
Encoding Ordinal Features into Binary Features

for Text Classification

Andrea Esuli and Fabrizio Sebastiani

Istituto di Scienza e Tecnologia dell’Informazione
Consiglio Nazionale delle Ricerche

Via Giuseppe Moruzzi 1 – 56124 Pisa, Italy
firstname.lastname@isti.cnr.it

Abstract. We propose a method by means of which supervised learn-
ing algorithms that only accept binary input can be extended to use
ordinal (i.e., integer-valued) input. This is much needed in text classi-
fication, since it becomes thus possible to endow these learning devices
with term frequency information, rather than just information on the
presence/absence of the term in the document. We test two different
learners based on “boosting”, and show that the use of our method al-
lows them to obtain effectiveness gains. We also show that one of these
boosting methods, once endowed with the representations generated by
our method, outperforms an SVM learner with tfidf-weighted input.

1 Introduction

In text classification (TC) and other IR applications involving supervised learn-
ing, the decision as to whether documents should be represented by binary vec-
tors or by weighted vectors essentially depends on the learning algorithm used.
If the learning algorithm accepts real-valued vectors as input, then weighted
representations are typically used, since they are known to represent the seman-
tics of the documents more faithfully, and to bring about higher effectiveness.
On the contrary, some supervised learning algorithms (such as, e.g., most näıve
Bayesian probabilistic learners, most learners based on decision trees, and most
“boosting”-based algorithms) require binary input. This is a big limitation for
these algorithms, since the information inherent in the statistical distribution
of terms within the document (term frequency, aka within-document frequency)
and within the collection (document frequency) is lost.

This is particularly frustrating in the case of boosting algorithms (e.g., Ad-
aBoost.MH [1]), since their effectiveness rivals that of other state-of-the-art
algorithms, such as support vector machines and other kernel methods, that
can indeed use weighted features. What levels of effectiveness could boosting
methods achieve if they could avail themselves of information deriving from the
distribution of features within the document and within the collection? To be
fair, it should be mentioned that AdaBoost.MH and related methods, while
accepting binary input only, do use information from the distribution of terms
within the collection (and across the labels), since this information is learnt from

M. Boughanem et al. (Eds.): ECIR 2009, LNCS 5478, pp. 771–775, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

772 A. Esuli and F. Sebastiani

the training data and used internally, in order to pick the “pivot term” on which
the learner built at the current iteration of the boosting process hinges. How-
ever, information from the distribution of terms within the document is not used
in any form by these algorithms. And one hint that this information is indeed
important for text classification comes by comparing the Bernoulli and the multi-
nomial versions of the näıve Bayes method: the latter, which uses term frequency
information, has been shown to substantially outperform the former, which does
not make use of such information [2]. This paper gives an initial contribution to
the solution of this problem by presenting a way in which term frequency can
be indeed exploited in learning algorithms that accept binary input only.

The rest of the paper is structured as follows. Section 2 presents our solution
to the problem of allowing learning algorithms that only accept binary input to
use term-frequency information. In Section 3 we turn our attention to describing
the experiments we have done and the results we have obtained, while in Section
4 we discuss related work.

2 Turning Ordinal Features into Binary Features

Our solution to the problem of allowing learning algorithms that only accept
binary input to use term-frequency information, may be seen as extending these
algorithms in a way that allows them to accept, as input, vectors of ordinal (i.e.,
integer-valued) features; this will make it possible to use the number of occur-
rences of term tk in document dj (noted #(tk, dj)) as the weight of tk for dj . In a
nutshell, our solution consists in encoding ordinal features as binary features, so
that these algorithms can be applied unchanged to the representation generated
by this encoding. If we view a binary feature as a binary-valued constraint of
type #(tk,−) ≥ 1, an ordinal feature can be represented by several binary-valued
constraints of type #(tk,−) ≥ n, where n ∈ N. Given that these constraints are
also binary-valued, they can be used as features for learning algorithms requiring
binary input.

In principle this solution might seem infeasible, since it seems that a countably
infinite number of constraints need to be generated for each feature tk. However,
this is not true in practice, since the number of constraints that need to be
generated for each feature tk is limited by the number of different nonzero values
that #(tk,−) takes in the training set. For instance, assume that tk occurs twice
is a few training documents, once in a few others, and zero in the rest of the
training set. Clearly, there is no value in having a constraint of type #(tk,−) ≥ n
for any n ≥ 3, since this constraint is not satisfied by any example in the training
set, and is thus akin, in standard bag-of-words representation, to a term that
never occurs in the training set.

