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Synonyms

Estimating prevalence of sentiment classes in
user-generated content

Glossary

Prevalence of
c in set S

Percentage of items in S that
belong to class c and also known
as the “relative frequency” of
c or the “prior probability”
(or simply “prior”) of c

Quantification Estimation of the prevalence
of each class c � C in a set S
of unlabeled items
(or estimation of the distribution
of S across the classes in C),
synonym of “supervised
prevalence estimation” and
“class prior estimation,” and
also previously referred to as
“counting.”

Sentiment
classification

A classification task whereby
items (e.g., tweets, product
reviews, comments, answers to
open-ended questions) are
classified based on the sentiment
they convey (or opinion they
express) about a certain entity or
topic. It may take the form of
binary classification (when the
available classes are C =
{POSITIVE, NEGATIVE}) or ternary
classification (when C also
contains a NEUTRAL class) or
ordinal classification (when
there are more than two classes,
and these classes are ordered
according to a total order, e.g.,
EXCELLENT, GOOD, FAIR, POOR,
DISASTROUS)

Definition

User-generated content (UGC) is defined as con-
tent (usually in the form of text, spoken audio,
imagery, video, etc.) authored by casual users
(as opposed to professional users) of a digital
content delivery platform. Examples of user-gen-
erated textual content are tweets, blog posts, prod-
uct reviews, and as are all of the comments that
other users upload as a reaction to them; examples
of user-generated non-textual content are images
uploaded on Instagram (or similar social network-
ing services) or videos uploaded on platforms
such as YouTube. Sentiment quantification of
UGC is defined as the activity (carried out via
supervised learning) of estimating the prevalence
(aka percentage or relative frequency) of
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sentiment-related classes (e.g., POSITIVE, NEGA-

TIVE, NEUTRAL) in a set of unlabeled UGC items.

Introduction

User-generated content (UGC) has turned into a
goldmine for market researchers, social scientists,
political scientists, and professionals involved in
reputation management, since it gives near-instant
access to a potentially enormous quantity of data
from which the collective sentiment about prod-
ucts, companies, policies, and political candidates
can be gauged.

Possibly the most important task underlying
attempts to tap into this goldmine is sentiment
classification, the task of classifying an item of
UGC (e.g., a tweet, a product review, a post on a
social networking service) according to the senti-
ment it conveys (or opinion it expresses) about a
certain entity or topic. From a niche, esoteric topic
that only a handful of NLP researchers were
investigating, in the last 10 years, sentiment anal-
ysis (and sentiment classification, which is its
most prominent incarnation) has blossomed into
a research field with thousands of active
researchers and into a multimillion industry too
(almost all providers of textual content analysis
tools nowadays boast a sentiment analysis solu-
tion as part of their commercial offer).

However, it turns out that in many applications,
the final goal of sentiment classification is not that
of determining the class of individual UGC items
but that of estimating the prevalence of UGC
items that belong to a certain class; the latter is a
more specific task than the former, since a solution
for the former is also a solution for the latter, but
not vice versa. When prevalence estimation is
tackled via supervised learning, it is known as
quantification. Quantification has recently been
investigated as a task of its own (i.e., as something
which is not a mere by-product of classification),
following experimental evidence that using quan-
tification-specific algorithms, rather than standard
classification-oriented ones, delivers superior
quantification accuracy.

We here give an introduction to the task of
quantifying UGC by sentiment, to the methods

that have been proposed in the literature, and to
the measures that have been used for evaluating
the accuracy of different quantification
algorithms.

Key Points

The obvious method for dealing with quantifica-
tion is “classify and count,” i.e., classifying each
unlabeled object via a standard classifier and esti-
mating class prevalence by counting the objects
that have been labeled with the class. However,
this strategy is suboptimal, since a good classifier
is not necessarily a good “quantifier” (i.e., preva-
lence estimator). To see this, consider that a binary
classifier h1 for which FP = 20 and FN = 20 (FP
and FN standing for the “false positives” and
“false negatives,” respectively, which it has gen-
erated on a given dataset) is worse, in terms of
classification accuracy, than a classifier h2 for
which, on the same dataset, FP = 18 and
FN= 20. However, h1 is intuitively a better binary
quantifier than h2; indeed, h1 is a perfect quanti-
fier, since FP and FN are equal and thus, when it
comes to class frequency estimation, compensate
each other, so that the distribution of the test items
across the class and its complement is estimated
perfectly. In other words, a good quantifier needs
to have small bias (i.e., needs to distribute its
errors as evenly as possible across FP and FN).

