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Abstract. We tackle two different problems of text categorization (TC),
namely feature selection and classifier induction. Feature selection (FS)
refers to the activity of selecting, from the set of r distinct features (i.e.
words) occurring in the collection, the subset of r′ � r features that are
most useful for compactly representing the meaning of the documents.
We propose a novel FS technique, based on a simplified variant of the
χ2 statistics. Classifier induction refers instead to the problem of auto-
matically building a text classifier by learning from a set of documents
pre-classified under the categories of interest. We propose a novel variant,
based on the exploitation of negative evidence, of the well-known k-NN
method. We report the results of systematic experimentation of these
two methods performed on the standard Reuters-21578 benchmark.

1 Introduction

Text categorization (TC) denotes the activity of automatically building, by means
of machine learning techniques, automatic text classifiers, i.e. systems capable of
labelling natural language texts with thematic categories from a predefined set
C = {c1, . . . , cm} (see e.g. [6]). In general, this is actually achieved by building
m independent classifiers, each capable of deciding whether a given document
dj should or should not be classified under category ci, for i ∈ {1, . . . , m}1.
This process requires the availability of a corpus Co = {d′1, . . . , d′s} of preclas-
sified documents, i.e. documents such that for all i ∈ {1, . . . , m} and for all

1 We here make the assumption that a document dj can belong to zero, one or many of
the categories in C; this assumption is verified in the Reuters-21578 benchmark we
use for our experiments. All the techniques we discuss here can be straightforwardly
adapted to the other case in which each document belongs to exactly one category.



j ∈ {1, . . . , s} it is known whether d′j ∈ ci or not. A general inductive process
(called the learner) automatically builds a classifier for category ci by learning
the characteristics of ci from a training set Tr = {d′1, . . . , d′g} ⊂ Co of docu-
ments. Once a classifier has been built, its effectiveness (i.e. its capability to
take the right categorization decisions) may be tested by applying it to the test
set Te = {d′g+1, . . . , d

′
s} = Co − Tr and checking the degree of correspondence

between the decisions of the automatic classifier and those encoded in the corpus.
Two key steps in the construction of a text classifier are document indexing

and classifier induction. Document indexing refers to the task of automatically
constructing internal representations of the documents that (i) be amenable
to interpretation by the classifier induction algorithm (and by the text classi-
fier itself, once this has been built), and (ii) compactly capture the meaning of
the documents. Usually, a text document is represented as a vector of weights
dj = 〈w1j , . . . , wrj〉, where r is the number of features (i.e. words) that occur at
least once in at least one document of Co, and 0 ≤ wkj ≤ 1 represents, loosely
speaking, how much feature tk contributes to the semantics of document dj .
Many classifier induction methods are computationally hard, and their compu-
tational cost is a function of r. It is thus of key importance to be able to work
with vectors shorter than r, which is usually a number in the tens of thousands
or more. For this, feature selection (FS) techniques are used to select, from the
original set of r features, a subset of r′ 	 r features that are most useful for
compactly representing the meaning of the documents. In this work we propose
a novel technique for FS based on a simplified variant of the χ2 statistics; we call
this technique simplified χ2. The key issues of FS and our simplified χ2 method
are introduced in Section 2, while the results of its extensive experimentation
on Reuters-21578, the standard benchmark of TC research, are described in
Section 4.1.

Classifier induction refers instead to the inductive construction of a text
classifier from a training set of documents that have already undergone indexing
and FS. We propose a novel classifier induction technique based on a variant
of k-NN, a popular instance-based method. After introducing instance-based
methods in Section 3, in Section 3.1 we describe our modified version of k-NN,
based on the exploitation of negative evidence. The results of its experimentation
on Reuters-21578 are described in Section 4.2. Section 5 concludes.

2 Issues in feature selection

Given a fixed r′ 	 r, the aim of FS is to select, from the original set of r features
that occur at least once in at least one document in Co, the r′ features that,
when used for document indexing, yield the best categorization effectiveness. The
value (1− r′

r ) is called the aggressivity of the selection; the higher this value, the
smaller the set resulting from FS, and the higher the computational benefits.
On the other hand, a high agressivity may curtail the ability of the classifier to
correctly “understand” the meaning of a document, since information that in
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principle may contribute to specify document meaning is removed. Therefore,
deciding on the best level of aggressivity usually requires some experimentation.

