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1 Introduction

In recent years a number of positive (i.e. tractabi-
lity and decidability) results have been found concer-
ning the computational complexity of Description Lo-
gics (DLs) [Buchheit et al., 1993; Donini et al., 1991;
Donini et al., 1992a; Donini et al., 1992b; Schmidt-
Schauß and Smolka, 1991; Sebastiani and Straccia, 1991].
Unfortunately, also negative results have appeared, e.g.
showing that some DLs (e.g. NIKL [Patel-Schneider,
1989] and KL-ONE [Schmidt-Schauß, 1989]) are undeci-
dable. This work contributes to this latter literature by
showing a negative result for another DL (called Mirtl)
which had not been previously studied from the stan-
dpoint of computational complexity, and which is not
directly related to the ones already shown undecidable;
in more standard DL terminology, Mirtl is the ALEN
logic plus the I operator for inverse roles and the O1

operator for singleton concepts1.
We have recently been investigating the use of Mirtl

for modelling multimedia information retrieval (see [Me-
ghini et al., 1993; Sebastiani, 1994]). Given the require-
ments imposed by this application domain, and given the
well-known negative results on the computational com-
plexity of more powerful DLs, we had deemed Mirtl
the best compromise between expressivity and tractabi-
lity for our purposes. Somehow encouraged by the fact
that the standard reasoning problems in the related lo-
gics ALCNR [Buchheit et al., 1993], ALCO [Schaerf,
1994] and ALNI (also known as PL1) [Donini et al.,
1991] are all decidable, and considering that the well-
known algorithms based on constraint propagation for
reasoning on them tend to be easily customizable to a

∗This work has been carried out in the context of the
project FERMI 8134 - “Formalization and Experimentation
in the Retrieval of Multimedia Information”, funded by the
European Community under the ESPRIT Basic Research
scheme.

1This latter operator is a restricted form of the O operator
(also known as one-of); the extension of a singleton concept
{a} is just the singleton containing the individual denoted by
a.

chosen set of operators, we had thought that developing
a sound and complete algorithm for Mirtl could be re-
asonably straightforward.

Unfortunately, while trying to develop such an algori-
thm, we discovered that Mirtl does not have the finite
model property: i.e. there are satisfiable Mirtl concepts
(and assertions, and KBs) which are satisfiable only in
interpretations of infinite cardinality. Although this re-
sult is not one of full-blown undecidability2, it however
casts a shadow on the possibility of making practical use
of such a logic. In fact, since the constraint propagation
algorithms by now standard in the field of DLs prove
the satisfiability of a concept by building a finite mo-
del of the concept, these algorithms are not applicable
to Mirtl unless one renounces to guaranteed termina-
tion, or unless one builds some non-trivial loop-detecting
control structure into them.

Once we abandon the idea of checking the satisfiability
of a concept by building a finite model for it, the problem
arises whether an alternative method exists or not. We
have thus tried to find an upper bound to the comple-
ment of the satisfiability problem, i.e. to find a threshold
under which possible inconsistencies should necessarily
show up and above which no new inconsistency could
emerge any more. This work reports on some negative
results we have obtained in this direction, and which mi-
ght constitute a prelude to a true undecidability result3.

2 Mirtl admits infinitary concepts

The language of Mirtl includes primitive concepts (A),
negation of primitive concepts (¬A), concept conjunc-
tion (C � D), universal quantification (∀R.C), quali-

2There are in fact decidable logics that do not have the
finite model property; see e.g. [Hughes and Cresswell, 1984;
page 154] or [Vardi and Wolper, 1986].

3Until recently we actually thought we had an undecida-
bility proof for Mirtl, based on a reduction of the halting
problem for a model of computation equivalent to Turing
Machines; the proof was then shown to contain a mistake by
Diego Calvanese, a mistake that we have not been able to fix
yet.



      

fied existential quantification (∃R.C), number restric-
tions ((≥ n R) and (≤ n R)), inversion of roles (R−1) and
singleton concepts ({a}). We will also use the notation
(= n R) in place of (≥ n R)� (≤ n R), and the notation
f(R).C in place of (= 1 R) � (∀R.C). Finally, Mirtl
allows assertions C[a] and R[a, b], where C is a concept,
R is a role and a, b are individual constants; C[a] states
that a is an instance of C, whereas R[a, b] states that
〈a, b〉 is an instance of R. The semantics of these expres-
sions is standard (see e.g. [Donini et al., 1992a]), so it
will be omitted here.

