
Discretizing Continuous Attributes in AdaBoost
for Text Categorization

Pio Nardiello1, Fabrizio Sebastiani2, and Alessandro Sperduti3

1 MercurioWeb SNC
Via Appia

85054 Muro Lucano (PZ), Italy
pionardiello@mercurioweb.net

2 Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche

56124 Pisa, Italy
fabrizio@iei.pi.cnr.it

3 Dipartimento di Matematica Pura ed Applicata
Università di Padova
35131 Padova, Italy

sperduti@math.unipd.it

Abstract. We focus on two recently proposed algorithms in the fam-
ily of “boosting”-based learners for automated text classification, Ad-
aBoost.MH and AdaBoost.MHKR. While the former is a realization
of the well-known AdaBoost algorithm specifically aimed at multi-label
text categorization, the latter is a generalization of the former based on
the idea of learning a committee of classifier sub-committees. Both al-
gorithms have been among the best performers in text categorization
experiments so far.
A problem in the use of both algorithms is that they require documents
to be represented by binary vectors, indicating presence or absence of the
terms in the document. As a consequence, these algorithms cannot take
full advantage of the “weighted” representations (consisting of vectors of
continuous attributes) that are customary in information retrieval tasks,
and that provide a much more significant rendition of the document’s
content than binary representations.
In this paper we address the problem of exploiting the potential of
weighted representations in the context of AdaBoost-like algorithms by
discretizing the continuous attributes through the application of entropy-
based discretization methods. We present experimental results on the
Reuters-21578 text categorization collection, showing that for both al-
gorithms the version with discretized continuous attributes outperforms
the version with traditional binary representations.

1 Introduction

In the last ten years an impressive array of learning techniques have been used
in text categorization (TC) research, including probabilistic methods, regression
methods, decision tree and decision rule learners, neural networks, batch and

2

incremental learners of linear classifiers, example-based methods, genetic algo-
rithms, hidden Markov models, support vector machines, and classifier commit-
tees (see [16] for a review). Among these, the two classes of methods that most
seem to have caught the attention of TC researchers are boosting (a subclass
of the classifier committees class) and support vector machines. The reasons for
this attention are twofold, in the sense that both classes exhibit strong justifica-
tions in terms of computational learning theory and superior effectiveness once
tested on TC benchmarks of realistic size and difficulty. It is on the former class
of methods that this paper focuses.

Classifier committees (aka ensembles) are based on the idea that, given a
task that requires expert knowledge to perform, k experts may be better than
one if their individual judgments are appropriately combined. In TC, this means
applying k different classifiers Φ1, . . . , Φk to the same task of deciding whether a
document dj belongs or not to category ci, and then combining their outcome ap-
propriately. Boosting is a method for generating a highly accurate classifier (also
called final hypothesis) by combining a set of moderately accurate classifiers (also
called weak hypotheses). In this paper we will make use of two algorithms, called
AdaBoost.MH [15] and AdaBoost.MHKR [17], which are based on the notion
of adaptive boosting, a version of boosting in which members of the committee
can be sequentially generated after learning from the classification mistakes of
previously generated members of the same committee. AdaBoost.MH [15] is a
realization of the well-known AdaBoost algorithm, which is specifically aimed
at multi-label TC4, and which uses decision stumps (i.e. decisions trees composed
of a root and two leaves only) as weak hypotheses. AdaBoost.MHKR [17] is
instead a generalization of AdaBoost.MH based on the idea of learning a com-
mittee of classifier sub-committees; in other words, AdaBoost.MHKR weak hy-
potheses are themselves committees of decision stumps. So far, both algorithms
have been among the best performers in text categorization experiments run on
standard benchmarks.

A problem in the use of both algorithms is that they require documents to
be represented by binary vectors, indicating presence or absence of the terms in
the document. As a consequence, these algorithms cannot take full advantage of
the “weighted” representations (consisting of vectors of continuous attributes)
that are customary in information retrieval tasks, and that provide a much more
significant rendition of the document’s content than binary representations.