A widely used approach to FS is the so-called filtering approach, which con-
sists in selecting the r′ 	 r features that score highest according to a function
that measures the “importance” of the feature for the categorization task. In a
thorough comparative experiment, performed across different classifier induction
methods and different benchmarks, Yang and Pedersen [10] have shown

χ2(tk, ci) =
g[P (tk, ci)P (tk, ci) − P (tk, ci)P (tk, ci)]2

P (tk)P (tk)P (ci)P (ci)
(1)

to be one of the most effective functions for the filtering method, allowing aggres-
sivity levels in the range [.90,.99] with no loss (or even with a small increase) of
effectiveness. This contributes to explain the popularity of χ2 as a FS technique
in TC (see [6, Section 5]).

In Equation 1 and in those that follow, g indicates the cardinality of the
training set, and probabilities are interpreted on an event space of documents
(e.g. P (tk, ci) indicates the probability that, for a random document x, feature tk
does not occur in x and x belongs to category ci), and are estimated by counting
occurrences in the training set. Also, every function f(tk, ci) discussed in this
section evaluates the feature with respect to a specific category ci; in order
to assess the value of a feature tk in a “global”, category-independent sense,
either the weighted average favg(tk) =

∑m
i=1 f(tk, ci)P (ci) or the maximum

fmax(tk) = maxm
i=1 f(tk, ci) of its category-specific values are usually computed.

In the experimental sciences χ2 is used to measure how the results of an
observation differ from those expected according to an initial hypothesis. In our
application the initial hypothesis is that tk and ci are independent, and the
truth of this hypothesis is “observed” on the training set. The features tk with
the lowest value for χ2(tk, ci) are thus the most independent from ci; as we are
interested in those features which are not, we select those features for which
χ2(tk, ci) is highest.

However, Ng et al. [4] have observed that some aspects of χ2 clash with the
intuitions that underlie FS. In particular, they observe that the power of 2 at the
numerator has the effect of equating the roles of the probabilities that indicate
a positive correlation between tk and ci (i.e. P (tk, ci) and P (tk, ci)) and those
that indicate a negative correlation (i.e. P (tk, ci) and P (tk, ci)). The function

CC(tk, ci) =
√

g[P (tk, ci)P (tk, ci) − P (tk, ci)P (tk, ci)]√
P (tk)P (tk)P (ci)P (ci)

(2)

they propose, being the square root of χ2(tk, ci), emphasizes thus the former
and de-emphasizes the latter. The experimental results by Ng et al. [4] show a
superiority of CC(tk, ci) over χ2(tk, ci).

In this work we go a further step in this direction, by observing that in
CC(tk, ci), and a fortiori in χ2(tk, ci):

– The
√

g factor at the numerator is redundant, since it is equal for all pairs
(tk, ci). This factor can thus be removed.
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– The presence of
√

P (tk)P (tk) at the denominator emphasizes very rare fea-
tures, since for these features it has very low values. By showing that docu-
ment frequency is a very effective FS technique, [10] has shown that very rare
features are the least effective in TC. This factor should thus be removed.

– The presence of
√

P (ci)P (ci) at the denominator emphasizes very rare cate-
gories, since for these categories this factor has very low values. Emphasizing
very rare categories is counterintuitive, since this tends to depress microaver-
aged effectiveness (see Section 4), which is now considered the correct way to
measure effectiveness in most applications [6, Section 8]. This factor should
thus be removed.

Removing these three factors from CC(tk, ci) yields

sχ2(tk, ci) = P (tk, ci)P (tk, ci) − P (tk, ci)P (tk, ci) (3)

In Section 4 we discuss the experiments we have performed with sχ2(tk, ci) on
the Reuters-21578 benchmark.

3 Issues in instance-based classifier induction

One of the most popular paradigms for the inductive construction of a classifier
is the instance-based approach, which is well exemplified by the k-NN (for “k
nearest neighbors”) algorithm used e.g. by Yang [7]. For deciding whether dj

should be classified under ci, k-NN selects the k training documents most similar
to dj . Those documents d′z that belong to ci are seen as carrying evidence towards
the fact that dj also belongs to ci, and the amount of this evidence is proportional
to the similarity between d′z and dj . Classifying a document with k-NN thus
means computing

CSVi(dj) =
∑

d′
z∈ Trk(dj)

RSV (dj , d
′
z) · viz (4)

where

– CSVi(dj) (the categorization status value of document dj for category ci)
measures the computed evidence that dj belongs to ci;

– RSV (dj , d
′
z) (the retrieval status value of document d′z with respect to doc-

ument dj) represents a measure of semantic relatedness between dj and d′z;
– Trk(dj) is the set of the k training documents d′z with the highest RSV (dj , d

′
z);

– the value of viz is given by

viz =
{

1 if d′z is a positive instance of ci

0 if d′z is a negative instance of ci

The threshold k, indicating how many top-ranked training documents have to be
considered for computing CSVi(dj), is usually determined experimentally on a
validation set; Yang [7, 8] has found 30 ≤ k ≤ 45 to yield the best effectiveness.
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Usually, the construction of a classifier, instance-based or not, also involves
the determination of a threshold τi such that CSVi(dj) ≥ τi may be viewed
as an indication to file dj under ci and CSVi(dj) < τi may be viewed as an
indication not to file dj under ci. For determining this threshold we have used
the proportional thresholding method, as in our experiments this has proven
superior to CSV thresholding (see [6, Section 7]).