Recent research (e.g., Barranquero et al. 2015;
Bella et al. 2010; Esuli and Sebastiani 2015;
Forman 2008) has convincingly shown that,
since classification and quantification pursue dif-
ferent goals, quantification should be tackled as a
task of its own, using different evaluation mea-
sures and, as a result, different learning algo-
rithms. One reason why it seems sensible to
pursue quantification directly, instead of tackling
it via classification, is that classification is a more
general task than quantification (since quantifica-
tion can be framed in terms of classification, while
the opposite is not true). A training set might thus
contain information sufficient to generate a good
quantifier but not a good classifier, which means
that performing quantification via “classify and
count” might be a suboptimal way of performing
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quantification. In other words, performing quan-
tification via “classify and count” looks like a
violation of “Vapnik’s principle” (Vapnik 1998),
which asserts that:

If you possess a restricted amount of information
for solving some problem, try to solve the problem
directly and never solve a more general problem as
an intermediate step. It is possible that the available
information is sufficient for a direct solution but is
insufficient for solving a more general intermediate
problem.

In the rest of this work, we will thus look at
approaches that have tackled quantification as a
task of its own rather than as a by-product of
classification.

Historical Background

Sentiment quantification for UGC is a task at the
crossroads of two main streams or research,
namely, (a) sentiment analysis of UGC and
(b) quantification.

Sentiment analysis (see Feldman 2013; Liu
2012; Pang and Lee 2008) is a fairly recent task,
since until 15 years ago, it had only resulted in
sporadic efforts, mainly originating from the NLP
area. It was actually the rising importance of
UGC, caused by the birth of newmodes of expres-
sion (e.g., blogs, user-contributed product
reviews) and new platforms for hosting them
(e.g., electronic commerce portals, social net-
working services) that contributed to the growing
importance of sentiment analysis. Indeed, while
theWeb of the 1990s was primarily a repository of
factual content generated by professional authors,
the Web of the new millennium has progressively
become rife with opinion-laden content generated
by casual users, and it is the sentiment-laden
nature of this content that has prompted the explo-
sion of sentiment analysis.

Earlier efforts at sentiment analysis were
extremely primitive, some of them consisting of
algorithms that counted the number p of occur-
rences of “positive words” (i.e., words that con-
veyed a sense of positivity, such as “truthful,”
“exceptional,” and the like) and the number n of
occurrences of “negative words” (i.e., words that

conveyed a sense of negativity, such as “inaccu-
rate,” “pathetic,” and the like) within a textual
UGC item and decreed the item a POSITIVE one if
p > n and a NEGATIVE one otherwise. This phase
could be preceded by a check that p + n exceeded
a certain threshold, failing which the item was
decreed a NEUTRAL one. These primitive efforts
met with some success, but clashed against the
lack of high-coverage, manually crafted sentiment
lexicons, i.e., dictionaries where each word of a
given language is classified as a positive or a
negative or a neutral word. This encouraged
many researchers to devote their attention to
devising methods for the automatic
(or semiautomatic) extraction of such lexicons
(also for languages other than English) from
textual data.

The last 10 years have seen sentiment analysis
researchers adopt increasingly sophisticated tools
for linguistic analysis and text mining, thus leav-
ing behind the “counting positive and negative
words” phase; some of these tools will be
discussed in section “Representing Sentiment for
User-Generated Content.”

Quantification has instead a more complex his-
tory, and it is fair to say that different strands in the
quantification literature evolved almost indepen-
dently (and somehow unknown to each other)
within (a) statistics (e.g., Hopkins and King
2010), (b) machine learning (e.g., du Plessis and
Sugiyama 2012; Saerens et al. 2002), and (c) data
mining (e.g., Forman 2008). One interesting fact
is that in strand (b), prevalence estimation is not a
goal in itself but is functional to improving the
accuracy of a classifier in situations characterized
by distribution drift (i.e., by class prevalences that
are likely to change substantially from the training
set to the test set); instead, in strand (c) prevalence
estimation is a goal in itself (the case of UGC that
we are analyzing here belongs to this latter case).

Different quantification algorithms have been
proposed over the years (on this, see section
“Learning to Quantify” for more details). Most
of them are batch learning methods, which require
all the training examples to be loaded in memory
at the same time, while incremental “online”
methods, which relax this requirement and thus
start learning after the first training examples are
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loaded in memory, are a rarity (see Kar et al. 2016
for an example).

The first work where sentiment analysis meets
quantification is Esuli and Sebastiani (2010b),
which observes that many applications of senti-
ment classification really have quantification, and
not classification, as their goal, and thus argues for
the importance of developing learning algorithms
that explicitly target quantification and not classi-
fication. See section “Key Applications” for other
pointers to the literature on sentiment quantifica-
tion for UGC.