In this paper we address the problem of exploiting the potential of weighted
representations in the context of AdaBoost-like algorithms by discretizing the
continuous attributes through the application of entropy-based discretization
methods. These algorithms attempt to optimally split the interval on which
these attributes range into a sequence of disjoint subintervals. This split engen-
ders a new vector (binary) representation for documents, in which a binary term
indicates that the original non-binary weight belongs or does not belong to a
given sub-interval. We present experimental results on the Reuters-21578 text
categorization collection, showing that for both algorithms the version with dis-

4 Given a set of categories C = {c1, . . . , c|C|}, multilabel text categorization is the task
in which any number 0 ≤ nj ≤ |C| of categories may be assigned to each dj ∈ D.

3

cretized continuous attributes outperforms the version with traditional binary
representations.

The paper is organized as follows. In Section 2 we briefly introduce Ad-
aBoost.MH and AdaBoost.MHKR, while in Section 3 we describe the mod-
ified, improved version of AdaBoost.MHKR that we have used in all the ex-
periments described in this paper. In Section 4 we introduce the issue of dis-
cretizing continuous attributes, and we propose two discretization algorithms
based on information-theoretic intuitions. In Section 5 we describe the experi-
mental results we have obtained by applying both discretization algorithms to
both AdaBoost.MH and AdaBoost.MHKR; the benchmark used is Reuters-
21578, the standard benchmark of text categorization research. In Section 6 we
give our concluding remarks.

2 Boosting Algorithms for Text Categorization

In the following we briefly recall AdaBoost.MH and AdaBoost.MHKR, two
boosting algorithms that have been specially developed for text categorization
applications5. For more details on both algorithms, see [17].

2.1 AdaBoost.MH

AdaBoost.MH is a boosting algorithm proposed by Schapire and Singer [15]
for multilabel text categorization applications and derived from AdaBoost,
Freund and Schapire’s general purpose boosting algorithm [3]. The input to the
algorithm is a training set Tr = {〈d1, C1〉, . . . , 〈d|Tr|, C|Tr|〉}, where Cj ⊆ C is
the set of categories to each of which dj belongs.

AdaBoost.MH works by iteratively calling a weak learner to generate a
sequence Φ1, . . . , ΦS of weak hypotheses; at the end of the iteration the final
hypothesis Φ is obtained by a summation

Φ(dj , ci) =
S∑

s=1

Φs(dj , ci) (1)

of these weak hypotheses. A weak hypothesis is a function Φs : D × C → IR,
where D is the set of all possible documents. We interpret the sign of Φs(dj , ci)
as the decision of Φs on whether dj belongs to ci (i.e. Φs(dj , ci) > 0 means that
dj is believed to belong to ci while Φs(dj , ci) < 0 means it is believed not to
belong to ci), and the absolute value of Φs(dj , ci) (indicated by |Φs(dj , ci)|) as
the strength of this belief.

5 In this paper we concentrate on AdaBoost.MH with real-valued predictions, one of
three variants of AdaBoost.MH discussed in [15], since it is the one that, in the
experiments of [15], has been experimented most thoroughly and has given the best
results, and since it is the one used in the AdaBoost.MHKR system of [17]. The
methods that we discuss in Section 4 straightforwardly apply also to the other two
variants.

4

At each iteration s AdaBoost.MH applies the newly generated weak hy-
pothesis Φs to the training set and uses the results to update a distribution Ds

of weights on the training pairs 〈dj , ci〉. The weight Ds+1(dj , ci) is meant to
capture how effective Φ1, . . . , Φs were in correctly deciding whether the training
document dj belongs to category ci or not. By passing (together with the train-
ing set Tr) this distribution to the weak learner, AdaBoost.MH forces this
latter to generate a new weak hypothesis Φs+1 that concentrates on the pairs
with the highest weight, i.e. those that had proven harder to classify for the
previous weak hypotheses.