Consider now the following Mirtl concept:

{z} � (≤ 0 S−1) �
f(S).(f(G−1).{z}) � (1)
∀G.(f(S).((= 1 S−1) � f(G−1).{z})

The effect of concept (1) is to state some properties of
the natural number zero (z); for instance, it states that
z has no predecessor (S−1) and a unique successor (S),
and that all the numbers greater than z have a unique
successor, which in turn is greater than z and has a uni-
que predecessor.
Theorem 2.1 Concept (1) admits only infinite models.
Concept (1) is satisfiable, as it admits the following in-
finite model:

D = {0, 1, 2, 3, . . .}
zI = {0}
SI = {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, . . .}
GI = {〈0, 1〉, 〈0, 2〉, 〈0, 3〉, . . .}

It can also be shown that if an interpretation I is a model
of concept (1), then I must be defined on an infinite
domain {zI , d1, . . . , dn, . . .} such that the extension of G
contains {〈zI , d1〉,. . . ,〈zI , dn〉,. . .} and the extension of
S contains {〈zI , d1〉,〈d1, d2〉,. . . , 〈dn−1, dn〉,. . .}.

This shows the existence of Mirtl concepts which
are satisfied only in interpretations with infinite do-
main; we will call them infinitary concepts. Similar
concepts had already been shown to exist for other
DLs, albeit substantially more expressive [Schild, 1991;
Calvanese et al., 1994].

The presence of infinitary concepts has the prac-
tical consequence that the standard methods based
on constraint propagation (e.g. the methods discussed
in [Schmidt-Schauß and Smolka, 1991; Buchheit et al.,
1993]) do not work properly; since these methods at-
tempt to build a model of the concept they want to prove
consistent, once applied to infinitary concepts they loop
forever, unless they are endowed with a control struc-
ture able to detect the construction of an infinitely self-
replicating structure (which every Mirtl infinitary con-
cept, from what our experiments have shown, seems to
contain).

The existence of Mirtl infinitary concepts has a com-
putational counterpart in what might be called self-
reactivating constraints: as a consequence of the inte-
raction among Mirtl propagation rules (in particular,
the rules for universal quantification, role inversion and
singleton), some constraints may be such that the rules
that process them generate the same activating condi-
tions that obtained before the application of the rule
(thus inducing an infinite loop).

After having noticed this, in our search for a decidabi-
lity result for Mirtl, we had hoped to find, nonetheless,
an upper bound on the number of steps necessary to find
a clash deriving from an inconsistent Mirtl concept. If
we had found such an upper bound, say k, decidabi-
lity would have been established, as a Mirtl concept
could be declared satisfiable after the k-th step had fai-
led to produce a clash. Unfortunately, this strategy pro-
ved ineffective: for every f(n) (where n is the size of the
concept) that we had, in repeated attempts, conjectured
to be such an upper bound, we were able to discovered
an unsatisfiable Mirtl concept which generated a clash
well after f(n) steps. As we will see in the next section,
this has happened for functions f of increasing order of
magnitude.

3 Looking for an upper bound

Once we abandon the idea of checking the satisfiability
of a concept by building a model for it, the problem ari-
ses whether an alternative method exists or not. To this
end, we have studied the computational behaviour of
various categories of infinitary concepts. For instance, if
we graphically represent a constraint system as a direc-
ted graph, in which nodes represent objects (individual
constants or variables) and the set of concepts constrai-
ning them, and edges represent binary assertions bet-
ween them (the edge is oriented from the first element
of the assertion to the second), concept (1) generates
a graph that contains an infinite subgraph like the one
shown in Figure 1).

By analyzing the structure of the constraint sets that
infinitary concepts generate, we have noticed that the
generated graph has the following structural property:
it is composed by a “kernel” subgraph, in which all the
constants appearing in the concept and some variables
occur, to which other subgraphs are connected that re-
peat ad infinitum portions of the kernel subgraph. This
shows that the constraint propagation process, after a
finite number of de-activations of the same ∀-constraint,
completes the construction of the kernel subgraph and
starts building an infinite number of replicas of portions
of it.