Main Approaches to Sentiment
Quantification

Setting up a system that performs sentiment quan-
tification of UGC essentially involves setting up
two software modules:

1. A module that generates vectorial representa-
tions of UGC items (e.g., blog posts, tweets)
which can be fed to an algorithmwhich learns a
quantifier from training data

2. A module that learns a quantifier from the vec-
torial representations of labeled UGC items.

After discussing in section “Evaluating Quan-
tification” the main measures that are used in the
literature for evaluating quantification, in sections
“Representing Sentiment for User-Generated
Content” and “Learning to Quantify,” we discuss
the main techniques for building modules 1 and 2,
respectively.

Evaluating Quantification
Different measures have been proposed in the
literature for evaluating quantification error. We
here concentrate on the measures that have been
proposed for tackling single-label multi-class
(SLMC) quantification. Note that a measure for
SLMC quantification is also a measure for binary
quantification, since the latter task is a special case
of the former.

Notation-wise, byL(p, bp,S, C) we will indicate
a quantification loss, i.e., a measure L of the error
made in estimating a distribution p defined on set

S and classes C by another distribution bp; we will
often simply write L(p, bp) when S and C are clear
from the context. (Consistently with most mathe-
matical literature, we use the caret symbol (ˆ) to
indicate estimation.)

The simplest measure for SLMC quantification
is absolute error (AE), which corresponds to
the average (across the classes c � C ) absolute
difference between the predicted class prevalence
bp(c) and the true class prevalence p(c); i.e.,

AE p,bpð Þ ¼ 1

Cj j
X

c� C
bp cð Þ $ p cð Þj j (1)

It is easy to show that AE ranges between
0 (best) and

2 1$min
c� C

p cð Þ
! "

j C j

(worst). The main advantage of AE is that it is
intuitive and easy to understand to non-
initiates too.

However, AE does not address the fact that the
same absolute difference between predicted class
prevalence and true class prevalence should count
as a more serious mistake when the true class prev-
alence is small. For instance, predicting bp(c)= 0.10
when p(c) = 0.01 and predicting bp(c) = 0.50 when
p(c) = 0.41 are equivalent errors according to AE,
but the former is intuitively amore serious error than
the latter. Relative absolute error (RAE) addresses
this problem by relativizing the value bp cð Þ $ p cð Þj j
in Eq. 1 to the true class prevalence, i.e.,

RAE p, bpð Þ ¼ 1

Cj j
X

c� C

bp cð Þ $ p cð Þj j
p cð Þ (2)

RAE may be undefined in some cases, due to
the presence of zero denominators. To solve this
problem, in computing RAE, we can smooth both
p(c) and bp(c) via additive smoothing, i.e.,

ps cð Þ ¼ eþ p cð Þ
e Cj jþ

X

c� C
p cð Þ

(3)
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where ps(c) denotes the smoothed version of p(c),
the denominator is just a normalizing factor, and
where the quantity e ¼ 1

2 Sj j is typically used as a

smoothing factor (Esuli and Sebastiani 2015;
Forman 2008; Gao and Sebastiani 2015); bps cð Þ ,
the smoothed version of the predicted class prev-
alence, is defined analogously. The smoothed ver-
sions of p(c) and bp(c) are then used in place of their
original versions in Eq. 2; as a result, RAE is
always defined and still returns a value of
0 when p and bp coincide. It is easy to show that
RAE ranges between 0 (best) and

Cj j$ 1þ
1$min

c� C
ps cð Þ

min
c� C

ps cð Þ

Cj j

(worst).
A third measure, and the one that has become

somehow standard in the evaluation of SLMC
quantification, is normalized cross-entropy, better
known as Kullback-Leibler Divergence (KLD –
see, e.g., Cover and Thomas 1991). KLD was
proposed as a SLMC quantification measure in
Forman (2005) and is defined as

KLD p, bpð Þ ¼
X

c� C
p cð Þloge

p cð Þ
bp cð Þ (4)

KLD was originally devised as a measure of
the inefficiency incurred when estimating a true
distribution p over a set C of classes by means of a
predicted distribution bp. KLD is thus suitable for
evaluating quantification, since quantifying
exactly means predicting how the items in set S
are distributed across the classes in C. KLD ranges
between 0 (best) and +1 (worst). Note that,
unlike AE and RAE, the upper bound of KLD is
not finite since Eq. 4 has predicted prevalences,
and not true prevalences, at the denominator: that
is, by making a predicted prevalence bp(c) infinitely
small, we can make KLD be infinitely large.