The initial distribution D1 is uniform. At each iteration s all the weights
Ds(dj , ci) are updated to Ds+1(dj , ci) according to the rule

Ds+1(dj , ci) =
Ds(dj , ci) exp(−Cj [ci] · Φs(dj , ci))

Zs
(2)

where Cj [ci] is defined to be 1 if ci ∈ Cj and -1 otherwise, and

Zs =
|C|∑
i=1

|Tr|∑
j=1

Ds(dj , ci) exp(−Cj [ci] · Φs(dj , ci)) (3)

is a normalization factor.
Each document dj is represented by a vector 〈w1j , . . . , w|T |j〉 of |T | binary

weights, where T = {t1, . . . , t|T |} is the set of terms. The weak hypotheses Ad-
aBoost.MH uses are real-valued decision stumps, i.e. functions of the form

Φs(dj , ci) =
{

a0i if wkj = 0
a1i if wkj = 1 (4)

where tk ∈ T , a0i and a1i are real-valued constants. The choices for tk, a0i and
a1i are in general different for each iteration, and are made according to a policy
that attempts to minimize Zs, since this is known to be an error-minimization
policy (although not an optimal one) [14].

AdaBoost.MHR chooses weak hypotheses of the form described in Equa-
tion 4 by a two step-process:

1. For each term tk ∈ T it pre-selects, among all weak hypotheses that have tk
as the “pivot term”, the one (indicated by Φk

best) for which Zs is minimum.
From a computational point of view this is the easier step, since Schapire
and Singer [14] provide the provably optimal values for Φk

best as a function
of Dt(dj , ci), wkj and Cj [ci].

2. Among all the hypotheses Φ1
best, . . . , Φ

|T |
best pre-selected for the |T | different

terms, it selects the one (indicated by Φs) for which Zs is minimum. From
a computational point of view this is the harder step, since this is O(|T |),
which in text categorization applications is typically in the tens of thousands.

5

2.2 AdaBoost.MHKR

In [17] a variant of AdaBoost.MHR, called AdaBoost.MHKR (for AdaBoost.MH
with K-fold real-valued predictions), has been proposed. This algorithm differs
from AdaBoost.MHR in the policy according to which weak hypotheses are
chosen, since it is based on the construction, at each iteration s of the boost-
ing process, of a complex weak hypothesis (CWH) consisting of a sub-committee
of simple weak hypotheses (SWHs) Φ1

s, . . . , Φ
K(s)
s , each of which has the form

described in Equation 4. These are generated by means of the same process de-
scribed in Section 2.1, but for the fact that at iteration s, instead of selecting
and using only the best term tk (i.e. the one which brings about the small-
est Zs), it selects the best K(s) terms and use them in order to generate K(s)
SWHs Φ1

s, . . . , Φ
K(s)
s . The CWH is then produced by grouping Φ1

s, . . . , Φ
K(s)
s into

a sub-committee

Φs(dj , ci) =
1

K(s)

K(s)∑
q=1

Φq
s(dj , ci) (5)

that uses the simple arithmetic mean as the combination rule. For updating
the distribution it still applies Equations 2 and 3, where Φs is now defined
by Equation 5. The final hypothesis is computed by plugging Equation 5 into
Equation 1, thus obtaining

Φ(dj , ci) =
S∑

s=1

αs
1

K(s)

K(s)∑
q=1

Φq
s(dj , ci) (6)

The number K(s) of SWHs to include in the sub-committee is obtained using a
simple heuristics which adds a constant C to K every N iterations, using a fixed
value for N and using a value of 1 for K(1), i.e. K(s) = 1 + C� s−1

N �.

3 An improved version of AdaBoost.MHKR

In this work we have implemented and experimented a new version of AdaBoost.MHKR

in which each SWH in a sub-committee is weighted by a value which is inversely
proportional to its score. This means replacing Equation 5 with

Φs(dj , ci) =
1

K(s)

K(s)∑
q=1

Z−1
q∑K(s)

j=1 Z−1
j

· Φq
s(dj , ci) (7)

The rationale of this choice is that the weight associated to a SWH that con-
tributes more to maximizing effectiveness should be higher. This is especially
important in the first iterations since, as noted in [17], it is here that the vari-
ance of the Zs values of members of the same sub-committee is higher.

