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Abstract. LeQua 2022 is a new lab for the evaluation of methods for
“learning to quantify” in textual datasets, i.e., for training predictors
of the relative frequencies of the classes of interest in sets of unlabelled
textual documents. While these predictions could be easily achieved by
first classifying all documents via a text classifier and then counting the
numbers of documents assigned to the classes, a growing body of litera-
ture has shown this approach to be suboptimal, and has proposed better
methods. The goal of this lab is to provide a setting for the comparative
evaluation of methods for learning to quantify, both in the binary set-
ting and in the single-label multiclass setting. For each such setting we
provide data either in ready-made vector form or in raw document form.

1 Learning to Quantify

In a number of applications involving classification, the final goal is not determin-
ing which class (or classes) individual unlabelled items belong to, but estimating
the prevalence (or “relative frequency”, or “prior probability”, or “prior”) of
each class in the unlabelled data. Estimating class prevalence values for unla-
belled data via supervised learning is known as learning to quantify (LQ) (or
quantification, or supervised prevalence estimation) [4,10].

LQ has several applications in fields (such as the social sciences, political sci-
ence, market research, epidemiology, and ecological modelling) which are inher-
ently interested in characterising aggregations of individuals, rather than the
individuals themselves; disciplines like the ones above are usually not interested
in finding the needle in the haystack, but in characterising the haystack. For
instance, in most applications of tweet sentiment classification we are not con-
cerned with estimating the true class (e.g., Positive, or Negative, or Neutral) of
individual tweets. Rather, we are concerned with estimating the relative fre-
quency of these classes in the set of unlabelled tweets under study; or, put in
another way, we are interested in estimating as accurately as possible the true
distribution of tweets across the classes.

It is by now well known that performing quantification by classifying each
unlabelled instance and then counting the instances that have been attributed to
the class (the “classify and count” method) usually leads to suboptimal quantifi-
cation accuracy; this may be seen as a direct consequence of “Vapnik’s principle”
[21], which states
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If you possess a restricted amount of information for solving some problem,
try to solve the problem directly and never solve a more general problem
as an intermediate step. It is possible that the available information is
sufficient for a direct solution but is insufficient for solving a more general
intermediate problem.

In our case, the problem to be solved directly is quantification, while the more
general intermediate problem is classification.

Another reason why “classify and count” is suboptimal is that many applica-
tion scenarios suffer from distribution shift, the phenomenon according to which
the distribution across the classes in the sample (i.e., set) σ of unlabelled doc-
uments may substantially differ from the distribution across the classes in the
labelled training set L; distribution shift is one example of dataset shift [15,18],
the phenomenon according to which the joint distributions pL(x, y) and pσ(x, y)
differ. The presence of distribution shift means that the well-known IID assump-
tion, on which most learning algorithms for training classifiers hinge, does not
hold. In turn, this means that “classify and count” will perform suboptimally
on sets of unlabelled items that exhibit distribution shift with respect to the
training set, and that the higher the amount of shift, the worse we can expect
“classify and count” to perform.

As a result of the suboptimality of the “classify and count” method, LQ has
slowly evolved as a task in its own right, different (in goals, methods, techniques,
and evaluation measures) from classification. The research community has inves-
tigated methods to correct the biased prevalence estimates of general-purpose
classifiers, supervised learning methods specially tailored to quantification, eval-
uation measures for quantification, and protocols for carrying out this evalua-
tion. Specific applications of LQ have also been investigated, such as sentiment
quantification, quantification in networked environments, or quantification for
data streams. For the near future it is easy to foresee that the interest in LQ
will increase, due (a) to the increased awareness that “classify and count” is a
suboptimal solution when it comes to prevalence estimation, and (b) to the fact
that, with larger and larger quantities of data becoming available and requir-
ing interpretation, in more and more scenarios we will only be able to afford to
analyse these data at the aggregate level rather than individually.

2 The Rationale for LeQua 2022

The LeQua 2022 lab (https://lequa2022.github.io/) at CLEF 2022 has a “shared
task” format; it is a new lab, in two important senses:

– No labs on LQ have been organized before at CLEF conferences.
– Even outside the CLEF conference series, quantification has surfaced only

episodically in previous shared tasks. The first such shared task was SemEval
2016 Task 4 “Sentiment Analysis in Twitter” [17], which comprised a binary
quantification subtask and an ordinal quantification subtask (these two sub-
tasks were offered again in the 2017 edition). Quantification also featured

https://lequa2022.github.io/
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in the Dialogue Breakdown Detection Challenge [11], in the Dialogue Qual-
ity subtasks of the NTCIR-14 Short Text Conversation task [22], and in
the NTCIR-15 Dialogue Evaluation task [23]. However, quantification was
never the real focus of these tasks. For instance, the real focus of the tasks
described in [17] was sentiment analysis on Twitter data, to the point that
almost all participants in the quantification subtasks used the trivial “clas-
sify and count” method, and focused, instead of optimising the quantification
component, on optimising the sentiment analysis component, or on picking
the best-performing learner for training the classifiers used by “classify and
count”. Similar considerations hold for the tasks discussed in [11,22,23].