Also KLD may be undefined in some cases.
While the case in which p(c) = 0 is not problem-
atic (since continuity arguments indicate that 0
log 0

ashould be taken to be 0 for any a & 0), the

case in which bp(c) = 0 and p(c) > 0 is indeed
problematic, since a log a

0 is undefined for
a> 0. To solve this problem, also in computing
KLD, we use the smoothed prevalences of
Eq. 3; as a result, KLD is always defined and
still returns a value of zero when p and bp
coincide.

While KLD is less easy to understand to non-
initiates than AE or RAE, its advantage is that it is
a very well-known measure, having been the sub-
ject of intense study within information theory
(Csiszar and Shields 2004) and, although from a
more applicative angle, within the language
modeling approach to information retrieval and
to speech processing. As a consequence, it has
emerged as the de facto standard in the SLMC
quantification literature.

Concerning ordinal quantification, the only
known measure is the Earth Mover’s Distance
(EMD), a measure well-known in the field of
computer vision. It is defined for the general
case in which a distance d(c0, c00) is defined for
each c0, c00 � C; when there is a total order on the
classes inC, if we assume that d(ci, ci+1)= 1 for all
i � {1, ..., (C$ 1)}, the Earth Mover’s Distance is
defined as

EMD p, bpð Þ ¼
XjCj$1

j¼1

j
Xj

i¼1

bp cið Þ $
Xj

i¼1

p cið Þj (5)

and can be computed in |C | steps from the esti-
mated and true class prevalences. EMD ranges
between 0 (best) and (|C| $ 1) (worst).

Representing Sentiment for User-Generated
Content
For quantification, sentiment analysis comes into
play when generating vectorial representations for
the labeled examples that are used to generate a
sentiment quantifier and for the unlabeled exam-
ples that are the object of quantification. For gen-
erating these representations, no technique
specific to sentiment quantification has emerged,
which means that the same techniques used for
sentiment classification are also used for
quantification.
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The traditional “bag of words” (BoW)
approach to representing textual content in classi-
fication by topic cannot be used for classifying by
sentiment: to see why, simply consider the fact
that two sentences such as “A horrible hotel in a
beautiful town” and “A beautiful hotel in a horri-
ble town” would be assigned the same class if
relying on a BoW representation. As a result,
classification by sentiment relies on more sophis-
ticated linguistic tools than classification by topic;
these tools include:

• Part-of-speech taggers (e.g., to detect the dif-
ference between “good” as an adjective and
“good” as a noun)

• Valence shifter detectors (e.g., to detect the
presence of negated contexts, since negation
usually inverts the polarity of the sentiment
expressed in the scope of the negation)

• Detectors of amplifiers (e.g., “very”) and
diminishers (e.g., “scarcely”), since they
change the intensity of any sentiment
expressed within their scope

• Parsers and named entity recognizers (e.g., to
detect which entity or entity sentiments are
about)

One linguistic tool of particular importance in
sentiment analysis is a sentiment lexicon, i.e., a
dictionary (or thesaurus) where lexical entries are
tagged according to whether they carry positive
sentiment (e.g., the adjective “phenomenal”), neg-
ative sentiment (e.g., the adjective “disappoint-
ing”), or no sentiment at all (e.g., the adjective
“electronic”). The availability of a sentiment lex-
icon is crucially important, e.g., to distinguish
sentences such as “The room had a comfortable
bed” (which indeed carries positive sentiment
toward the hotel being reviewed) from sentences
such as “The room had a rectangular bed” (which
carries no sentiment).

Sentiment analysis, like many other NLP tasks,
has not been indifferent to the “deep learning
revolution” that has swept the field of machine
learning in the last 5 years. In sentiment analysis,
the most visible effect of this revolution has been
the adoption of “word embeddings,” which allow
the vectorial representations of UGC items to

leverage the distributional semantics of the
words occurring in them (Tang et al. 2014).

An important fact to be noted is that UGC,
because of its informal nature, is often fraught
with syntactic inaccuracies, abbreviations, typos,
slang expressions, etc.; these features make the
linguistic analysis (and, as a consequence, the
analysis by sentiment) of UGC more difficult
than the analysis of more formal, polished lan-
guage. It is thus often beneficial to use linguistic
analysis tools (including sentiment lexicons) that
are UGC specific and often even specific to the
particular medium to be analyzed (e.g., Twitter).

