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Abstract. Quantification, i.e., the task of training predictors of the class
prevalence values in sets of unlabelled data items, has received increased
attention in recent years. However, most quantification research has con-
centrated on developing algorithms for binary and multiclass problems in
which the classes are not ordered. We here study the ordinal case, i.e., the
case in which a total order is defined on the set of n > 2 classes. We give
three main contributions to this field. First, we create and make available
two datasets for ordinal quantification (OQ) research that overcome the
inadequacies of the previously available ones. Second, we experimentally
compare the most important OQ algorithms proposed in the literature
so far. To this end, we bring together algorithms that are proposed by
authors from very different research fields, who were unaware of each
other’s developments. Third, we propose three OQ algorithms, based
on the idea of preventing ordinally implausible estimates through regu-
larization. Our experiments show that these algorithms outperform the
existing ones if the ordinal plausibility assumption holds.

Keywords: Quantification · Ordinal classification · Supervised
prevalence estimation

1 Introduction

Quantification is a supervised learning task that consists of training a predictor,
on a set of labelled data items, that estimates the relative frequencies pσ(yi) of
the classes of interest Y = {y1, ..., yn} in a sample σ of unlabelled data items [16].
In other words, a trained quantifier must return a predicted distribution p̂σ of
the unlabelled data items in σ across the classes in Y, where p̂σ must diverge as
little as possible from the true, unknown distribution pσ. Quantification is also
known as “learning to quantify”, “supervised class prevalence estimation”, and
“class prior estimation”.
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Quantification is important in many disciplines, e.g., market research, politi-
cal science, the social sciences, and epidemiology. By their own nature, these dis-
ciplines are only interested in aggregate, as opposed to individual, data. Hence,
classifying individual unlabelled instances is usually not a primary goal, while
estimating the prevalence values pσ(yi) of the classes of interest is. For instance,
when classifying the tweets about a certain entity, e.g., about a political candi-
date, as displaying either a Positive or a Negative stance towards the entity, we
are usually not interested in the class of a specific tweet, but in the fraction of
these tweets that belong to each class [17].

A predicted distribution p̂σ could, in principle, be obtained via the “classify
and count” method (CC), i.e., by training a standard classifier, classifying all
the unlabelled data items in σ, counting how many of them have been assigned
to each class in Y, and normalizing. However, it has been shown that CC deliv-
ers poor prevalence estimates, and especially so when the application scenario
suffers from prior probability shift [22], the (ubiquitous) phenomenon according
to which the distribution pU (yi) of the un-labelled test documents U across the
classes is different from the distribution pL(yi) of the labelled training documents
L. As a result, a plethora of quantification methods has been proposed in the
literature [4,14,16,17,33] that aims at accurate class prevalence estimations even
in the presence of prior probability shift.

The vast majority of the methods proposed so far deals with quantification
tasks in which Y is a plain, unordered set. Very few methods, instead, deal
with ordinal quantification (OQ), the task of performing quantification on a set
of n > 2 classes on which a total order “≺” is defined. Ordinal quantification
is important, though, because ordinal scales arise in many applications, espe-
cially ones involving human judgements. For instance, in a customer satisfaction
endeavour, one may want to estimate how a set of reviews of a certain product
distributes across the set of classes Y ={1Star, 2Stars, 3Stars, 4Stars, 5Stars},
while a social scientist might want to find out how inhabitants of a certain
region are distributed in terms of their happiness with health services in the
area, Y ={VeryUnhappy, Unhappy, Happy, VeryHappy}.

In this paper, we contribute to the field of OQ in three ways.
First, we develop and publish two datasets for evaluating OQ algorithms,

one consisting of textual product reviews and one consisting of telescope obser-
vations. Both datasets stem from scenarios in which OQ arises naturally, and
they are generated according to a strong, well-tested protocol for the evaluation
of quantifiers. The datasets that were previously used for the evaluation of OQ
algorithms were not adequate, for reasons we discuss in Sect. 2.

Second, we perform an extensive experimental comparison among the most
important OQ algorithms that have been proposed in the literature. This contri-
bution is important because some algorithms have been evaluated on a testbed
that was likely inadequate, while some other algorithms have been developed
independently of the previous ones, and have thus never been compared to them.
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Third, we propose new OQ algorithms, which introduce regularization into
existing quantification methods. We experimentally compare our proposals with
the existing state of the art and make the corresponding code publicly available1.

This paper is organized as follows. In Sect. 2, we review past work on OQ. In
Sect. 3, we present quantification algorithms, starting with previously proposed
ones and then moving to the ones we propose in this work. Section 4 is devoted
to our experimental evaluation and Sect. 5 concludes.

