

Incremental Knowledge Acquisition
for

Non-Monotonic Reasoning

Fabrizio Sebastiani and Umberto Straccia

Istituto di Elaborazione dell’Informazione
Consiglio Nazionale delle Ricerche

Via S. Maria, 46 - 56126 Pisa (Italy)
E-mail: {fabrizio,straccia}@iei.pi.cnr.it

Abstract. The use of conventional non-monotonic reasoning tools in
real-sized knowledge-based applications is hindered by the fact that the
knowledge acquisition (KA) phase cannot be accomplished in the incre-
mental way that is instead typical of knowledge base management sy-
stems based on monotonic logics. Some researchers have proposed (non-
monotonic) languages for the representation of Multiple Inheritance Net-
works with Exceptions (MINEs) that do not suffer from incrementality
problems. However, such languages are formally inadequate, as their se-
mantic status is somewhat questionable. In this paper we discuss an
approach to non-monotonic reasoning which does allow the phase of KA
to be accomplished incrementally, and at the same time relies on a solid
and widely acknowledged formal apparatus such as First Order Logic
(FOL). We have obtained this by specifying a (non-monotonic) function
that maps MINEs into sets of FOL formulae. We have shown that the
mapping function we discuss is sound and complete, in the sense that
each conclusion that can be derived from a MINE is also derivable from
the set of FOL formulae resulting from its translation via the mapping
function, and vice-versa.

1 Introduction

Incrementality of knowledge acquisition (KA) is an asset of knowledge base (KB)
management systems that hardly needs to be argued for. Large KBs are the
result of an evolutionary process; this happens because knowledge entry is a
time-consuming process, and because knowledge may simply become available at
later stages of the process, possibly contradicting (or “specializing”) previously
acquired knowledge. When a large KB is built by this “stepwise refinement”
process, it is highly desirable that the refinement consists in the plain, piecemeal
addition of new knowledge chunks, rather than in a time-consuming revision
(with a possibly ensuing deletion) of pre-existing chunks; in other words, it is
desirable that KA be incremental.

Most “traditional” KB management systems allow for incremental KA be-
cause the knowledge representation (KR) languages they rely on are generally

monotonic. Unfortunately, the formalization of many real-sized application do-
mains requires the KR language to include non-monotonic features. Non-monotonic
reasoning has been formally addressed in various ways, leading to the develo-
pment of a variety of formalisms, most of which belong to the offspring of Doyle
and McDermott’s Nonmonotonic Logic [DM80], Reiter’s Default Logic [Rei80]
and McCarthy’s Circumscription [McC80]. Unfortunately, these formalisms suf-
fer from a problem (that we have dubbed the Exceptions Explicitation Problem
(EEP)) that makes KA non-incremental: in fact, a (possibly massive) revision
of the KB must be operated upon entry of a new knowledge chunk, making the
use of such formalisms in substantive KR applications de facto impossible.

In the full paper [SS] we discuss, by means of concrete examples, the EEP and
how it manifests itself, for example, in the context of Nonmonotonic Logic (NML)
(to this respect, other formalisms such as Default Logic and Circumscription
behave in a completely analogous way); we also discuss how the addition of an
NML formula to a KB calls for a revision of the pre-existing KB that may in
general require repeated calls to the NML theorem prover, an endeavour that
we deem absurd, given the intractability and undecidability of NML. The net
effect is that, unless the construction of the KB is realized in a completely static
(non incremental) way, the problem of KB construction in NML is practically
unsolvable.

While the general non-monotonic formalisms mentioned above are affected
by the EEP, this is not true of the languages for the representation of Multiple
Inheritance Networks with Exceptions (MINEs), a popular, albeit less general,
class of non-monotonic KR languages oriented to the representation of taxonomic
knowledge. In Section 2 we describe how MINEs do solve the EEP by employing
what we call an implicit handling of exceptions. Unfortunately, such languages
lack a denotational semantics that account for their inferential behaviour in a
clear and unambiguous way; therefore, their semantic status is somewhat que-
stionable.