In experiments that we do not report for reasons of space we have observed
that this new version consistently improves the performance of the basic ver-
sion of AdaBoost.MHKR of more than 1%. From now on when referring to
AdaBoost.MHKR we thus mean this improved version.

6

4 Term Discretization

The aim of this section is to define a discretization procedure that allows to
exploit the rich information conveyed by the non-binary term weights produced
by traditional IR weighting techniques (such as tf ∗ idf or others) while at
the same time allowing the use of algorithms derived by the original BoosT-
exter algorithm [15](such as AdaBoost.MH and AdaBoost.MHKR) that
requires discrete (in this case: binary) input. An alternative way to directly ex-
ploit non-binary term weights would have been to use the traditional AdaBoost
algorithm in conjunction with weak hypotheses able to deal with continuous fea-
tures. We preferred to avoid this more direct solution since it would have been
computationally more onerous.

In machine learning, the basic idea that underlies a discretization procedure
is that of segmenting the continuous interval [α, β] on which an attribute (in our
case: a term) tk ranges on, into an ordered sequence I = 〈[α = γ0, γ1], (γ1, γ2],
. . . , (γ|I|−1, γ|I| = β]〉 of disjoint sub-intervals such that

– in the vector representation term tk is replaced by |I| different terms {tk1,
tk2, . . . , tk|I|}, where wkrj (the weight that term tkr has in document dj) is
computed as

wkrj =
{

1 if wkj ∈ (γr−1, γr]
0 otherwise (8)

– among all the possible replacements, the one chosen maximizes effectiveness.

Different techniques for discretizing a continuous attribute have been proposed
in the field of machine learning. These include 1R [5], ChiMerge and Chi2 [6],
plus several entropy-based algorithms [1, 2, 7, 10–12]. In this paper, we adopt
a very simple discretization algorithm based on (multiclass) information gain,
which is defined in terms of the well-known (multiclass) entropy measure [9]; for
reasons discussed later in this section, we take |I| to be equal to 2. This approach
is based on the following rationale. Given a term tk which can take values from
a continuous interval [α, β], we look for a value γk (which we call the split value,
or simply split) that partitions [α, β] into two sub-intervals [α, γk] and (γk, β]
such that the dichotomy induced on the training set (i.e. the dichotomy between
the examples for which tk ∈ [α, γk] and the examples for which tk ∈ (γk, β])
generates two training subsets which are expected to be globally easier to classify
(and thus lead to better classifiers) by just using the membership of tk in the
two subintervals as discriminant. Specifically, information gain is a measure that
quantifies how easier it is to classify the examples when using the split γk (i.e.
how well the two newly generated terms separate the positive from the negative
examples), and selecting the split that maximizes information gain thus means
selecting the split that maximizes separability.

4.1 Algorithm A

Let us fix some notation: if tk is the term under consideration,

7

- Let α > 0 and β be the upper and lower bounds of the range of values
(except 0) that all the terms in T can take (which we assume to be equal for
all terms), and let γk be a split.

- Let Trin be the set of training examples dj for which wkj ∈ [α, β].
- Let Trc

in be the set of training examples belonging to category c for which
wkj ∈ [α, β].

- Let Trin1(γk) and Trin2(γk) be the sets of training examples dj for which
wkj ∈ [α, γk] and wkj ∈ (γk, β], respectively.

Definition 1. The (multiclass) entropy of Tr with respect to an interval [α, β]
is defined as

H(Tr, α, β) = −
∑
c∈C

|Trc
in|

|Trin|
log2

|Trc
in|

|Trin|
(9)

The (multiclass) information gain of a value with respect to Tr is defined as

IG(Tr, α, β, γk) = H(Tr, α, β) − (10)
|Trin1(γk)|

|Tr| H(Tr, α, γk) − |Trin2(γk)|
|Tr| H(Tr, γk, β)

�

The basic idea of our discretization process is to find, for each term tk and
among all possible splits γk, the split γ̂k that maximizes the information gain.
On the basis of this split, a term tk is replaced by two new terms tk0 and tk1,
and the weights they have in the training documents are computed according to
Equation 8. The fact that these weights are binary will allow us to work with
both AdaBoost.MH and AdaBoost.MHKR while at the same time exploiting
the rich information present in the non-binary weights of the term tk which has
originated the (binary-weighted) terms tk0 and tk1. It should be stressed that,
because of α > 0, if term tk is not present in a document, both tk0 and tk1 will
assume zero value.