3.1 Using negative evidence in instance-based classification

The basic philosophy that underlies k-NN and all the instance-based algorithms
used in the TC literature may be summarized by the following principle:

Principle 1 If a training document d′z similar to the test document dj is a
positive instance of category ci, then use this fact as evidence towards the fact
that dj belongs to ci. Else, if d′z is a negative instance of ci, do nothing.

The first part of this principle is no doubt intuitive. Suppose dj is a news article
about Reinhold Messner’s ascent of Mt. Annapurna, and d′z is a very similar
document, e.g. a news account of Anatoli Bukreev’s expedition to Mt. Everest.
It is quite intuitive that if d′z is a positive instance of category Climbing, this
information should carry evidence towards the fact that dj too is a positive
instance of Climbing. But the same example shows, in our opinion, that the
second part of this principle is unintuitive, as the information that d′z is a negative
instance of category Fashion should not be discarded, but should carry evidence
towards the fact that dj too is a negative instance of Fashion.

In this work, we thus propose a variant of the k-NN approach in which
negative evidence (i.e. evidence provided by negative training instances) is not
discarded. This may be viewed as descending from a new principle:

Principle 2 If a training document d′z similar to the test document dj is a
positive instance of category ci, then use this fact as evidence towards the fact
that dj belongs to ci. Else, if d′z is a negative instance of ci, then use this fact
as evidence towards the fact that dj does not belong to ci.

Mathematically, this comes down to using

viz =
{

1 if d′z is a positive instance of ci

−1 if d′z is a negative instance of ci

in Equation 4. We call the method deriving from this modification k-NN1
neg (this

actually means k-NNp
neg for p = 1; the meaning of the p parameter will become

clear later). This method brings instance-based learning closer to most other
classifier induction methods, in which negative training instances play a funda-
mental role in the individuation of a “best” decision surface (i.e. classifier) that
separates positive from negative instances. Even methods like Rocchio (see [6,
Section 6]), in which negative instances had traditionally been either discarded
or at best de-emphasized, have recently been shown to receive a performance
boost by an appropriate use of negative instances [5].
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4 Experimental results

In our experiments we have used the “Reuters-21578, Distribution 1.0” corpus,
as it is currently the most widely used benchmark in TC research2. Reuters-
21578 consists of a set of 12,902 news stories, partitioned (according to the
“ModApté” split we have adopted) into a training set of 9,603 documents and a
test set of 3,299 documents. The documents are labelled by 118 categories; the
average number of categories per document is 1.08, ranging from a minimum of
0 to a maximum of 16. The number of positive instances per category ranges
from a minimum of 1 to a maximum of 3964.

We have run our experiments on the set of 115 categories with at least 1
training instance, rather than on other subsets of it. The full set of 115 cate-
gories is “harder”, since it includes categories with very few positive instances for
which inducing reliable classifiers is obviously a haphazard task. This explains
the smaller effectiveness values we have obtained with respect to experiments
carried out by other researchers with exactly the same methods but on reduced
Reuters-21578 category sets (e.g. the experiments reported in [9] with stan-
dard k-NN). In all the experiments discussed in this section, stop words have
been removed using the stop list provided in [3, pages 117–118]. Punctuation
has been removed and letters have been converted to lowercase; no stemming
and number removal have been performed. Term weighting has been done by
means of the standard “ltc” variant of the tf ∗ idf function. Classification effec-
tiveness has been measured in terms of the classic IR notions of precision (Pr)
and recall (Re) adapted to the case of document categorization. We have evalu-
ated microaveraged precision and recall, since it is almost universally preferred
to macroaveraging [6, Section 8]. As a measure of effectiveness that combines
the contributions of both Pr and Re, we have used the well-known function
F1 = 2·Pr·Re

Pr+Re . See the full paper for more details on the experiments.