In order to overcome these problems, we are proposing an approach to non-
monotonic reasoning that combines the advantages (in terms of incrementality
of KA) that are offered by the languages for MINEs, with those (in terms of
semantic clarity) that are offered by a formally solid apparatus such as First
Order Logic (FOL). This approach, that we describe in Section 3, is accompli-
shed by specifying a (non-monotonic) function that maps a MINE into a set of
FOL formulae. We will show that this mapping function, besides making KA
incremental, is also a “good” mapping, in the sense that each conclusion which
is derivable from a MINE is also derivable from the set of FOL formulae that
results from the application of the mapping function to the MINE, and vice-
versa. An interesting side-effect of this result is that MINE-like reasoning can be
performed by means of ordinary, ready-made first order theorem provers, with
no need to add specific machinery. Section 4 concludes.

2

2 Multiple Inheritance Networks with Exceptions

A MINE is an acyclic directed graph whose nodes represent classes or indivi-
duals of the domain of discourse, and whose edges represent relationships of
“conceptual containment” between nodes. For instance, a MINE Γ might con-
tain the nodes opus, Penguin and Bird, and contain the edges opus→ Penguin,
Bird → Flies and Penguin �→ Flies. The word inheritance refers to the
fact that the inferential mechanisms of these languages are such that an edge
Bird → Flies has the effect of transmitting “by inheritance” the properties of
Flies to Bird; this inheritance is multiple because a node may inherit properties
from different, unrelated nodes. Last, we speak of networks with exceptions be-
cause the intended meaning of an edge p→ q is that “p’s are typically q’s”; this
allows for the existence of p’s that are not q’s, i.e. of exceptions. Dual arguments
apply to edges of type p �→ q.

In MINEs exceptions are implicitly handled by the strict partial order induced
by the relation → ∪ �→: to a first approximation, we can say that, in case of
conflicts, an edge is “preferred” to another if the source node of the first precedes
the source node of the second in the ordering. For example, given the MINE seen
above, we will see how the conclusion that Opus does not fly is given priority,
on the grounds that the premise of Penguin �→ Flies is more specific than that
of Bird→ Flies.

The languages for the representation of MINEs that have been proposed
in the literature are by now a fairly vast and multifaceted class (see [SL89]
or [THT87] for a review). Our approach substantially relies on the “skeptical”
MINE formalism due to Horty et al. [HTT90]. For reasons of space, we will
describe it only in an informal way; see [SS] for the formal details.

Informally, a MINE Γ is a directed acyclic graph with edges of type p → q
or p �→ q; the symbol ΓE will refer to the set of edges of Γ , while ΓN will refer
to the set of nodes of Γ . Edges concur in the formation of three types of paths:
chains (i.e. generic concatenations of edges), positive paths (i.e. concatenations
of “→” edges) and negative paths (i.e. concatenations of “→” edges followed
by a “�→” edge). For any chain σ from x to y in Γ , degΓ (σ) will denote the
length of the longest chain from x to y in Γ . The conclusion that can be drawn
from a positive path x1 → . . . → xn−1 → xn (resp. from a negative path
x1 → . . .→ xn−1 �→ xn) is the edge x1 → xn (resp. x1 �→ xn).

For example, let us consider a MINE such as KB1 = 〈{opus}, {Penguin,
Bird, F lies, Swims}, {opus → Penguin, Penguin → Bird, Bird → Flies,
Penguin �→ Flies, F lies �→ Swims}〉. From the positive path opus → Penguin
→ Bird → Flies we can draw the conclusion opus → Flies (“As there is no
information to the contrary, we assume that Opus flies”), while from the ne-
gative path opus → Penguin �→ Flies we may conclude opus �→ Flies (“As
there is no information to the contrary, we assume that Opus does not fly”).
This shows that MINEs may have paths from which contradictory conclusions
may be derived; unfortunately, this generates situations of ambiguity in the re-
presentation of states of affairs which are all but ambiguous to us. In order to
eliminate these situations, one defines which are, given a MINE Γ , the paths

3

from which “reliable” conclusions may be derived, and that must consequently
be given priority over others. For example, in a MINE such as KB1 this will
allow us to give the path opus → Penguin �→ Flies priority over the path opus
→ Penguin → Bird → Flies, so inhibiting the undesired conclusion according
to which Opus flies. Paths from which we may derive “reliable” conclusions are
called derivable paths.