In general, the application of this discretization strategy to all the terms will
double the number of terms. This may not be advisable if the ratio |Tr|

|T | between
the number |Tr| of training documents and the number |T | of terms used to
represent the documents is not high enough. In fact, it is well known that a low
such ratio will in general give rise to overfitting, since in the classifier each term
corresponds to a free parameter of the learning problem, and this parameter is
set by the training algorithm based on the training examples available, which
correspond to constraints on the problem. Therefore, if the |Tr|

|T | ratio is low the
learning problem is underconstrained, and the probability that an overspecialized
classifier is learnt is high. This is the reason why we have limited the number of
intervals into which a term is discretized to two.

For pretty much the same reason, we also introduce a selection procedure
on the terms to be discretized: among all the pairs (tk,γ̂k) generated by our
algorithm, we select for discretization only the p% with the highest information
gain. Thus, after this selection, terms which have not been selected will not be

8

discretized and, for input to our learners, will be considered as binary-valued
(i.e. only presence/absence of the term in the document will be considered).
Each selected term will instead be replaced by two new terms, as previously
described.

A full description of this algorithm, that in the following we will refer to as
Algorithm A, is given in Figure 1.

———–
Input: Tr = {〈d1, C1〉, . . . , 〈d|Tr|, C|Tr|〉}, the training set of documents

T = {t1, . . . , t|T |}, the set of terms
C = {c1, . . . , c|C|}, the set of categories
p, the percentage of computed splits to be actually selected

Body:
1. Optimal splits ← ∅
2. For each tk ∈ T do

– Sort the values that term tk actually takes in Tr into an ordered sequence
〈v1, v2, . . .〉 and compute the set of possible splits (see [2])

Splitsk = {γk
r |γk

r =
vr + vr+1

2
}

– Let
γ̂k = arg max

γk
q ∈Splitsk

IG(Tr, α, β, γk
q)

– Optimal splits ← Optimal splits ∪ {(tk, γ̂k)}

Output: Return the p% splits (tk, γ̂k) in Optimal splits with highest IG(Tr, α, β, γ̂k)

———–

Fig. 1. Algorithm A.

4.2 Algorithm B

Given a term tk, a variant of Algorithm A can instead be obtained by first of
all computing the best split with respect to a single category ci. This is done
by computing the information gain over a training set in which a document
belonging to ci is considered positive, otherwise it is considered negative. Then,
again, we select the p% splits with highest information gain.

A full description of the algorithm, that in the following we will refer to as
Algorithm B, is given in Figure 2.

5 Experimental results

5.1 Experimental setting

We have conducted a number of experiments to test the validity of the two
algorithms proposed in Section 4. For these experiments we have used the well-

9

———–
Input: Tr = {〈d1, C1〉, . . . , 〈d|Tr|, C|Tr|〉}, the training set of documents

T = {t1, . . . , t|T |}, the set of terms
C, the set of categories
p, the percentage of computed splits to be actually selected

Body:
1. For each ci ∈ C define a training set Tri in which documents belonging to category

ci are positive examples and documents not belonging to category ci are negative
examples

2. Optimal splits ← ∅
3. For each tk ∈ T do

– Sort the values that term tk actually takes in Tr into an ordered sequence
〈v1, v2, . . .〉 and compute the set of possible splits (see [2])

Splitsk = {γk
r |γk

r =
vr + vr+1

2
}

– Candidate splitsk ← ∅
– For each category ci ∈ C that has at least one positive training example dj

such that wkj > 0 do
- compute

γ̂k
i = arg max

γk
q ∈Splitsk

IG(Tri, α, β, γk
q)