2 Related Work

Quantification, as a task of its own, was first proposed by Forman [16], who
observed that some applications of classification only require the estimation of
class prevalence values, and that better methods than “classify and count” can be
devised for this requirement. Since then, many methods for quantification have
been proposed. However, most of these methods tackle the binary and/or mul-
ticlass problem with un-ordered classes. While OQ was first discussed in [15] it
was not until 2016 that the first true OQ algorithms were developed, the Ordinal
Quantification Tree (OQT) [10] and Adjusted Regress and Count (ARC) [13]. In
the same years, the first data challenges that involved OQ were staged [18,25,30].
However, except for OQT and ARC, the participants in these challenges used
“classify and count” with highly optimized classifiers, and no true OQ methods;
this attitude persisted also in later challenges [39,40], likely due to a general
lack of awareness in the scientific community that more accurate methods than
“classify and count” exist.

Unfortunately, the data challenges, in which OQT and ARC were evalu-
ated [25,30], tested each quantification method only on a single sample of unla-
belled items, which consisted of the entire test set. This evaluation protocol is
not adequate for quantification because quantifiers issue predictions for samples
of data items, not for individual data items as in classification. Measuring a
quantifier’s performance on a single sample is thus akin to, and as insufficient
as, measuring a classifier’s performance on a single data item. As a result, our
knowledge of the relative merits of OQT and ARC lacks solidity.

However, even before the previously mentioned developments took place,
what we now would call OQ algorithms had been proposed within experimental
physics. In this field, we often need to estimate the distribution of a continuous
physical quantity. However, a histogram approximation of a continuous distribu-
tion is sufficient for many physics-related analyses [6]. This conventional simpli-
fication essentially maps the values of a continuous target quantity into a set of
classes endowed with a total order, and the problem of estimating the continuous
distribution becomes one of OQ. Early on, physicists had termed this problem
“unfolding” [5,11], a terminology that prevented quantification researchers from
drawing connections between algorithms proposed in the quantification literature
and those proposed in the physics literature. In the following, we provide these

1 Code and supplementary results: https://github.com/mirkobunse/ecml22.

https://github.com/mirkobunse/ecml22
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connections, to find that regularization techniques proposed within the physics
literature are able to improve well-known quantification methods in ordinal set-
tings. We complete the unification of unfolding and quantification methods in [8].

3 Methods

We use the following notation. By x ∈ X we indicate a data item drawn from
a domain X , and by y ∈ Y we indicate a class drawn from a set of classes
Y = {y1, ..., yn}, also known as a codeframe, on which a total order “≺” is
defined. The symbol σ denotes a sample, i.e., a non-empty set of unlabelled data
items in X , while L ⊂ X × Y denotes a set of labelled data items (x, y), which
we use to train our quantifiers. By pσ(y), we indicate the true prevalence of
class y in sample σ, while by p̂M

σ (y), we indicate an estimate of this prevalence,
as obtained by a quantification method M that receives σ as an input, where
0 ≤ pσ(y), p̂M

σ (y) ≤ 1 and
∑

y∈Y pσ(y) =
∑

y∈Y p̂M
σ (y) = 1.

3.1 Non-ordinal Quantification Methods

We start by introducing some important multiclass quantification methods which
do not take ordinality into account. These methods provide the foundation for
their ordinal extensions, which we develop in Sect. 3.3.

Classify and Count (CC) [16] is the trivial quantification method, where a
“hard” classifier h : X → Y generates predictions for all data items x ∈ σ, and
the fraction of predictions is used as a prevalence estimate, i.e.,

p̂CC
σ (yi) =

1
|σ| · ∣

∣{x ∈ σ : h(x) = yi}
∣
∣. (1)

In its probabilistic variant, Probabilistic Classify and Count (PCC) [4],
the hard classifier is replaced by a “soft” classifier s : X → [0, 1]n that returns
well-calibrated posterior probabilities [s(x)]i ≡ Pr(yi|x), i.e.,

p̂PCC
σ (yi) =

1
|σ| ·

∑

x∈σ

[s(x)]i, (2)

where [z]i denotes the i-th component of some z, and where
∑n

i=1[s(x)]i = 1.

Adjusted Classify and Count (ACC) [16] and Probabilistic Adjusted
Classify and Count (PACC) [4] are based on the idea of correcting the p̂CC

σ

and p̂PCC
σ estimates by using the (hard or soft) misclassification rates estimated

on a validation set V , which coincides with L if k-fold cross-validation is used.
In the multiclass setting, we want to estimate a vector of prevalence values

p ∈ R
n, where [p]i = pσ(yi). In this case, the adjustment of ACC and PACC

amounts to solving for p the system of linear equations

q = Mp, (3)
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where q ∈ R
n is a vector of unadjusted prevalence estimates obtained via CC

or PCC, i.e., [q]ACC
i = p̂CC

σ (yi) and [q]PACC
i = p̂PCC

σ (yi), and M ∈ R
n×n is a

matrix that relates the ground truth labels to the predictions of the employed
classifier, i.e.,

MACC
ij =

|{(x, y) ∈ V : h(x) = yi, y = yj}|
|{(x, y) ∈ V : y = yj}| , (4)

MPACC
ij =

∑
(x,y)∈V :y=yj

[s(x)]i
|{(x, y) ∈ V : y = yj}| . (5)

ACC and PACC solve Eq. 3 via the Moore-Penrose pseudo-inverse M†, i.e.,

p̂ = M†q, (6)

where p̂ACC
σ (yi) ≡ [p̂]i if Eqs. 1 and 4 are employed, while p̂PACC

σ (yi) ≡ [p̂]i if
Eqs. 2 and 5 are employed.