Our solution thus consists in generating, for all features tk of the original
binary representation, and for all and only the different values v1, . . . , vn(k) that
#(tk,−) takes in the training set, a binary feature txk defined as #(tk,−) ≥ vx,
for x ∈ {1, . . . , n(k)}.

Finally, note that it might seem, at first sight, that this solution only allows
using the form of term frequency consisting of the raw number of occurrences

Encoding Ordinal Features into Binary Features for Text Classification 773

of the term in the document, i.e., tf(tk, dj) = #(tk, dj), thus preventing the
use of more commonly used, real-valued forms such as, e.g., tf(tk, dj) = log(1 +
#(tk, dj)). In practice this is a non-issue, since all forms that tf has taken in the
literature are monotonically non-decreasing, and are thus equivalent from our
viewpoint; that is, we might equivalently generate binary features txk defined as
log(1 + #(tk, dj)) ≥ log(1 + vx), for x ∈ {1, . . . , n(k)}, with the same net effect.

3 Experiments

We have run some preliminary text classification experiments on the Reuters-
21578 dataset, still the most widely used benchmark in multi-label text classifi-
cation research1. It consists of a set of 12,902 news stories, partitioned (according
to the “ModApté” split we have adopted) into a training set of 9,603 documents
and a test set of 3,299 documents. The documents are labelled by 118 categories;
in our experiments we have restricted our attention to the 90 categories with at
least one positive training example and one positive test example.

We have experimented with three different learning devices. The first is Ad-
aBoost.MH [1], probably the best-known boosting algorithm for multi-label
text classification. The second is MP-Boost [3], a variant of AdaBoost.MH
optimized for multi-label settings and which its authors have shown to obtain
considerable effectiveness improvements over AdaBoost.MH. The third is an
SVM-based learner as implemented in the SVM-Light package [4]2, which we
have fed with weighted input (in the form of standard cosine-normalized tfidf
weighting) so as to see how the two boosting-based systems endowed with our en-
hanced binary representation compare with a state-of-the-art system that makes
use of full-fledged weighted input.

In all the experiments, punctuation has been removed, all letters have been
converted to lowercase, numbers and stop words have been removed, and stem-
ming has been performed by means of Porter’s stemmer; word stems are thus
our indexing units. Both boosting algorithms have been run with a number of
iterations fixed to 1,000, while the SVM-based learner has been tested with a
linear kernel and the parameters set at their default values. As a result of our
encoding the number of features has increased from 20,123 to 47,087. This is a
computationally non-prohibitive increase, which shows that the average number
of different nonzero values that #(tk,−) actually takes in the training set is very
small (2.34 on average).

As a measure of effectiveness that combines the contributions of precision
(π) and recall (ρ) we have used the well-known F1 function, defined as F1 =
2πρ
π+ρ = 2TP

2TP+FP+FN , where TP , FP , and FN stand for the numbers of true
positives, false positives, and false negatives, respectively. We compute both
microaveraged F1 (denoted by Fμ

1) and macroaveraged F1 (FM
1). Fμ

1 is obtained
by (i) computing the category-specific values TPi, (ii) obtaining TP as the sum of
the TPi’s (same for FP and FN), and then (iii) applying the F1 = 2TP

2TP+FP+FN

1 http://www.daviddlewis.com/resources/testcollections/~reuters21578/
2 Freely downloadable from http://svmlight.joachims.org/

774 A. Esuli and F. Sebastiani

Table 1. Results obtained on Reuters-21578 by running several learners with differ-
ent types of representation; “Binary” stands for standard presence/absence features,
“Ordinal” stands for binary features obtained by encoding ordinal features into binary
ones, and “Weighted” stands for cosine-normalized tfidf

Learner Representation πµ ρµ F µ
1 πM ρM F M

1

AdaBoost.MH Binary 0.900 0.733 0.808 0.879 0.293 0.353
AdaBoost.MH Ordinal 0.914 0.727 0.810 0.869 0.277 0.340

MP-Boost Binary 0.874 0.816 0.844 0.800 0.539 0.549
MP-Boost Ordinal 0.902 0.818 0.858 0.837 0.524 0.564

SVM-Light Weighted 0.941 0.780 0.853 0.953 0.353 0.415

formula. FM
1 is obtained by first computing the category-specific F1 values and

then averaging them across the categories cj ∈ C.
The results of our experiments are reported in Table 1. The first observation

we can make is that ordinal features encoded as binary features are usually
superior to standard binary features, for both boosting devices and for both
Fμ

1 and FM
1 (this trend is reversed only for AdaBoost.MH with FM

1), with
MP-Boost endowed with ordinal features being the best performer for both
evaluation measures. The second observation is that, once endowed with ordinal
features, MP-Boost even outperforms SVMs with full-fledged weighted input.