After observing this, we have tried to individuate the
step of the constraint propagation process at which the
building of the kernel subgraph is completed and the



       

z
G❅

❅
❅❅❘G

❆
❆
❆
❆
❆
❆❆

G

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈

G✲y1

S

❄
y2

S
❄
y3

S
...
S

❄
yn

S
❄...

Figure 1: (Partial) graphical representation of the con-
straints generated by Concept (1).

building of the replicas start. In fact, once this step
were individuated, the problem would be solved: in fact,
it would suffice to check if the kernel subgraph (plus a
small number of replicas) contained an inconsistency, as,
if this were not the case, also the replicas would not con-
tain any inconsistency, and the concept could be deemed
satisfiable without any further rule application.

In other words, what we have been looking for is an
upper bound to the complement of the satisfiability pro-
blem (co-CS), i.e. a threshold under which possible in-
consistencies should necessarily emerge and above which
no new inconsistency could possibly emerge. We have
tried to find such an upper bound as an upper bound
on the number of de-activations of the same constraint,
expressed in terms of the size d of the initial concept.
In fact, as we have already argued, the cause of non-
termination of the computation is the re-activation of a
constraint. Hence, we have made the hypothesis that, by
limiting this number, one could limit the generation ad
infinitum of replicas of portions of the kernel subgraph.
We then started an empirical study in order to identify
the maximum number of activations of the same con-
straint beyond which the procedure diverges and builds
an infinite model.

3.1 Concepts denoting natural numbers
(or: the d limit)

In Section 2 we have seen that the procedure of con-
straint propagation diverges when applied to concept
1. By examining the constraint system generated after
h < d de-activations of the self-reactivating constraint

(∀G.(f(S).((= 1 S−1) � f(G−1).{z})))[z]

one can verify that no clash occurs in it. Within d activa-
tions, inconsistencies due to arbitrarily nested concepts
like the following, are discovered:

((∀ R.((∃ P.(∃ R−1.{i})) �
(∀ P−1.(∀ P−1.(∀ P−1.(∀ P−1.C ′)))))) � (2)
(∃ R) � {i})

The peculiarity of this case comes from the depth of the
syntactic tree of concept 2; the subconcept C ′ is to be
found at depth level 7. In order for C ′ to constrain an
individual, it is necessary that the longest branch of the
syntactic tree is completely explored. At this point, C ′

constrains the individual constant i, and from the develo-
pment of C ′[i] a clash may arise (e.g. if C ′ = (≤ 0 R)),
or the infinite generation of variables may be blocked
(C ′ = (≤ n R)), or still other things may happen.

3.2 Concepts denoting the multiples of a
natural number (or: the d2 limit)

The d limit has resisted numerous empirical tests, until
we have been able to find a Mirtl concept denoting the
set of the multiples of a natural number. For instance,
the set of multiples of 2 may be represented by the fol-
lowing Mirtl concept:

(0) C3 = ({z} �
(1) (≤ 0 E−1) �
(2) (≤ 0 O−1) �
(3) (≤ 0 E) �
(4) (= 1 O) �
(5) (∃ M.{t}) �
(6) (∃ G.(∃ O−1.{z})) �
(7)(7’) (∀ G.((∀ O−1.(∀ O.((= 1 O−1) �

(≤ 0 O) �
(≤ 0 E−1) �
(= 1 E) �
(∀ E.((∃ G−1.{z}) �

(∃ M.{t})))))) �
(7”) (∀ E−1.(∀ E.((= 1 E−1) �

(≤ 0 E) �
(≤ 0 O−1) �
(= 1 O) �
(∀ O.(∃ G−1.{z}))))))))

If we interpret the roles O, E, M e G as the “odd succes-
sor”, “even successor”, “multiple-of” and “bound above
by”, one may see that C3 denotes the set of even num-
bers; in fact, starting from the individual constant z and
generating variables y1, y2, . . . , only variables with an
even subscript are put in relation with the the individual
constant t. In fact, the first sub-concepts state that the
natural number 0 (subconcept 0) is neither the even suc-
cessor of a number (1), nor its odd successor (2); also, 0
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Figure 2: Graphical representation of the set of con-
straints denoting the multiples of 2.

does not have any even successor (3), has exactly an odd
successor (4), is a multiple of 2 (6). Subconcept (7) (i.e.
the one which generates the self-reactivating constraint)
states that the odd successors of their predecessor have
an even successor which is both a multiple of two and a
positive number, while the even successors of their pre-
decessors have an odd successor which is positive. In this
way, a set of constraints is generated which is partially
represented in Figure 2.