Unlike the true inverse M−1, the pseudo-inverse always exists. If the true
inverse exists, the two matrices are identical; if it does not exist, the solution from
Eq. 6 amounts to a minimum-norm least-squares estimate of p [23, Theorem 4.1].

EM-based quantification, also known as the Saerens-Latinne-Decaestec-
ker (SLD) method [33], follows an expectation maximization approach, which
(i) leverages Bayes’ theorem in the E-step, and (ii) updates the prevalence esti-
mates in the M-step. Both steps can be combined in the single update rule

p̂(k)σ (yi) =
1
|σ|

∑

x∈σ

p̂(k−1)
σ (yi)

p̂
(0)
σ (yi)

· [s(x)]i
∑n

j=1
p̂
(k−1)
σ (yj)

p̂
(0)
σ (yj)

· [s(x)]j
, (7)

which is applied until the estimates converge. p
(0)
σ (y) is initialized with the class

prevalence values of the training set.

3.2 Existing OQ Methods from the Physics Literature

Similar to the adjustment of ACC, experimental physicists have proposed adjust-
ments that solve for p the system of linear equations from Eq. 3. However, these
“unfolding” quantifiers differ from ACC in two regards.

The first aspect is that the hard classifier h of Eqs. 1 and 4 is often, although
not always, replaced by a partition c : X → {1, . . . , d} of the feature space, so
that

qt i =
1
|σ| · |{x ∈ σ : c(x) = i}| ,

Mij =
|{(x, y) ∈ V : c(x) = i, y = yj}|

|{(x, y) ∈ V : y = yj}| ,

(8)
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and M ∈ R
d×n. Note that by choosing c = h we obtain exactly Eqs. 1 and 4.

Another possible choice for c is to partition the feature space by means of a
decision tree; in this case, (i) it typically holds that d > n, and (ii) c(x) represents
the index of a leaf node [7].

The second difference to ACC is that “unfolding” quantifiers regularize their
estimates in order to promote solutions that are the most plausible solutions
in OQ. Specifically, these methods employ the assumption that neighbouring
classes have similar prevalence values; depending on the algorithm, this assump-
tion is encoded in different ways, as we will see in the following paragraphs.
This assumption is quite reasonable in OQ because the “smoothness” of the
histogram that represents the distribution is arguably the most important aspect
that distinguishes an ordinal distribution from a non-ordinal multiclass distribu-
tion. Without an order of classes, the concept of neighboring classes would even
be ill-defined.

Regularized Unfolding (RUN) [5,6] is used by physicists for decades [2,27].
It estimates the vector p of class prevalence values by minimizing a loss function
L : Rn → R over the estimate p̂; L consists of two terms, i.e., a negative log-
likelihood term to model the error of p̂, and a regularization term to model the
plausibility of p̂.

The negative log-likelihood term in L builds on a Poisson assumption about
the distribution of the data. Namely, this term models the counts [q̄]i = |σ| · [q]i,
which are observed in the sample σ, as being Poisson-distributed with the rates
λi = M�

i p̄. Here, Mi is the i-th column vector of M and [p̄]i = |σ| · [p̂]i are the
class counts that would be observed under a prevalence estimate p̂.

The second term of L is a Tikhonov regularization term 1
2 (Cp )2. This term

introduces an inductive bias towards solutions which are plausible with respect
to ordinality. The Tikhonov matrix C is chosen in such a way that term 1

2 (Cp )2

measures the smoothness of the histogram that represents the distribution, i.e.,

1
2

(Cp )2 =
1
2

n−1∑

i=2

(−[p]i−1 + 2[p]i − [p]i+1)
2
. (9)

Combining the likelihood term and the regularization term, the loss function of
RUN is given by

L(p̂; M,q, τ,C) =
d∑

i=1

(
M�

i p̄ − [q̄]i · ln(M�
i p̄)

)
+

τ

2
(Cp̂ )2 (10)

and an estimate p̂ is chosen by minimizing L numerically over p̂. Here, τ ≥ 0 is
a hyperparameter which controls the impact of the regularization.

Iterative Bayesian Unfolding (IBU) [11,12] is still popular today [1,24].
This method revolves around an expectation maximization approach with Bayes’
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theorem, and thus has a common foundation with the SLD method. The E-step
and the M-step of IBU can be written as the single, combined update rule

p̂(k)σ (yi) =
d∑

j=1

Mij · p̂
(k−1)
σ (yi)

∑n
l=1 Mlj · p̂

(k−1)
σ (yl)

[q]i. (11)

One difference between IBU and SLD is that q and M are defined via counts
of hard assignments to partitions c(x) (see Eq. 8), while SLD is defined over
individual soft predictions s(x) (see Eq. 7).