- Candidate splitsk ← Candidate splitsk ∪ {(tk, γ̂k
i)}

– Let (tk, γ̂k) ∈ Candidate splitsk be the split with highest IG for tk

– Optimal splits ← Optimal splits ∪ {(tk, γ̂k)}
4. For each (tk, γ̂k) ∈ Optimal splits compute IG(Tr, α, β, γ̂k)

Output: Return the best p% splits (tk, γ̂k) in Optimal splits

———–

Fig. 2. Algorithm B.

known “Reuters-21578, Distribution 1.0” corpus6, which consists of a set of 12,902
news stories, partitioned (according to the “ModApté” split we have adopted)
into a training set of 9,603 documents and a test set of 3,299 documents. The
documents have an average length of 211 words (that become 117 after stop
word removal). We have run our experiments on the set of 115 categories that
have at least 1 positive training example; the average number of categories per
document is 1.08, ranging from a minimum of 0 to a maximum of 16. The
number of positive training examples per category ranges from a minimum of 1
to a maximum of 3964.

As the set of terms T we use the set of words occurring at least once in the
training set. This set is identified by previously removing punctuation and then
removing stop words. Neither stemming nor explicit number removal have been

6 The Reuters-21578 corpus is freely available for experimentation purposes from
http://www.daviddlewis.com/resources/testcollections/~reuters21578/

10

performed. As a result, the number of different terms is 17,439. Starting from
this set of terms, term space reduction has been applied using χ2

max as term
selection function and a reduction factor of 90%, since this proved one among
the best choices in the thorough experiments of [18].

Classification effectiveness has been measured in terms of the classic IR no-
tions of precision (π) and recall (ρ) adapted to the case of text categorization. In
our experiments we have evaluated both the “microaveraged” and the “macroav-
eraged” versions of π and ρ. As a measure of effectiveness that combines the
contributions of both π and ρ, we have used the well-known F1 function [8], in
both the microaveraged and the macroaveraged versions.

5.2 The experiments

We have tested our discretization algorithms on the implementations of both
AdaBoost.MH and AdaBoost.MHKR described in [17], running them in the
same experimental conditions in experiments with or without discretization. An
alternative method might have been to just run the experiments with discretiza-
tion and compare the results with the ones of the experiments without discretiza-
tion published in [15] and [17]. We decided to avoid this latter method because
of a number of reasons that would have made this comparison difficult:

– [15] uses an older version of the Reuters benchmark, called Reuters-
22173. This benchmark is known to suffer from a number of problems that
make its results difficult to interpret, and the research community univer-
sally prefers the better version Reuters-21578. No experiments using both
collections have been reported in the literature, so there is no indication as
to how results obtained on these two different collections might be compared.

– Apart from single words, [15] uses also bigrams (i.e. statistical phrases of
length 2) as terms, while we use unigrams (i.e. single words) only.

– The experiments presented in [17] were run with a suboptimal version of
the text preprocessing algorithm7, which would make the comparison unfair
towards [17].

– The experiments presented here use the optimized version of AdaBoost.MHKR

described in Section 3, and not the original one described in [17].

Our experiments were conducted by applying both AdaBoost.MH and AdaBoost.MHKR

to the data:

– data1: original binary representations, i.e. obtained without discretization by
just checking the presence/absence of a term in the document;

– data2: binary representations obtained by discretizing previously obtained
non-binary representations by means Algorithm A;

– data3: same as data2, but with Algorithm B in place of Algorithm A.
7 Among other things, that version of the text preprocessing algorithm mistakenly did

not make use of the TITLE field and of part of the BODY field of Reuters-21578
articles, which means that information important for the categorization task went
unused.

11

The non-binary representations used in data2 and data3 were obtained by means
of the tfidf function in its standard “ltc” variant [13], i.e.

tfidf(tk, dj) = tf(tk, dj) · log
|Tr|

#Tr(tk)
(11)

where #Tr(tk) denotes the number of documents in Tr in which tk occurs at
least once and

tf(tk, dj) =
{

1 + log #(tk, dj) if #(tk, dj) > 0
0 otherwise

where #(tk, dj) denotes the number of times tk occurs in dj . Weights obtained
by Equation 11 are normalized by cosine normalization to yield the final weights,
i.e.

wkj =
tfidf(tk, dj)√∑|T |
s=1 tfidf(ts, dj)2

(12)

In all the experiments with AdaBoost.MHKR we have used the parameter
settings C = 1 and N = 20, since in [17] these choices had been empirically
found to give the best results.