Definition 1. A positive path σ is derivable from a MINE Γ (in symbols: Γ � σ)
if and only if the following conditions obtain:

1. if σ = x→ y, then Γ � σ if and only if σ ∈ ΓE and x �→ y �∈ ΓE ;
2. if degΓ (σ) = n > 1, then Γ � σ if and only if there exists a (possibly empty)

positive path δ and nodes x, y and u ∈ ΓN such that:
(a) σ = x→ δ → u→ y
(b) u→ y ∈ ΓE ;
(c) Γ � x→ δ → u;
(d) x �→ y �∈ ΓE ;
(e) for all nodes v and for all paths τ such that Γ � x → τ → v and

v �→ y ∈ ΓE , there exists a node z such that z → y ∈ ΓE and either
z = x or Γ � x→ γ1 → z → γ2 → v for some path γ1 and for some path
γ2.

The definition of a derivable negative path is dual1.
By C(Γ) we will denote the set of conclusions that may be drawn from

the derivable paths of Γ , i.e. the set that represents the knowledge “implicitly”
present in the KB.

3 Mapping MINEs into FOL

The implicit handling of exceptions implemented in MINE representation lan-
guages allows KA to be incremental: if our KB contained the edge Bird→ Flies,
a subsequent introduction of the edges opus→ Penguin, Penguin→ Bird and
Penguin �→ Flies would not bring about the need to modify the pre-existing
edge, as the new strict partial order deriving from the introduction of the new
edges would inhibit the undesired conclusion opus→ Flies.

The limit of the MINE-based approach is its lack of semantic clarity. In
fact, the development of a model-theoretic semantics for MINE representation
languages is still an open problem, and the lack of such a semantics makes both
the analysis of these languages and the comparison between them extremely
difficult.
1 Following the terminology of [THT87] we might say that clauses (b) and (c) of De-

finition 1 represent the option for a style of reasoning informed by “bottom-up chai-
ning”, while clause (e) represents the option for “off-path preclusion”; the mapping
function that we will describe in Section 3 subscribes to these options, although it
might be modified without difficulty in case one wanted to opt for top-down chaining
and/or on-path preclusion.

4

In this paper we are proposing an approach to non-monotonic reasoning that
allows for incremental KA, while at the same time relying on a formally solid
and widely acknowledged framework such as FOL. We have accomplished this by
specifying a first order representation of the MINE formalism (a representation
that we dub LT , the Logical Theory of Multiple Inheritance with Exceptions),
and a mapping function M that maps a MINE Γ into a set of FOL formulae. The
LT theory will be on all counts our formalism for default reasoning; a KB will
be obtained by adding to LT the result of the application of M to a particular
MINE, obtaining the FOL KB T (Γ) = M(Γ) ∪ LT . The net effect is that the
LT component of T (Γ) remains fixed throughout the phase of KA (in the same
sense in which the logical axioms are fixed for a given logical system), while the
only component that varies is the M(Γ) component.

It may be shown that T is sound and complete, in the sense that each con-
clusion derivable from a MINE Γ is also derivable from T (Γ), and vice-versa. In
order to prove our result, we will proceed in the following way. First of all, we
will define the mapping function M; we will then define the LT theory, and will
then show that belonging to the set of conclusions of a MINE Γ is equivalent
to being a logical consequence in LT (a notion we will indicate with the symbol
“|=LT ”) of M(Γ)2.

3.1 The M function

The purpose of the M function is that of translating a MINE Γ into a set of
formulae M(Γ) constituting a first order representation of the graph formed by
the nodes and edges of Γ . In order to obtain this, first of all let us represent every
node p in ΓN by an individual constant p of the first order language. The edges of
ΓE are instead represented through instances of the binary predicates ISDA (“IS
Directly A”) and ISDNA (“IS Directly Not A”): the formulae ISDA(p, q) and
ISDNA(p, q) represent then the fact that edges p→ q and p �→ q, respectively,
belong to ΓE . Unique names assumptions are also present in order to reflect
their “implicit” presence in the MINE formalism (see [SS] for details). The M
function is then given by the following definition.