Another difference between IBU and SLD is regularization. In order to pro-
mote solutions which are ordinally plausible, IBU smooths each intermediate
estimate p̂(k) by fitting a low-order polynomial to p̂(k). A linear interpolation
between p̂(k) and this polynomial is then used as the prior of the next iteration
in order to reduce the differences between neighbouring prevalence estimates.
The interpolation factor is a hyperparameter of IBU through which the degree
of regularization is controlled.

Other methods from the physics literature, which go under the name of
“unfolding”, are based on similar concepts as RUN and IBU. We focus on these
two methods due to their long-standing popularity within physics research. In
fact, they are among the first methods that have been proposed in this field,
and are still widely adopted today, in astro-particle physics [2,27], high-energy
physics [1], and more recently in quantum computing [24]. Moreover, RUN and
IBU already cover the most important aspects of unfolding methods with respect
to ordinal quantification.

Several other unfolding methods are similar to RUN. The method proposed
in [19], for instance, employs the same regularization as RUN, but assumes dif-
ferent Poisson rates, which are simplifications of the rates that RUN uses; in
preliminary experiments, here omitted for the sake of conciseness, we have found
this simplification to typically deliver less accurate results than RUN. Two other
methods [35,36] employ the same simplification as [19] but regularize differently.
To this end, [35] regularizes with respect to the deviation from a prior, instead
of regularizing with respect to ordinal plausibility; we thus do not perceive this
method as a true OQ method. [36] adds to the RUN regularization a second term
which enforces prevalence estimates that sum up to one; we use a RUN imple-
mentation which already solves this issue through a positivity constraint and
normalization. Another line of work evolves around the algorithm of [32] and its
extensions [9]. We perceive this algorithm to lie outside the scope of OQ because
it does not address the order of classes, like the other “unfolding” methods do.
Moreover, the algorithm was shown to exhibit a performance comparable to, but
not better than RUN and IBU [9].

3.3 New Ordinal Variants of ACC, PACC, and SLD

In the following, we develop algorithms which extend ACC, PACC, and SLD
with the regularizers from RUN and IBU. Through these extensions, we obtain
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o-ACC, o-PACC, and o-SLD, the OQ counterparts of these well-known non-
ordinal quantification algorithms. In doing so, since we employ the regularizers
but not any other aspect of RUN and IBU, we preserve the general characteris-
tics of ACC, PACC, and SLD. In particular, our methods continue to work with
classifier predictions, i.e., we do not employ the categorical feature representa-
tion from Eq. 8, which RUN and IBU employ, and we do not use the Poisson
assumption of RUN. Therefore, our extensions are “minimal”, in the sense of
being directly addressed to ordinality and not introducing any undesired side
effects in the original methods.

o-ACC and o-PACC, our ordinal extensions to ACC and PACC, build on
the finding reported in [23, Theorem 4.1], which states that the solution from
Eq. 6 corresponds to a minimum-norm least-squares solution. Namely, among all
least-squares solutions p̂LSq = arg minp‖q−Mp‖22, which by themselves do not
need to be unique, the solution to Eq. 6 is the unique one that also minimizes
the quadratic norm ‖p‖22. Therefore, Eq. 6 is conceptually similar, although not
necessarily equal, to a regularized estimate

p̂′ = arg min
p

‖q − Mp‖22 +
τ

2
‖p‖22, (12)

which employs the quadratic norm for regularization. In particular, both Eqs. 6
and 12 simultaneously minimize a least-squares objective and the norm of their
candidate solutions. Note that the regularization function herein is, unlike the
regularization from RUN, unrelated to the ordinal nature of the classes.

To obtain the true OQ methods o-ACC and o-PACC, we replace the
minimum-norm regularization in Eq. 12 with the regularization term of RUN
(see Eq. 9). Through this replacement, we minimize the same objective func-
tion as ACC and PACC, i.e., a least-squares objective, but regularize towards
solutions that we deem more plausible for OQ. The prevalence estimate is

p̂o = arg min
p

‖q − Mp‖22 +
τ

2
(Cp )2 , (13)

the minimizer of which can be found through numerical optimization, e.g.,
through the BFGS optimization technique [26]. The o-ACC variant emerges
from plugging in Eqs. 1 and 4 for q and M, while the o-PACC variant emerges
from plugging in Eqs. 2 and 5.

o-SLD leverages the ordinal regularization of IBU in SLD. Namely, our method
does not use the latest estimate directly as the prior of the next iteration, but
a smoothed version of this estimate. To this end, we fit a low-order polynomial
to each intermediate estimate p̂(k) and use a linear interpolation between this
polynomial and p̂(k) as the prior of the next iteration. Like in IBU, we consider
the interpolation factor as a hyperparameter through which the strength of this
regularization is controlled.
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4 Experiments

The goal of our experiments is to uncover the relative merits of OQ methods
that come from different fields. We pursue this goal by carrying out a thorough
comparison of these methods on representative OQ data sets.