4 Related Work

Our encoding of ordinal features into binary features is reminiscent of machine
learning algorithms for discretizing a continuous (i.e., real-valued) feature tk
(see [5] for a survey and experimental comparison of less-than-recent methods,
and [6,7] for two more recent surveys). These algorithms attempt to optimally
subdivide the interval [αk, βk] on which a feature tk ranges (where the interval
[αk, βk] may or may not be the same for all features in the feature space) into
a partition I = 〈[αk = γk

0 , γk
1], (γk

1 , γk
2], . . . , (γk

|I|−1, γ
k
|I| = βk]〉 of disjoint, non-

necessarily equal subintervals. The partition generates a new vector (binary)
representation, in which a binary feature tik ∈ {0, 1} indicates whether the weight
of the original non-binary feature tk belongs or does not belong to the i-th
subinterval of [αk, βk]. Our method is different from these algorithms for at
least three significant reasons.

The first reason is that our features are not originally continuous, but are
integer-valued; a hypothetical algorithm that operates along the lines of the ones
above on integer-valued features would perform, rather than the discretization
of continuous features, a sort of “segmentation of discrete features”; however, to
the best of our knowledge, we are not aware of any such existing method.

The second reason is that we perform no discretization/segmentation at all,
since we retain all the binary constraints generated from one ordinal feature in
our encoding. The reason why we can do this is that boosting performs feature
selection internally, choosing the best feature at each round; therefore, if some

Encoding Ordinal Features into Binary Features for Text Classification 775

of the features we generate are non-discriminative, they will never be chosen by
the boosting algorithm, and will play no role in classification decisions.

The third and probably most important reason is that, while discretization
partitions a range into disjoint subintervals, our method actually subdivides
the range Rk of an ordinal feature tk into a sequence of chain-included subsets
Sk = {S1

k ⊂ . . . ⊂ S
n(k)
k = Rk}, since the binary features we generate check that

#(tk, dj) is greater than (and not simply equal to) a given integer n. This is
done in order to comply with the commonly held “monotonicity assumption” of
within-document frequency [8], that states that how significant the contribution
of tk is to the semantics of dj is a monotonic non-decreasing function of the
number of occurrences of tk in dj . In fact, suppose we instead generated a binary
feature of type t

(n′,n′′)
k defined as n′ ≤ #(tk, dj) ≤ n′′, with n′, n′′ two (possibly

equal) integer numbers. A learning system would internally generate a rule saying
that if t

(n′,n′′)
k = 1, then the evidence in favour of class cj is α, while if t

(n′,n′′)
k =

0, this evidence is β. Unless α = β (in which case the feature would be useless),
this would obviously violate the monotonicity assumption of within-document
frequency.

References

1. Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text categoriza-
tion. Machine Learning 39(2/3), 135–168 (2000)

2. McCallum, A.K., Nigam, K.: A comparison of event models for naive Bayes text
classification. In: Proceedings of the AAAI Workshop on Learning for Text Catego-
rization, Madison, US, pp. 41–48 (1998)

3. Esuli, A., Fagni, T., Sebastiani, F.: MP-Boost: A multiple-pivot boosting algorithm
and its application to text categorization. In: Crestani, F., Ferragina, P., Sanderson,
M. (eds.) SPIRE 2006. LNCS, vol. 4209, pp. 1–12. Springer, Heidelberg (2006)

4. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges,
C.J., Smola, A.J. (eds.) Advances in Kernel Methods – Support Vector Learning,
pp. 169–184. The MIT Press, Cambridge (1999)

5. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretiza-
tion of continuous features. In: Proceeding of the 12th International Conference on
Machine Learning (ICML 1995), Lake Tahoe, US, pp. 194–202 (1995)

6. Kotsiantis, S., Kanellopoulos, D.: Discretization techniques: A recent survey. GESTS
International Transactions on Computer Science and Engineering 32(1), 47–58
(2006)

7. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique.
Data Mining and Knowledge Discovery 6, 393–423 (2002)

8. Zobel, J., Moffat, A.: Exploring the similarity space. SIGIR Forum 32(1), 18–34
(1998)

	Encoding Ordinal Features into Binary Features for Text Classification
	Introduction
	Turning Ordinal Features into Binary Features
	Experiments
	Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