Definition 2. Let Γ be a MINE; M is the function that maps Γ into the FOL
axiom

(∀x∀y ISDA(x, y) ⇔ ∨
p→q∈ΓE

(x = p ∧ y = q))∧
(∀x∀y ISDNA(x, y) ⇔ ∨

p�→q∈ΓE
(x = p ∧ y = q))∧

(
∧

{p,q}∈ΓN
(p �= q))

Note that the size of the axiom is at most O(n2), where n is the number of nodes
in Γ .

At this point we may already discuss how incrementality is achieved in our
framework. In Section 3 we have hinted at the fact that the LT component
2 Let us recall that α |=A β is short for A∪{α} |= β, where α and β are formulae and

A is a theory of the language in question.

5

of T (Γ) remains fixed throughout the phase of KA, while the only variable
component is M(Γ). We now see that the way in which M(Γ) varies is informed
by the principles of incrementality and compositionality. In fact, if one needs to
add the equivalent of an edge r → s (resp. r �→ s) to a KB T (Γ), one needs
only to add the formula (x = r ∧ y = s) as a further operand of the disjunction∨

p→q∈ΓE
(x = p ∧ y = q) (resp.

∨
p�→q∈ΓE

(x = p ∧ y = q)), and the formula
(r �= s) to the conjunction

∧
{p,q}∈ΓN

(p �= q). As required, KA becomes a matter
of simple piecemeal additions to the pre-existing KB.

3.2 The Logical Theory of Multiple Inheritance with Exceptions

Now that we have defined the M function, let us build a FOL theory LT such
that a formula of type ISA(x, y) (resp. ISNA(x, y)) is valid in LT if and only
if x → y (resp. x �→ y) belongs to C(Γ). The LT theory will consist of the
definitions of the predicates ISA and ISNA in terms of the predicates ISDA and
ISDNA we have seen in Section 3.1. In order to do so, we will use two predicates
ΠP (x, t, y) and ΠN (x, t, y) representing the derivability in Γ of a (positive or
negative, resp.) path from x to y passing from node t. As a consequence, the
predicate ΠP must be such that Γ � x → γ1 → t → γ2 → y, for some paths
γ1 and γ2, iff every model of M(Γ) ∪ LT is also a model of ΠP (x, t, y). A dual
condition must obtain for ΠN .

At this point we may characterize the conclusion that can be drawn from a po-
sitive path by adding to LT the simple formula ∀x∀y (ISA(x, y) ⇔ ∃t ΠP (x, t, y)).
The LT theory is then concisely described as follows.

Definition 3. The Logical Theory of Multiple Inheritance with Exceptions (LT)
is the FOL theory LT ≡ {A1, A2, A3, A4}, where3:

– A1 ≡ ∀x∀t∀y ΠP (x, t, y) ⇔
((x = t ∧ ISDA(x, y) ∧ ¬ISDNA(x, y)) 1.

∨ (((∃t′ΠP (x, t, t′) ∧ t �= t′ ∧ ISDA(t′, y))∨ 2.(a) − (b)
(∃t′ΠP (x, t′, t) ∧ t �= t′ ∧ ISDA(t, y)))∧

¬ISDNA(x, y)∧ (d)
(∀v∃v′(ΠP (x, v′, v) ∧ ISDNA(v, y)) (e)
⇒ (∃zISDA(z, y) ∧ (z = x ∨ΠP (x, z, v))))))

– A2 ≡ ∀x∀y (ISA(x, y) ⇔ ∃t ΠP (x, t, y));

A3 and A4 are the dual “negative” versions of A1 and A2, respectively.

3.3 An equivalence result

So far we have described M(Γ) and LT , the two components of a (non-monotonic)
function that maps MINEs into sets of FOL formulae. At this point the only thing

3 Axiom A1 has been subdivided in several numbered subformulae and indented so as
to highlight its structural affinity with Definition 1.