4.1 Evaluation Measures

The main evaluation measure we use in this paper is the Normalized Match
Distance (NMD), defined by [34] as

NMD(p, p̂) =
1

n − 1
MD(p, p̂), (14)

where 1
n−1 is just a normalization factor that allows NMD to range between 0

(best) and 1 (worst). Here MD is the Match Distance [38], defined as

MD(p, p̂) =
n−1∑

i=1

d(yi, yi+1) · |P̂ (yi) − P (yi)|, (15)

where d(yi, yi+1) is the “distance” between consecutive classes yi and yi+1, i.e.,
the cost we incur in assigning to yi a probability mass that we should instead
assign to yi+1, or vice versa. Here, we assume d(yi, yi+1) = 1 for all i ∈ {1, ..., n−
1} and P (yi) =

∑i
j=1 p(yj) is the cumulative distribution of p.

MD is a special case of the Earth Mover’s Distance (EMD) [31], a widely
used measure in OQ evaluation [9,10,15,25,30]. Since MD and EMD differ only
by a fixed normalization factor, our experiments perfectly follow the tradition
in OQ evaluation.

Another proposed measure for evaluating the quality of OQ estimates is the
Root NormalizedOrder-awareDivergence (RNOD) [34]. We include a definition of,
and an evaluation in terms of, RNOD in the supplementary material (See footnote
1), where we find that RNOD and NMD consistently lead to the same conclusions.

To obtain an overall score for a quantification method on a dataset, we apply
this method to each test sample σ. The resulting prevalence estimates are then
compared to the ground-truth prevalence values, which yields one NMD (or
RNOD) value for each sample. The final score of the method is the average of
these values, i.e., the average NMD (or RNOD) across all samples in the test set.
We test for statistically significant differences between quantification methods
in terms of a paired Wilcoxon signed-rank test.

4.2 Datasets and Preprocessing

We conduct our experiments on two large datasets that we have generated for
the purpose of this work, and that we make available to the scientific community
(See footnote 1). The first dataset, named Amazon-OQ-BK, consists of prod-
uct reviews labelled according to customer’s judgments of quality, i.e., 1Star to
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5Stars. The second dataset, Fact-OQ, consists of telescope observations labelled
by one of 12 totally ordered classes. Hence, these data sets originate in practi-
cally relevant and diverse applications of OQ. Each of these data sets consists of
a training set, multiple validation samples, and multiple test samples, which are
extracted from the original data source according to two extraction protocols
that are well suited for OQ.

The Data Sampling Protocol. We start by dividing a set of labelled data
items into a training set L, a pool of validation (i.e., development) items, and
a pool of test items. These three sets are disjoint from each other, and each of
them is obtained through stratified sampling from the original data sources.

From each of the pools, we separately extract samples for quantifier evalua-
tion. This extraction follows the so-called Artificial Prevalence Protocol (APP),
by now a standard extraction protocol in quantifier evaluation (see, e.g., [16]).
This protocol generates each sample in two steps. The first step consists of gen-
erating a vector pσ of class prevalence values. Following [14], we generate this
vector by drawing uniformly at random from the set of all legitimate prevalence
vectors by using the Kraemer algorithm [37], which (differently from other naive
algorithms) ensures that all prevalence values in the unit (n − 1) simplex are
picked with equal probability. Since each pσ can be, and typically is, different
from the training set prevalences, this approach covers the entire space of prior
probability shifts. The second step consists of drawing from the pool of data,
be it our validation pool or our test pool, a fixed-size sample σ of data items
which obeys the class prevalence values of pσ. The result is a set of samples
characterized by uniformly distributed vectors of prevalence values, which give
rise to varying levels of prior probability shift. We obtain one such set of samples
from the validation pool and another set from the test pool.

For our two datasets, (i) we set the size of the training set to 20,000 data
items, (ii) we have each (validation or test) sample consist of 1000 data items, (iii)
we have the validation set consist of 1000 such samples, and (iv) we have the test
set consist of 5000 such samples. For Amazon-OQ-BK, a data item corresponds
to a single product review, while for Fact-OQ, a data item corresponds to a
single telescope recording.

All items in the pool are replaced after the generation of each sample, so
that no sample contains duplicate items but samples from the same pool are not
necessarily disjoint. Note, however, that our initial split into a training set, a
validation pool, and a test pool ensures that each validation sample is disjoint
from each test sample, and that the training set is disjoint from all other samples.

Partitioning Samples in Terms of Ordinal Plausibility. In APP, all class
prevalence vectors are sampled with the same probability, disregarding of their
“plausibility”, in the sense of being likely to appear in the practice of OQ. For
instance, p1 = (.0, .5, .0, .5, .0) and p2 = (.2, .1, .0, .3, .4) have the same chances
to be generated within APP, despite the fact that p1 seems much less likely
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to show up than p2 in a real OQ application. Indeed, a vector such as p2 is
extremely likely in the realm of product reviews.

We counteract this shortcoming of APP by using APP-OQ, a protocol similar
to APP but for the fact that only samples “plausible” in the context of OQ
are considered. Namely, in APP-OQ, we retain only the 20% most plausible
samples generated by APP. Hence, we perform hyperparameter optimization on
the selected 20% validation samples, and perform the evaluation on the selected
20% test samples. We always report the results of both APP and APP-OQ side
by side, so as to allow drawing conclusions concerning the OQ-related merits of
the different quantification methods.