This is the first time that a shared task whose explicit focus is quantification
is organized. A lab on this topic was thus sorely needed, because the topic has
great applicative potential, and because a lot of research on this topic has been
carried out without the benefit of the systematic experimental comparisons that
only shared tasks allow.

We expect the quantification community to benefit significantly from this
lab. One of the reasons is that this community is spread across different fields,
as also witnessed by the fact that work on LQ has been published in a scattered
way across different areas, e.g., information retrieval [3,6,14], data mining [7,8],
machine learning [1,5], statistics [13], or in the areas to which these techniques
get applied [2,9,12]. In their own papers, authors often use as baselines only
the algorithms from their own fields; we thus expect this lab to pull together
different sub-communities, and to generate cross-fertilisation among them.

While quantification is a general-purpose machine learning/data mining task
that can be applied to any type of data, in this lab we focus on its application
to data consisting of textual documents.

3 Structure of the Lab

3.1 Tasks

Two tasks (T1 and T2) are offered within LeQua 2022, each admitting two
subtasks (A and B).

In Task T1 (the vector task) participant teams are provided with vectorial
representations of the (training/development/test) documents. This task has
been offered so as to appeal to those participants who are not into text learning,
since participants in this task do not need to deal with text preprocessing issues.
Additionally, this task allows the participants to concentrate on optimising their
quantification methods, rather than spending time on optimising the process for
producing vectorial representations of the documents.

In Task T2 (the raw documents task), participant teams are provided with the
raw (training/development/test) documents. This task has been offered so as to
appeal to those participants who want to deploy end-to-end systems, or to those
who want to also optimise the process for producing vectorial representations of
the documents (possibly tailored to the quantification task).
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The two subtasks of both tasks are the binary quantification subtask (T1A
and T2A) and the single-label multiclass quantification subtask (T1B and T2B);
in both subtasks each document belongs only to one class y ∈ Y = {y1, ..., yn},
with n = 2 in T1A and T2A and n > 2 in T1B and T2B.

For each subtask in {T1A,T1B,T2A,T2B}, participant teams are not sup-
posed to use (training/development/test) documents other than those provided
for that subtask. In particular, participants are not supposed to use any docu-
ment from either T2A or T2B in order to solve either T1A or T1B.

3.2 Evaluation Measures and Protocols

In a recent theoretical study on the adequacy of evaluation measures for the
quantification task [19], absolute error (AE) and relative absolute error (RAE)
have been found to be the most satisfactory, and are thus the only measures
used in LeQua 2022. In particular, as a measure we do not use the once widely
used Kullback-Leibler Divergence (KLD), since the same study has found it to
be unsuitable for evaluating quantifiers.1 AE and RAE are defined as

AE(pσ, p̂σ) =
1
n

∑

y∈Y
|p̂σ(y) − pσ(y)| (1)

RAE(pσ, p̂σ) =
1
n

∑

y∈Y

|p̂σ(y) − pσ(y)|
pσ(y)

(2)

where pσ is the true distribution on sample σ, p̂σ is the predicted distribution,
Y is the set of classes of interest, and n = |Y|. Note that RAE is undefined when
at least one of the classes y ∈ Y is such that its prevalence in the sample σ of
unlabelled items is 0. To solve this problem, in computing RAE we smooth all
pσ(y)’s and p̂σ(y)’s via additive smoothing, i.e., we take pσ(y) = (ε + pσ(y))/(ε ·
n +

∑
y∈Y pσ(y)), where pσ(y) denotes the smoothed version of pσ(y) and the

denominator is just a normalising factor (same for the p̂σ(y)’s); following [8], we
use the quantity ε = 1/(2|σ|) as the smoothing factor. We then use the smoothed
versions of pσ(y) and p̂σ(y) in place of their original non-smoothed versions of
Eq. 2; as a result, RAE is now always defined.

As the official measure according to which systems are ranked, we use AE;
we also compute RAE results, but we do not use them for ranking the systems.

As the protocol for generating the test samples we adopt the so-called arti-
ficial prevalence protocol (APP), which is by now a standard protocol for the
evaluation of quantifiers. In the APP we take the test set U of unlabelled items,
and extract from it a number of subsets (the test samples), each characterised by
a predetermined vector (pσ(y1), ..., pσ(yn)) of prevalence values: for extracting a

1 One reason why KLD is undesirable is that it penalizes differently underestimation
and overestimation; another is that it is very little robust to outliers. See [19, §4.7
and §5.2] for a detailed discussion of these and other reasons.
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test sample σ, we generate a vector of prevalence values, and randomly select
documents from U accordingly.2

The goal of the APP is to generate samples characterised by widely different
vectors of prevalence values; this is meant to test the robustness of a quantifier
(i.e., of an estimator of class prevalence values) in confronting class prevalence
values possibly different (or very different) from the ones of the training set. For
doing this we draw the vectors of class prevalence values uniformly at random
from the set of all legitimate such vectors, i.e., from the unit (n − 1)-simplex
of all vectors (pσ(y1), ..., pσ(yn)) such that pσ(yi) ∈ [0, 1] for all yi ∈ Y and∑

yi∈Y pσ(yi) = 1. For this we use the Kraemer algorithm [20], whose goal is
that of sampling in such a way that all legitimate class distributions are picked
with equal probability.3 For each vector thus picked we randomly generate a test
sample. We use this method for both the binary case and the multiclass case.