4.1 Feature selection experiments

We have performed our FS experiments first with the standard k-NN classifier
of Section 3 (with k = 30), and subsequently with a Rocchio classifier we have
implemented following [1] (the Rocchio parameters were set to β = 16 and γ = 4;
see [1, 5] for a full discussion of the Rocchio method). In these experiments we
have compared two baseline FS functions, i.e. #avg(tk) =

∑m
i=1 #(tk, ci)P (ci)

and χ2
max(tk) = maxm

i=1 χ2(tk, ci), to two variants of our sχ2(tk) function,
i.e. sχ2

max(tk) = maxm
i=1 sχ2(tk, ci) and sχ2

avg(tk) =
∑m

i=1 sχ2(tk, ci)P (ci).
As a baseline, we have chosen χ2

max(tk) and not χ2
avg(tk) because the former

is known to perform substantially better than the latter [10]. Table 1 lists the
microaveraged F1 values for k-NN and Rocchio with different FS techniques at
different aggressivity levels. A few conclusions may be drawn from these results:

2 The Reuters-21578 corpus may be freely downloaded for experimentation purposes
from http://www.research.att.com/~lewis/reuters21578.html
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Reduction k-NN Rocchio
level #(tk) χ2

max(tk) sχ2
max(tk) sχ2

avg(tk) #(tk) χ2
max(tk) sχ2

max(tk) sχ2
avg(tk)

99.9 — — — — .458 .391 .494 —
99.5 — — — — .624 .479 .657 —
99.0 .671 .648 .697 .501 .656 .652 .692 —
98.0 .703 .720 .734 .554 .691 .710 .736 —
96.0 .721 .766 .729 .577 .737 .733 .748 —
94.0 .731 .766 .728 .596 — — — —
92.0 .729 .772 .732 .607 — — — —
90.0 .734 .775 .732 .620 — — — —
85.0 .735 .767 .726 .640 — — — —
80.0 .734 .757 .730 .658 — — — —
70.0 .734 .748 .730 .682 — — — —
60.0 .732 .741 .733 .691 — — — —
50.0 .733 .735 .734 .701 — — — —
40.0 .733 .735 .731 .716 — — — —
30.0 .731 .732 .730 .721 — — — —
20.0 .731 .732 .730 .727 — — — —
10.0 .730 .730 .730 .730 — — — —
00.0 .730 .730 .730 .730 — — — —

Table 1. Microaveraged F1 values for k-NN (k = 30) and Rocchio (α = 16 and β = 4).

– on the k-NN tests we performed first, sχ2
avg(tk) proved largely inferior to

sχ2
max(tk) (and to all other FS functions tested). This is reminiscent of Yang

and Pedersen’s [10] result, who showed that χ2
avg(tk) is outperformed by

χ2
max(tk). As a consequence, due to time constraints we have abandoned

sχ2
avg(tk) without further testing it on Rocchio;

– on the k-NN tests, sχ2
max(tk) is definitely inferior to χ2

max(tk) and compa-
rable to #avg(tk) up to levels of reduction around .95, but becomes largely
superior for aggressivity levels higher than that;

– following this observation, we have run Rocchio tests with extreme (from
.960 up to .999) aggressivity levels, and observed that in these conditions
sχ2

max(tk) outperforms both χ2
max(tk) and #avg(tk) by a wide margin.

The conclusion we may draw from these experiments is that sχ2
max(tk) is a

superior alternative to both χ2
max(tk) and #avg(tk) when very aggressive FS is

necessary. Besides, it is important to remark that sχ2
max(tk) is much easier to

compute than χ2
max(tk). Altogether, these facts indicate that sχ2

max(tk) may be
a very good choice in the context of learning algorithms that do not scale well
to high dimensionalities of the feature space, such as neural networks, or in the
application to TC tasks characterized by very high dimensionalities.

4.2 Classifier induction experiments

We have performed our classifier induction experiments by comparing a standard
k-NN algorithm with our modified k-NN1

neg method, at different values of k. For
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FS we have chosen χ2
max(tk) with .90 aggressivity since this had yielded the

highest effectiveness (F1 = .775) in the experiments of Section 4.1. The results
of this experimentation are reported in the 1st and 2nd columns of Table 2.

k-NN k-NN1
neg k-NN2

neg k-NN3
neg

k Re Pr F1 Re Pr F1 Re Pr F1 Re Pr F1

05 .711 .823 .763 .667 .821 .737 .709 .825 .764 .711 .823 .764
10 .718 .830 .770 .671 .918 .775 .720 .837 .774 .722 .834 .774
20 .722 .833 .774 .663 .930 .774 .725 .841 .780 .725 .836 .778
30 .714 .846 .775 .647 .931 .763 .722 .861 .787 .721 .854 .782
40 .722 .834 .774 .638 .934 .765 .731 .854 .786 .730 .841 .781
50 .724 .836 .776 .628 .938 .752 .730 .854 .786 .730 .843 .782
60 .724 .835 .776 .617 .940 .745 .730 .850 .785 .730 .842 .782
70 .722 .833 .774 .611 .945 .742 .731 .851 .786 .730 .842 .782

Table 2. Experimental comparison between k-NN and k-NNp
neg for different values of k

and p, performed with χ2
max FS and aggressivity .90, and evaluated by microaveraging.