6

we have to do is to describe the properties of T (Γ) ≡ M(Γ)∪LT . By exploiting
the acyclicity of our MINEs, we are able to prove the following fundamental
theorem by finite induction on the degree of paths.

Theorem 4. Let Γ be a MINE. Then the following propositions hold

1. x→ y ∈ C(Γ) ⇐⇒ M(Γ) |=LT ISA(x, y)
2. x �→ y ∈ C(Γ) ⇐⇒ M(Γ) |=LT ISNA(x, y)
3. x→ y �∈ C(Γ) ⇐⇒ M(Γ) |=LT ¬ISA(x, y)
4. x �→ y �∈ C(Γ) ⇐⇒ M(Γ) |=LT ¬ISNA(x, y)
5. M(Γ) |=LT ISA(x, y) =⇒ M(Γ) |=LT ¬ISNA(x, y)
6. M(Γ) |=LT ISNA(x, y) =⇒ M(Γ) |=LT ¬ISA(x, y)

The proof of Theorem 4 is omitted for reasons of space, and is reported only in
the full paper [SS].

Clauses (1) and (2) of the theorem show that T is a complete translation of
MINEs into FOL, in the sense that, for each conclusion that can be derived from
a MINE Γ , an equivalent conclusion is derivable from T (Γ). They also show that
the translation is sound, in the sense that, for each conclusion derivable from
T (Γ), an equivalent conclusion is derivable from Γ itself. However, this latter
statement must be interpreted with a caveat : some formulae that can be derived
from T (Γ) have in fact no equivalent conclusions derivable from Γ , in the sense
that their would-be equivalents are not even expressible in the MINE formalism!
For instance, in the case of a MINE Γ whose set of conclusions comprises the
edge p→ q, T (Γ) will indeed contain the formula ISA(p, q), but will also contain
formulae that do not correspond to conclusions of Γ : among these, formulae
containing connectives (such as e.g. ISA(p, q)∧ ISA(p, q)), formulae containing
instances of predicates different from ISA and ISNA (such as e.g. ∃t ΠP (p, t, q)),
tautologies of FOL, etc. This is an obvious consequence of the fact that we are
dealing with a translation of a formalism into an expressively richer one, and
does not invalidate the substance of our claim; because of this we have ignored
the issue elsewhere in this paper.

A related comment may be made for clauses (3) and (4) of Theorem 4, in that
formulae of the form ¬ISA(x, y) and ¬ISNA(x, y) do not find a direct analogue
in the MINE formalism: the result is that the non-derivability of a conclusion
(e.g. it is not derivable that birds are typically yellow) finds its translation in
the derivability of the negated conclusion (e.g. it is not the case that birds are
typically yellow). This can be seen as a completion of the theory with respect to
the ISA and ISNA predicates.

Finally, clauses (5) and (6) show that ISA and ISNA interact correctly.
In order to better understand the properties of T , we end this section by

describing its behaviour in the case of two “classic” examples.

Example 1. Let Γ be a MINE such that ΓE = {o→ P, P → B,B → F}, a MINE
that encodes our previous “birds” example. The edge o → F belongs to C(Γ);
in keeping with this, the formula ISA(o, F) is a logical consequence of T (Γ). If
we add the edge P �→ F to ΓE , the edge o→ F no more belongs to C(Γ), which

7

instead includes o �→ F ; accordingly, the formula ISA(o, F) no more belongs to
T (Γ), which instead now includes ISNA(o, F). This shows that the T function
is non-monotonic.

Example 2. Let Γ be a MINE such that ΓE = {n→ Q,n→ R,Q→ P,R �→ P},
a MINE that encodes the famous “Nixon diamond”. Neither n→ P nor n �→ P
belong to C(Γ), corresponding to the fact that, according to the “skeptical”
approach, whether Nixon is a pacifist or not cannot reasonably be concluded
from the information contained in an inherently ambiguous network such as Γ .
Accordingly, the formula ¬ISA(n, P) ∧ ¬ISNA(n, P) is a logical consequence
of T (Γ).