Motivated by our experience in sentiment quantification and unfolding, we
use “smoothness” as an indicator of plausibility. We measure smoothness by
applying Eq. 9 to the class prevalence vector p of each sample, so that the most
plausible samples are those with the smallest value of 1

2 (Cp)2. We recognize
that this measure can only be a first step towards assessing the plausibility of
prevalence vectors in OQ because plausibility necessarily depends on the use
case and on the expected number of data items in each sample.

The AMAZON-OQ-BK dataset is extracted from an existing dataset2 of
233.1M English-language Amazon product reviews, made available by [21]; here,
a data item corresponds to a single product review. As the labels of the reviews,
we use their “stars” ratings, and our codeframe is thus Y ={1Star, 2Stars, 3Stars,
4Stars, 5Stars}, which represents a sentiment quantification task [15].

We restrict our attention to reviews from the Books domain. We then remove
(a) all reviews shorter than 200 characters because recognizing sentiment from
shorter reviews may be nearly impossible in some cases, and (b) all reviews
that have not been recognized as “useful” by any users because many reviews
never recognized as “useful” may contain comments, say, on Amazon’s speed of
delivery, and not on the product itself.

We convert the documents into vectors by using the RoBERTa transformer
[20] from the Hugging Face hub3. To this aim, we truncate the documents to
the first 256 tokens, and fine-tune RoBERTa via prompt learning for a maxi-
mum of 5 epochs on our training data, thus taking the model parameters from
the epoch which yields the smallest validation loss as monitored on 1000 held-
out documents randomly sampled from the training set in a stratified way. For
training, we set the learning rate to 2e−5, the weight decay to 0.01, and the
batch size to 16, leaving the other hyperparameters at their default values. For
each document, we generate features by first applying a forward pass over the
fine-tuned network, and then averaging the embeddings produced for the special
token [CLS] across all the 12 layers of RoBERTa. In our initial experiments, this
latter approach yielded slightly better results than using the [CLS] embedding
of the last layer alone. The embedding size of RoBERTa, and hence the number
of dimensions of our vectors, amounts to 768.
2 http://jmcauley.ucsd.edu/data/amazon/links.html.
3 https://huggingface.co/docs/transformers/model doc/roberta.
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We make the Amazon-OQ-BK dataset publicly available (See footnote 1),
both in its raw textual form and in its processed vector form.

The FACT-OQ dataset is extracted from the open dataset4 of the FACT tele-
scope [3]; here, a data item corresponds to a single telescope recording. We rep-
resent each data item in terms of the 20 dense features that are extracted by the
standard processing pipeline5 of the telescope. Each of the 1,851,297 recordings
is labelled with the energy of the corresponding astro-particle, and our goal is to
estimate the distribution of these energy labels via OQ. While the energy labels
are originally continuous, astro-particle physicists have established a common
practice of dividing the range of energy values into ordinal classes, as argued
in Sect. 3.2. Based on discussions with astro-particle physicists, we divide the
range of continuous energy values into an ordered set of 12 classes.

4.3 Results with Ordinal Classifiers

In our first experiment, we investigate whether OQ can be solved by non-ordinal
quantification methods that embed ordinal classifiers. To this end, we compare
the use of a standard multiclass logistic regression (LR) with the use of several
ordinal variants of LR. In general, we have found that LR models, trained on
the deep RoBERTa embedding of the Amazon-OQ-BK dataset, are extremely
powerful models in terms of quantification performance. Therefore, approaching
OQ with ordinal LR variants embedded in non-ordinal quantifiers could be a
straightforward solution worth investigating.

The ordinal LR variants we test are the “All Threshold” variant (OLR-AT)
and the “Immediate-Threshold variant” (OLR-IT) of [29]. In addition, we try
two ordinal classification methods based on discretizing the outputs generated
by regression models [28]; the first is based on Ridge Regression (ORidge) while
the second, called Least Absolute Deviation (LAD), is based on linear SVMs.

Table 1 reports the results of this experiment, using the non-ordinal quan-
tifiers of Sect. 3.1. The fact that the best results are almost always obtained
by using, as the embedded classifier, non-ordinal LR shows that, in order to
deliver accurate estimates of class prevalence values in the ordinal case, it is not
sufficient to equip a multiclass quantifier with an ordinal classifier. Moreover,
the poor results of PCC, PACC, and SLD, the three methods that make use
of posterior probabilities, suggest that the quality of the posterior probabilities
returned by the ordinal classifiers may be sub-optimal.

Overall, these results suggest that, in order to tackle OQ, we cannot sim-
ply rely on ordinal classifiers embedded in non-ordinal quantification methods.
Instead, we need “real” OQ methods.