The official score obtained by a given quantifier is the average value across
all test samples of RAE, which we use as the official evaluation measure; for
each system we also compute and report the value of AE. We use the non-
parametric Wilcoxon signed-rank test on related paired samples in order to assess
the statistical significance of the differences in performance between pairs of
methods.

3.3 Data

The data we use are Amazon product reviews from a large crawl of such reviews.
From the result of this crawl we remove (a) all reviews shorter than 200 charac-
ters and (b) all reviews that have not been recognized as “useful” by any users;
this yields the dataset Ω that we will use for our experimentation. As for the class
labels, (i) for the two binary tasks (T1A and T2A) we use two sentiment labels,
i.e., Positive (which encompasses 4-stars and 5-stars reviews) and Negative
(which encompasses 1-star and 2-stars reviews), while for the two multiclass
tasks (T1B and T2B) we use 28 topic labels, representing the merchandise class
the product belongs to (e.g., Automotive, Baby, Beauty).4

We use the same data (training/development/test sets) for the binary vector
task (T1A) and for the binary raw document task (T2A); i.e., the former are
the vectorized versions of the latter. Same for T1B and T2B.

The LB (binary) training set and the LM (multiclass) training set consist of
5,000 documents and 20,000 documents, respectively, sampled from the dataset
Ω via stratified sampling so as to have “natural” prevalence values for all the
class labels. (When doing stratified sampling for the binary “sentiment-based”

2 Everything we say here on how we generate the test samples also applies to how we
generate the development samples.

3 Other seemingly correct methods, such as drawing n random values uniformly at
random from the interval [0,1] and then normalizing them so that they sum up to
1, tends to produce a set of samples that is biased towards the centre of the unit
(n− 1)-simplex, for reasons discussed in [20].

4 The set of 28 topic classes is flat, i.e., there is no hierarchy defined upon it.
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task, we ignore the topic dimension; and when doing stratified sampling for the
multiclass “topic-based” task, we ignore the sentiment dimension).

The development (validation) sets DB (binary) and DM (multiclass) consist of
1,000 development samples of 250 documents each (DB) and 1,000 development
samples of 1,000 documents each (DM) generated from Ω \ LB and Ω \ LM via
the Kraemer algorithm.

The test sets UB and UM consist of 5,000 test samples of 250 documents
each (UB) and 5,000 test samples of 1,000 documents each (UM), generated from
Ω \ (LB ∪ DB) and Ω \ (LM ∪ DM) via the Kraemer algorithm. A submission
for a given subtask will consist of prevalence estimations for the relevant classes
(topic or sentiment) for each sample in the test set of that subtask.

3.4 Baselines

We have recently developed (and made publicly available) QuaPy, an open-
source, Python-based framework that implements several learning methods, eval-
uation measures, parameter optimisation routines, and evaluation protocols, for
LQ [16].5 Among other things, QuaPy contains implementations of the baseline
methods and evaluation measures officially adopted in LeQua 2022.6

Participant teams have been informed of the existence of QuaPy, so that they
could use the resources contained in it; the goal was to guarantee a high average
performance level of the participant teams, since everybody (a) had access to
implementations of advanced quantification methods and (b) was able to test
them according to the same evaluation standards as employed in LeQua 2022.

4 The LeQua Session at CLEF 2022

The LeQua 2022 session at the CLEF 2022 conference will host (a) one invited
talk by a prominent scientist, (b) a detailed presentation by the organisers,
overviewing the lab and the results of the participants, (c) oral presentations by
selected participants, and (d) poster presentations by other participants.

Depending on how successful LeQua 2022 is, we plan to propose a LeQua
edition for CLEF 2023; in that lab we would like to include a cross-lingual task.
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A unifying view on dataset shift in classification. Pattern Recogn. 45(1), 521–530
(2012)

16. Moreo, A., Esuli, A., Sebastiani, F.: QuaPy: a python-based framework for quan-
tification. In: Proceedings of the 30th ACM International Conference on Knowledge
Management (CIKM 2021), Gold Coast, AU (2021). Forthcoming

17. Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., Stoyanov, V.: SemEval-2016
Task 4: sentiment analysis in Twitter. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval 2016), San Diego, US, pp. 1–18 (2016)

https://doi.org/10.1007/s10994-016-5604-6
https://doi.org/10.1007/s10994-016-5604-6
https://doi.org/10.1007/s13278-016-0327-z
https://doi.org/10.1007/s13278-016-0327-z


LeQua@CLEF2022: Learning to Quantify 381
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