A few observations may be made:

1. Bringing to bear negative evidence in the learning process has not brought
about the performance improvement we had expected. In fact, the highest
performance obtained for k-NN1

neg (.775) is practically the same as that
obtained for k-NN (.776).

2. The performance of k-NN1
neg peaks at substantially lower values of k than

for k-NN (10 vs. 50), i.e. much fewer training documents similar to the test
document need to be examined for k-NN1

neg than for k-NN.
3. k-NN1

neg is a little less robust than k-NN with respect to the choice of k. In
fact, for k-NN1

neg effectiveness degrades somehow for values of k higher than
10, while for k-NN it is hardly influenced by the value of k.

Observation 1 seems to suggest that negative evidence is not detrimental to the
learning process, while Observation 2 indicates that, under certain conditions,
it may actually be valuable. Instead, we interpret Observation 3 as indicating
that negative evidence brought by training documents that are not very similar
to the test document may be detrimental.

This is indeed intuitive. Suppose dj is our news article about Reinhold Mess-
ner’s ascent of Mt. Annapurna, and d′z is a critical review of a Picasso exhibition.
Should the information that d′z is a negative instance of category ci carry any
evidence at all towards the fact that dj too is a negative instance of ci? Hardly
so, given the wide semantic distance that separates the two texts. While very
dissimilar documents have not much influence in k-NN, since positive instances
are usually far less than negative ones, they do in k-NN1

neg, since each of the k
most similar documents, however semantically distant, brings a little weight to
the final sum of which the CSV consists.
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A similar observation lies at the heart of the use of “query zoning” techniques
in the context of Rocchio classifiers [5]; here, the idea is that in learning a concept,
the most interesting negative instances of this concept are “the least negative
ones” (i.e. the negative instances most similar to the positive ones), in that they
are more difficult to separate from the positive instances. Similarly, support
vector machine classifiers [2] are induced by using just the negative instances
closest to the decision surfaces (i.e. the so-called negative support vectors), while
completely forgetting about the others.

A possible way to exploit this observation is switching to CSV functions that
downplay the influence of the similarity value in the case of widely dissimilar
documents; a possible class of such functions is

CSVi(dj) =
∑

d′
z∈ Trk(dj)

RSV (dj , d
′
z)

p · viz (5)

in which the larger the value of the p parameter is, the more the influence of the
similarity value is downplayed in the case of widely dissimilar documents. We
call this method k-NNp

neg. We have run an initial experiment, whose results are
reported in the third and fourth column of Table 2 and which has confirmed our
intuition: k-NN2

neg systematically outperforms not only k-NN1
neg but also stan-

dard k-NN.The k-NN2
neg method peaks for a higher value of k than k-NN1

neg and
is remarkably more stable for higher values of k. This seemingly suggests that
negative evidence provided by very dissimilar documents is indeed useful, pro-
vided its importance is de-emphasized. Instead, k-NN3

neg slightly underperforms
k-NN2

neg, showing that the level of de-emphatization must be chosen carefully.

5 Conclusion and further research

In this paper we have discussed two novel techniques for TC: sχ2, a FS technique
based on a simplified version of χ2, and k-NNp

neg, a classifier learning method
consisting of a variant, based on the exploitation of negative evidence, of the
popular k-NN instance-based method.

Concerning the former method, in experiments performed on Reuters-
21578 simplified χ2 has systematically outperformed χ2, one of the most popular
FS techniques, at very aggressive levels of reduction, and has done so by a wide
margin. This fact, together with its low computational cost, make simplified χ2

a very attractive method in those applications which demand radical reductions
in the dimensionality of the feature space.

Concerning k-NNp
neg, our hypothesis that evidence contributed by negative

instances could provide an effectiveness boost for the TC task has been only par-
tially confirmed by the experiments. In fact, our k-NN1

neg method has performed
as well as the original k-NN but no better than it, and has furthermore shown to
be more sensitive to the choice of k than the standard version. However, we have
shown that by appropriately de-emphasizing the importance of very dissimilar
training instances this method consistently outperforms standard k-NN. Given
the prominent role played by k-NN in the TC literature, and given the simple
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modification that moving from k-NN to k-NNp
neg requires, we think this is an

interesting result.
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