4 https://factdata.app.tu-dortmund.de/.
5 https://github.com/fact-project/open crab sample analysis/.

https://factdata.app.tu-dortmund.de/
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Table 1. Performance of classifiers in terms of average NMD (lower is better) in the
Amazon-OQ-BK dataset. Boldface indicates the best classifier for each quantification
method, or a classifier not significantly different from the best one in terms of a paired
Wilcoxon signed-rank test at a confidence level of p = 0.01. For LR we present standard
deviations, while for all other classifiers we show the average deterioration in NMD with
respect to LR. PCC, PACC, and SLD require a soft classifier, which means that ORidge
and LAD cannot be embedded in these methods.

CC PCC ACC PACC SLD

LR .0526 ±.0190 .0629 ±.0215 .0247 ±.0096 .0206 ±.0080 .0174 ±.0068

OLR-AT .0527 (+0.2%) .0657 (+4.4%) .0237 (−4.4%) .0219 (+6.5%) .0210 (+20.5%)

OLR-IT .0526 (+0.0%) .0695 (+10.4%) .0256 (+3.6%) .0215 (+4.5%) .0648 (+271.8%)

ORidge .0550 (+4.5%) – .0244 (−1.6%) – –

LAD .0527 (+0.3%) – .0240 (−3.1%) – –

4.4 Results of the Quantifier Comparison

In our main experiment, we compare our proposed methods o-ACC, o-PACC,
and o-SLD with several baselines, i.e., (i) the existing OQ methods OQT [10] and
ARC [13], which we further detail in the supplementary material (See footnote
1), (ii) the “unfolding” OQ methods IBU and RUN (see Sect. 3.2), and (iii)
the non-ordinal methods CC, PCC, ACC, PACC, and SLD. We compare these
methods on the Amazon-OQ-BK and Fact-OQ datasets, and under the APP
and APP-OQ protocols.

Each method is allowed to tune the hyperparameters of its embedded clas-
sifier, using the samples of the validation set. We use logistic regression on
Amazon-OQ-BK and probability-calibrated decision trees on Fact-OQ; this
choice of classifiers is motivated by common practice in the fields where these
data sets originate, and from our own experience that these classifiers work well
on the respective type of data. After the hyperparameters of the classifier are
optimized, we apply each method to the samples of the test set.

The results of this experiment are summarized in Table 2. These results show
that our proposed methods outperform the competition on both data sets if
the ordinal APP-OQ protocol is employed. More specifically, o-SLD is the best
method on Amazon-OQ-BK while o-PACC is the best method on Fact-OQ.
Moreover, o-SLD is consistently better or equal to SLD, o-ACC is consistently
better or equal to ACC, and o-PACC is consistently better or equal to PACC,
also in the standard APP protocol, where smoothness is not imposed.

Using RNOD as an alternative error measure confirms these conclusions,
while experiments carried out using additional datasets and using TFIDF as an
alternative vectorial representation in Amazon-OQ-BK, even reinforce these
conclusions. We provide these results in the supplementary material (See foot-
note 1).
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Table 2. Average performance in terms of NMD (lower is better). For each data set
(Amazon-OQ-BK and Fact-OQ), we present the results of the two protocols APP and
APP-OQ. The best performance in each column is highlighted in boldface. According
to a Wilcoxon signed rank test with p = 0.01, all other methods are statistically
significantly different from the best method.

Method Amazon-OQ-BK Fact-OQ

APP APP-OQ APP APP-OQ

CC .0526 ± .019 .0344 ± .013 .0534 ± .012 .0494 ± .011

PCC .0629 ± .022 .0440 ± .017 .0651 ± .017 .0621 ± .017

ACC .0229 ± .009 .0193 ± .007 .0582 ± .028 .0575 ± .028

PACC .0209 ± .008 .0176 ± .007 .0791 ± .048 .0816 ± .049

SLD .0172 ± .007 .0154 ± .006 .0373 ± .010 .0355 ± .009

OQT .0775 ± .026 .0587 ± .027 .0746 ± .019 .0731 ± .020

ARC .0641 ± .023 .0477 ± .015 .0566 ± .014 .0568 ± .016

IBU .0253 ± .010 .0197 ± .007 .0213 ± .005 .0187 ± .004

RUN .0252 ± .010 .0198 ± .007 .0222 ± .006 .0194 ± .005

o-ACC .0229 ± .009 .0188 ± .007 .0274 ± .007 .0230 ± .006

o-PACC .0209 ± .008 .0174 ± .007 .0230 ± .006 .0178 ± .004

o-SLD .0173 ± .007 .0152 ± .006 .0327 ± .008 .0289 ± .007

5 Conclusion

We have carried out a thorough investigation of ordinal quantification, which
includes (i) making available two datasets for OQ, generated according to the
strong extraction protocols APP and APP-OQ, which overcome the limitations
of existing OQ datasets, (ii) showing that OQ cannot be profitably tackled by
simply embedding ordinal classifiers into non-ordinal quantification methods,
(iii) proposing three OQ methods (o-ACC, o-PACC, and o-SLD) that com-
bine intuitions from existing, non-ordinal quantification methods and existing,
physics-inspired “unfolding” methods, and (iv) experimentally comparing our
newly proposed OQ methods with existing non-ordinal quantification methods,
ordinal quantification methods, and “unfolding” methods, which we have shown
to be OQ methods under a different name. Our newly proposed methods out-
perform the competition when tested on “ordinally plausible” test data. Our
supplementary material (See footnote 1) confirms these results with evaluations
under a different error measure and with additional experiments that we have
carried out on different datasets and using a different, vectorial representation
of the text data.