Preliminary experiments involving the application of both AdaBoost.MH
and AdaBoost.MHKR to data preprocessed by methods data2 and data3 with
different values for the p parameter had shown that, for both learners, the best
performance is obtained for p = 20 8.

In Figure 3 we have thus reported both the microaveraged F1 (top) and the
macroaveraged F1 (bottom) curves obtained by AdaBoost.MH when applied
for 5,000 iterations to data1, data2, and data3 (with p = 20 used for obtaining
data2 and data3). From the results it is clear that

– The use of discretization algorithms (either A or B) brings about an im-
provement in both microaveraged and macroaveraged F1 with respect to
the application of AdaBoost.MH without discretization. This is relevant,
since AdaBoost.MH has been shown to be one of the top performers in
text categorization experiments so far.

– The improvement obtained by Algorithm B is more significant than that of
Algorithm A on microaveraged F1, while on macroaveraged F1 the perfor-
mances of the two algorithms are comparable. This indicates that Algorithm
A performs well also on scarcely populated categories, while Algorithm B is
more at home with densely populated ones.

The results of analogous experiments for the AdaBoost.MHKR learner are
shown in Figure 4. Even in this case we may observe that the representations
8 The values we have tested for parameter p are 10, 20, 35, 50, 75, 100. For values

of p higher than 20 we observed overfitting, while the performance obtained for
p = 10 was intermediate between the one obtained without discretization and the
one obtained for p = 20.

12

0.66
0.67
0.68
0.69
0.7

0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82
0.83
0.84

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ic

ro
av

er
ag

ed
 F

1

Number of iterations

AdaBoost.MH without discr.

AdaBoost.MH with A discr. 20%

AdaBoost.MH with B discr. 20%

0.5
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.6

0.61
0.62
0.63
0.64
0.65
0.66

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ac

ro
av

er
ag

ed
 F

1

Number of iterations

AdaBoost.MH without discr.

AdaBoost.MH with A discr. 20%

AdaBoost.MH with B discr. 20%

Fig. 3. F1 curves for AdaBoost.MH applied to data without discretization and with
p = 20% discretization (by both Algorithm A and Algorithm B).

13

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82
0.83
0.84

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ic

ro
av

er
ag

ed
 F

1

Number of iterations

AdaBoost.MHKR without discr.

AdaBoost.MHKR with A discr. 20%

AdaBoost.MHKR with B discr. 20%

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ac

ro
av

er
ag

ed
 F

1

Number of iterations

AdaBoost.MHKR without discr.

AdaBoost.MHKR with A discr. 20%

AdaBoost.MHKR with B discr. 20%

Fig. 4. F1 curves for AdaBoost.MHKR applied to data without discretization and
with p = 20% discretization (by both Algorithm A and Algorithm B).

14

obtained by the discretization algorithms (either Algorithm A or B) consistently
outperform the original binary representations. This time, however, Algorithm
B is superior to Algorithm A both in terms of microaveraged and macroaveraged
F1, but the differential between the two is smaller than with AdaBoost.MH.

Finally, we note that AdaBoost.MHKR proves superior to AdaBoost.MH
also with representations obtained by discretization (either Algorithm A or B),
and for both microaveraged and macroaveraged F1, thus confirming the results
obtained in [17] in which the two learners had been experimentally compared on
binary representations obtained without any discretization.

6 Conclusion

We have presented two algorithms for the discretization of non-binary term
weights, a task that addresses the problem of exploiting the rich information
contained in the non-binary weights produced by standard statistical or prob-
abilistic term weighting techniques, in the context of high performance learn-
ers requiring binary input. Although these algorithms can also be used in con-
nection with learners not belonging to the “boosting” family, we have focused
on experimenting them with two boosting-based learners, AdaBoost.MH and
AdaBoost.MHKR, since these had delivered top-notch performance in previous
text categorization experiments.

