heterogeneous case is in practice much simpler (somehow in contrast
with what happens for ≤-maximality). For example, the search problem for the homoge-
neous case of DH is O(n), where n is the number of occurrences of literals in D. Although
the heterogeneous case (with ≤i-maximality) of DH is still O(n), n is now the number of
occurrences of literals in D′, a subset of D. That by adopting ≤i-maximality the heteroge-
neous case should be simpler is also apparent from the fact that the presence of a theory
T consisting of a set of k literals transforms the problem of searching the set of all models
of the propositional language P into the one of searching only the set of those models that
satisfy T : the latter graph has 2k times less nodes than the former. This accounts for the
rather intuitive fact that, as the amount of certain information increases, the amount of
computational resources required to “flesh out” the knowledge base should proportionally
decrease.

8For convenience here we think of a model as the largest set of literals that is satisfied by it.
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5 Conclusion

We have shown how two methods proposed in [18] fail, for different reasons, to capture
what we think the correct interaction between certain and defeasible information should
be. The modified definition of maximality (“≤i-maximality”) we have provided has been
shown to be the notion of maximality that better represents our intuitions of how default
reasoning should accommodate the interaction between these two fundamentally different
types of information. When this notion of maximality is plugged in, not only reasoning
in the presence of a theory T consisting of a set of literals is provably no harder than
reasoning with an empty T , but is likely to be, in practice, much more efficient.
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A Comparing ≤i-maximality and ≤-maximality

The truth table that establishes type-1 and type-2 theories as all and the only types
of theories in which ≤i-maximality and ≤-maximality differ is spelled out in Table 2.
The ≤i-maximality (column v) and ≤-maximality (column vi) of a model M satisfying a
propositional theory T is represented as a function of the simple conditions ∀M ′.(M ′ ≤i M)
(column i), ∃M ′.(¬M ′ ≤i M ∧ M ≤i M ′) (column ii), ∀M ′.(M ′ ≤ M) (column iii) and
∃M ′.(¬M ′ ≤ M ∧ M ≤ M ′) (column iv); all models considered in this Appendix satisfy
T . Condition 5 is the conjunction of 1 and the negation of 2, while 6 is the conjunction of
3 and the negation of 4.

Note that 9 of the 16 rows are not even taken into consideration as, for different reasons,
they depict impossible situations. For instance, rows 1 through 4 are ruled out on the
grounds that the conditions corresponding to columns i and ii cannot be true at the same
time, unlike the simultaneous presence of True in the first two columns of these rows would
imply. Similarly, the simultaneous presence of True in columns iii and iv rules out rows
1, 5, 9 and 13; the simultaneous presence of True in columns i and iv rules out rows 1,
3, 5 and 7, and the simultaneous presence of True in column i and of False in column iii
rules out rows 3, 4, 7 and 8. In all these cases, the incompatibility of the two conditions
corresponding to the two columns at issue is easy to check.

Among the 7 rows that are left, rows 6, 11, 14 and 16 agree on the values assigned to
≤i-maximality and ≤-maximality. Instead, rows 10, 12 and 15 assign different values to
the two notions.
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However, a closer analysis shows that the truth conditions corresponding to rows 10
and 12 actually come down to representing the same situation, as far as the motivations for
the dissimilarity between ≤i-maximality and ≤-maximality are concerned. In fact, row 10
corresponds to the situation in which ∃M ′.(¬M ′ ≤i M∧ M ≤i M ′))∧ ∀M ′.(M ′ ≤ M) while
row 12 corresponds to the situation in which ∃M ′.(¬M ′ ≤i M∧ M ≤i M ′)∧ ∃M ′′.(¬M ′′ ≤
M) ∧ ∀M ′′′.(M ′′′ ≤ M ∧ ¬M ≤ M ′′′)); the only difference is that in row 10 the existence
of an “isolated model” (i.e. one which has no relation of preference whatsoever, either
outgoing or incoming, with M) is stated, while the existence of such a model is ruled
out in row 10. Since the mere existence of such a model does not have any influence in
supporting the truth or falsity of the conditions corresponding to columns v and vi, we may
consider the situations corresponding to rows 10 and 12 to be actually the same situation.

Row 10 and 12 correspond then to what we have called type-1 theories, while row 15
corresponds to type-2 theories.

i ii iii iv v vi
1 True True True True

2 True True True False

3 True True False True

4 True True False False

5 True False True True

6 True False True False True True

7 True False False True

8 True False False False

9 False True True True

10 False True True False False True

11 False True False True False False

12 False True False False False True

13 False False True True

14 False False True False True True

15 False False False True True False

16 False False False False True True

Table 2: The functional behaviour of ≤i-maximality and ≤-maximality.
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