At the heart of the success of our newly proposed method lies regularization,
which is motivated by the assumption that typical OQ class prevalence vectors
are smooth. In future work, we plan to attempt using regularization for turning
other non-ordinal quantification methods into ordinal ones.



50 M. Bunse et al.

Acknowledgments. The work by M.B., A.M., and F.S. has been supported by the
European Union’s Horizon 2020 research and innovation programme under grant agree-
ment No. 871042 (SoBigData++). M.B. and M.S. have further been supported by
Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center
SFB 876 “Providing Information by Resource-Constrained Data Analysis”, project
C3, https://sfb876.tu-dortmund.de. A.M. and F.S. have further been supported by the
AI4Media project, funded by the European Commission (Grant 951911) under the
H2020 Programme ICT-48-2020. The authors’ opinions do not necessarily reflect those
of the European Commission.

References

1. Aad, G., Abbott, B., Abbott, D.C., et al.: Measurements of the inclusive and
differential production cross sections of a top-quark-antiquark pair in association
with a Z boson at

√
s = 13 TeV with the ATLAS detector. Europ. Phys. J. C

81(8), 737 (2021)
2. Aartsen, M.G., Ackermann, M., Adams, J., et al.: Measurement of the νµ energy

spectrum with IceCube-79. Europ. Phys. J. C 77(10) (2017)
3. Anderhub, H., Backes, M., Biland, A., et al.: Design and operation of FACT, the

first G-APD Cherenkov telescope. J. Inst. 8(06), P06008 (2013)
4. Bella, A., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Quantification

via probability estimators. In: International Conference on Data Mining (2010)
5. Blobel, V.: Unfolding methods in high-energy physics experiments. Technical

report, DESY-84-118, CERN, Geneva, CH (1985)
6. Blobel, V.: An unfolding method for high-energy physics experiments. In: Advanced

Statistical Techniques in Particle Physics, Durham, UK, pp. 258–267 (2002)
7. Börner, M., Hoinka, T., Meier, M., et al.: Measurement/simulation mismatches

and multivariate data discretization in the machine learning era. In: Conference
on Astronomical Data Analysis Software and Systems, pp. 431–434 (2017)

8. Bunse, M.: Unification of algorithms for quantification and unfolding. In: Workshop
on Machine Learning for Astroparticle Physics and Astronomy. Gesellschaft für
Informatik e.V. (2022, to appear)

9. Bunse, M., Piatkowski, N., Morik, K., Ruhe, T., Rhode, W.: Unification of decon-
volution algorithms for Cherenkov astronomy. In: Data Science and Advanced Ana-
lytics, pp. 21–30 (2018)

10. Da San Martino, G., Gao, W., Sebastiani, F.: Ordinal text quantification. In: Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 937–940 (2016)

11. D’Agostini, G.: A multidimensional unfolding method based on Bayes’ theorem.
Nucl. Instr. Meth. Phys. Res.: Sect. A 362(2–3), 487–498 (1995)

12. D’Agostini, G.: Improved iterative Bayesian unfolding (2010). arXiv:1010.0632
13. Esuli, A.: ISTI-CNR at SemEval-2016 task 4: quantification on an ordinal scale.

In: International Workshop on Semantic Evaluation, pp. 92–95 (2016)
14. Esuli, A., Moreo, A., Sebastiani, F.: LeQua@CLEF2022: learning to quantify. In:

Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13186, pp. 374–381. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99739-7 47

15. Esuli, A., Sebastiani, F.: Sentiment quantification. IEEE Intell. Syst. 25(4), 72–75
(2010)

https://sfb876.tu-dortmund.de
http://arxiv.org/abs/1010.0632
https://doi.org/10.1007/978-3-030-99739-7_47


Ordinal Quantification Through Regularization 51

16. Forman, G.: Counting positives accurately despite inaccurate classification. In:
Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005.
LNCS (LNAI), vol. 3720, pp. 564–575. Springer, Heidelberg (2005). https://doi.
org/10.1007/11564096 55

17. Gao, W., Sebastiani, F.: From classification to quantification in tweet sentiment
analysis. Soc. Netw. Anal. Min. 6(1), 1–22 (2016). https://doi.org/10.1007/s13278-
016-0327-z

18. Higashinaka, R., Funakoshi, K., Inaba, M., Tsunomori, Y., Takahashi, T., Kaji,
N.: Overview of the 3rd dialogue breakdown detection challenge. In: Dialog System
Technology Challenge (2017)

19. Hoecker, A., Kartvelishvili, V.: SVD approach to data unfolding. Nucl. Instr. Meth.
Phys. Res.: Sect. A 372(3), 469–481 (1996)

20. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach (2019).
arXiv:1907.11692

21. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommen-
dations on styles and substitutes. In: International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 43–52 (2015)
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