These experiments have shown that binary representations obtained by dis-
cretizing previously obtained non-binary (tf ∗ idf) representations by means
of any of our two algorithms, outperform the original binary representations.
This improvement is especially significant in the case of microaveraged F1, for
which an improvement of more than 3% was observed for AdaBoost.MH. This
is significant, since AdaBoost.MH is in the restricted lot of the peak text
categorization performers nowadays, a lot where the margins for performance
improvement are slimmer and slimmer.

Acknowledgements

We thank Luigi Galavotti for making available his RealCAT text classification
software environment [4], which greatly simplified our experimental work. We
also thank Marco Danelutto for giving us access to the Backus cluster of PCs.

References

1. J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretiza-
tion of continuous features. In Proceeding of ICML-95, 12th International Confer-
ence on Machine Learning, pages 194–202, Lake Tahoe, US, 1995.

2. U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued at-
tributes for classification learning. In Proceedings of IJCAI-93, 13th International
Joint Conference on Artificial Intelligence, pages 1022–1027, Sidney, AU, 1993.

15

3. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

4. L. Galavotti, F. Sebastiani, and M. Simi. Experiments on the use of feature selec-
tion and negative evidence in automated text categorization. In J. L. Borbinha and
T. Baker, editors, Proceedings of ECDL-00, 4th European Conference on Research
and Advanced Technology for Digital Libraries, pages 59–68, Lisbon, PT, 2000.

5. R. C. Holte. Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11(1):63–90, 1993.

6. R. Kerber. Chimerge: Discretization of numeric attributes. In Proceedings of
AAAI-92, 10th Conference of the American Association for Artificial Intelligence,
pages 123–128, San Jose, US, 1998.

7. R. Kohavi and M. Sahami. Error-based and entropy-based discretization of con-
tinuous features. In Proceedings of KDD-96, 2nd International Conference on
Knowledge Discovery and Data Mining, pages 114–119, Portland, US, 1996.

8. D. D. Lewis. Evaluating and optimizing autonomous text classification systems. In
E. A. Fox, P. Ingwersen, and R. Fidel, editors, Proceedings of SIGIR-95, 18th ACM
International Conference on Research and Development in Information Retrieval,
pages 246–254, Seattle, US, 1995.

9. T. M. Mitchell. Machine learning. McGraw Hill, New York, US, 1996.
10. L. C. Molina Félix, S. Oliveira Rezende, M. C. Monard, and C. Welling-

ton Caulkins. Some experiences with the discretization process: from regression to
classification. In Proceedings of ASAI-99, 1st Argentinian Symposium on Artificial
Intelligence, pages 155–166, Buenos Aires, AR, 1999.

11. B. Pfahringer. Compression-based discretization of continuous attributes. In Pro-
ceeding of ICML-95, 12th International Conference on Machine Learning, pages
339–350, Lake Tahoe, US, 1995.

12. J. R. Quinlan. Improved use of continuous attributes in C4.5. Journal of Artificial
Intelligence Research, 4:77–90, 1996.

13. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

14. R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated
predictions. Machine Learning, 37(3):297–336, 1999.

15. R. E. Schapire and Y. Singer. BoosTexter: a boosting-based system for text
categorization. Machine Learning, 39(2/3):135–168, 2000.

16. F. Sebastiani. Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1–47, 2002.

17. F. Sebastiani, A. Sperduti, and N. Valdambrini. An improved boosting algorithm
and its application to automated text categorization. In A. Agah, J. Callan, and
E. Rundensteiner, editors, Proceedings of CIKM-00, 9th ACM International Con-
ference on Information and Knowledge Management, pages 78–85, McLean, US,
2000.

18. Y. Yang and J. O. Pedersen. A comparative study on feature selection in text
categorization. In D. H. Fisher, editor, Proceedings of ICML-97, 14th International
Conference on Machine Learning, pages 412–420, Nashville, US, 1997.