Each relation of type M is generated after two acti-
vations of the constraint (∀ G . . . ). In a similar way, it
would be possible to describe the multiples of 3, 4, etc..

Note that in the self-reactivating constraint (7) the
disjunction of two concepts is simulated by means of two
occurrences of the ∀ operator; in fact, of the two sub-
concepts:

(7’) (∀ O−1.(∀ O.(. . .)))
(7”) (∀ E−1.(∀ E.(. . .)))))

only one is activated when they are applied to the same
variable. The activation depends on the subscript of
the variable: variables with even subscript k represent
the even successor of the k − 1 variable; variables with
odd subscript k represent the odd successor of the same
variable.

In order to describe the multiples of the numbers gre-
ater than 2 it is sufficient to modify concept C3 by chan-
ging roles E and O into S0 and S1, and adding as many
roles Sj and as many subconcepts (∀ S−1

j .(∀ Sj . . . .))) as
the number whose successors we want to represent (Sj

stands for “successor modulo j”).
This concept, which is in itself satisfiable, can be used

in order to write unsatisfiable concepts whose first clash
occurs after d activations of a constraint. In fact, if the
individual constant t were constrained by concept (≤
k M−1), for some k, the clash would be generated only
after n(k + 1) − 1 de-activations of the self-reactivating
constraint, where n is the number of subconcepts of type

(∀ S−1
j .(∀ Sj . . . .))) of the self-reactivating constraint. As

the numbers n and k have the same order of magnitude
of the dimension d of the original concept, the first clash
will appear in the constraint system before O(d2) steps
but after O(d) steps.

3.3 Concepts denoting the first n powers
of a number (or: the dd limit)

If we substitute, within concept 1 the self-reactivating
subconcept:

(∀G.(f(S).((= 1 S−1) � f(G−1).{z})
by

(∀ G.f(S).((= 1 S−1) �
f(G−1).{z} �
(∃ R1.((≤ n R−1

1 ) �
(∃ R2.((≤ n R−1

2 ) �
(∃ R3.((≤ n R−1

3 ) �
{t}))))))))

we obtain an unsatisfiable concept, whose first clash ap-
pears within the constraint system after d2 activations of
the self-reactivating constraint. In fact, during the ap-
plication of the propagation rules, the subconcept (∃ R1

. . . ) generates within the graph of Figure 3 a path of
length 3 ending with the individual constant t. When a
path for every variable yj is generated, a tree is created
with root t and depth 3. As the individual constant t is
constrained by concept (≤ n R−1

3 ), when variable yn3+1

is generated (at the n3+1-th disactivation of the (∀ G . . .)
constraint, the first clash appears within the constraint
system. Adding a role to path R1, R2, . . . corresponds
to incrementing by one the depth of the tree, and con-
sequentially incrementing by one the value h of the ex-
ponent; instead, modifying the value n of the number
restrictions corresponds to modify the width of the tree,
and consequentially modifying the base n. Obviously,
both h and n are strictly smaller than d, but still remain
of the same order of magnitude; hence, the number of
de-activations of a constraint remains exponential in the
dimension d of the original concept C.

It is also possible to combine these two latter sources
of complexity (multiples of a number (d2) and powers of
a number (dd)), by generating the role R1 only for the
multiples of a number; this brings the maximum number
of activations to d · dd.

4 Conclusions

In this work we have shown that Mirtl does not enjoy
the finite model property, and have discussed some con-
sequences of this fact. In particular, we have argued
that, even if Mirtl should be proven decidable (which
is still, to the best of our knowledge, an open problem),
reasoning on it by means of constraint propagation algo-
rithms is probably going to be computationally onerous,
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Figure 3: Graphical representation of the constraints de-
noting the first power of 2.

as Mirtl concepts may be written which generate cla-
shes only after a computationally unfeasible number of
steps.
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