4 Conclusion

We have described an approach to non-monotonic reasoning that combines the
advantages (in terms of incrementality of KA) that are offered by MINE repre-
sentation languages, with those (in terms of semantic clarity) that are offered
by a formally solid apparatus such as First Order Logic. We have achieved this
by specifying a first order representation LT of the MINE formalism, and a
mapping function M that maps a MINE Γ into a set of FOL formulae. In our
framework, a KB is obtained by adding to LT the result of the application of
M to a particular MINE, thus obtaining the FOL KB T (Γ) = M(Γ)∪LT . The
net effect is that the LT component of T (Γ) remains fixed throughout the phase
of KA, while the only component that varies is the M(Γ) component. We have
shown how this variation is achieved by performing simple piecemeal additions
of new chunks of knowledge to the pre-existing KB, thereby accomplishing in-
crementality and compositionality. We have also shown that T is a sound and
complete mapping, as each conclusion derivable from a MINE Γ is also derivable
from T (Γ), and vice-versa.

An interesting side-effect of this result is that MINE-like reasoning can be
performed by means of the ordinary and widely available first order theorem
provers. A simple interface may be devised that allows the user to convey his
information to the KB in terms of the simpler MINE representation language;
it is then the interface that takes the charge of implementing the T transla-
tion function, performing the required additive modifications to the axiom of
Definition 2. We are currently exploring the possibility of an efficient implemen-
tation of this framework by using the “theory resolution” technique for first
order theorem proving devised by Stickel [Sti85], which would allow us to “wire”
the LT theory into a resolution-based theorem prover, thereby freeing the KB
management system from the need to handle the axioms of LT directly.

References

[DM80] Jon Doyle and Drew McDermott. Nonmonotonic logic I. Artificial Intelli-
gence, 13:41–72, 1980. [a] Also reprinted in [Gin87], pp. 111–126.

8

[Gin87] Matthew L. Ginsberg, editor. Readings in nonmonotonic reasoning. Morgan
Kaufmann, Los Altos, CA, 1987.

[HTT90] John F. Horty, Richmond H. Thomason, and David S. Touretzky. A skep-
tical theory of inheritance in nonmonotonic semantic networks. Artificial
Intelligence, 42:311–348, 1990.

[Lif90] Vladimir Lifschitz, editor. Programs with common sense - Papers by John
McCarthy. Ablex, Norwood, NJ, 1990.

[LNS91] Maurizio Lenzerini, Daniele Nardi, and Maria Simi, editors. Inheritance hie-
rarchies in knowledge representation and programming languages. Wiley, Chi-
chester, UK, 1991.

[McC80] John McCarthy. Circumscription - a form of nonmonotonic reasoning. Arti-
ficial Intelligence, 13:27–39, 1980. [a] Also reprinted in [Gin87], pp. 145–151.
[b] Also reprinted in [Lif90], pp. 142–155.

[Rei80] Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–
132, 1980. [a] Also reprinted in [Gin87], pp. 68–93.

[SL89] Bart Selman and Hector J. Levesque. The tractability of path-based inheri-
tance. In Proceedings of IJCAI-89, 11th International Joint Conference on
Artificial Intelligence, pages 1140–1145, Detroit, MI, 1989. [a] Also reprinted
in [LNS91], pp. 83–96.

[SS] Fabrizio Sebastiani and Umberto Straccia. Incremental acquisition of kno-
wledge for non-monotonic reasoning (extended report). Technical report, Isti-
tuto di Elaborazione dell’Informazione - Consiglio Nazionale delle Ricerche,
Pisa, Italy. Forthcoming.

[Sti85] Mark E. Stickel. Automated deduction by theory resolution. Journal of Au-
tomated Reasoning, 1:333–355, 1985.

[THT87] David S. Touretzky, John F. Horty, and Richmond H. Thomason. A clash
of intuitions: the current state of nonmonotonic multiple inheritance systems.
In Proceedings of IJCAI-87, 10th International Joint Conference on Artificial
Intelligence, pages 476–482, Milano, Italy, 1987.

9