Learning to Quantify
In the last 10 years several supervised learning
approaches to prevalence estimation have been
proposed, the two main classes being the aggre-
gative and the non-aggregative methods. While
the former requires the classification of each indi-
vidual item as an intermediate step, the latter does
not and estimates class prevalences holistically.
Most methods fall in the former class, while the
latter has few representatives (e.g., Gonzalez-Cas-
tro et al. 2013; King and Lu 2008).

We here introduce in some detail a few repre-
sentative approaches of the aggregative type.
Let us fix some notation. We assume a domain
X of UGC items; a generic item will be indicated
by x. We assume the availability of a set Tr of
training items and of a set Te of test items in which
the accuracy of a quantifier is evaluated.
A classifier (or hypothesis) trained on Tr will be
denoted by hX ! C , where X is our domain
of interest (e.g., the set of tweets) and C is the set
of classes (e.g., POSITIVE, NEGATIVE, NEUTRAL). By
bpMS cð Þ we denote the true prevalence of class c �
C in set S , while by bpMS cð Þ we denote the
prevalence of class c � C in set S as estimated
via method M.

Classify and Count (CC).An obvious method
for quantification consists of training a classifier
from Tr via a standard learning algorithm, classi-
fying the items in Te, and estimating pTe by simply
counting the fraction of items in Te that are pre-
dicted to belong to the class. If by bc we denote the
event “class c has been assigned by the classifier,”
so that pTe( bc ) represents the fraction of test
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documents that have been assigned to c by the
classifier, this corresponds to computing

bpCCTe cð Þ ¼ pTe bcð Þ ¼ x� Te h xð Þ ¼ cjf gj j
Tej j

(6)

Forman (2008) calls this the classify and count
(CC) method. This is the classification-oriented
method that often uses as a baseline in quantifica-
tion experiments.

Probabilistic Classify and Count (PCC).
Avariant of CC consists in generating a classifier
from Tr, classifying the items in Te, and comput-
ing pTe(c) as the expected fraction of items pre-
dicted to belong to c. If by p(c|x) we indicate the
posterior probability, i.e., the probability of mem-
bership in c of test item x as estimated by the
classifier, and by E[x] we indicate the expected
value of x; this corresponds to computing

bpPCCTe cð Þ ¼ E pTe bcð Þ½ ( ¼ 1

Tej j
X

x� Te

p cjxð Þ (7)

The rationale of PCC is that posterior proba-
bilities contain richer information than binary
decisions, which are usually obtained from poste-
rior probabilities by thresholding.

The PCC method is dismissed as unsuitable in
Forman (2005, 2008), on the grounds that, when
the training set distribution pTr and the test set
distribution pTe are different (as they should be
assumed to be in any application of quantifica-
tion), probabilities calibrated on Tr (Tr being the
only available set where calibration may be car-
ried out) cannot be, by definition, calibrated for Te
at the same time. Experimental evidence on PCC
is not conclusive, since PCC performed better
than CC in the experiments of Bella et al. (2010)
(where it is called “Probability Average”) and
Tang et al. (2010) but underperformed CC in the
(much more extensive) experiments of Esuli and
Sebastiani (2015). Interestingly enough, in the
experiments of Gao and Sebastiani (2016), PCC
proves the best performer, outperforming several
among the methods that we discuss in this section.

Adjusted Classify and Count (ACC).
Forman (2005, 2008) uses a further method

which he calls “Adjusted Count” and which we
will call (consistently with Esuli and Sebastiani
2015) Adjusted Classify and Count (ACC) so as to
make its relation with CC more explicit.

ACC is based on the observation that, thanks to
the law of total probability, it holds that

pTe bcj
# $

¼
X

ci, cj � C
pTe bcj

%%ci
# $

) pTe cið Þ (8)

where pTe bcj
%%ci

# $
represents the fraction of test

documents belonging to ci that have been instead
assigned to cj by the classifier. Note that, once the
classifier has been trained and applied to Te, the
quantity pTe bcj

# $
can be observed, and the quantity

pTe bcj
%%ci

# $
can be estimated from Tr via k-fold

cross-validation; the quantity pTe(ci) is instead
unknown and is indeed the quantity we want to
estimate. Since there are |C| equations of the type
described in Eq. 8 (one for each possible bcj), and
since there are | C | quantities of type pTe(ci) to
estimate (one for each choice of ci), we are in the
presence of a system of |C| linear equations in |C|
unknowns. This system can be solved via standard
techniques, thus yielding the required bpTe cið Þ
estimates.

One problem with ACC is that it is not
guaranteed to return a value in [0,1], due to the
fact that the estimates of pTe bcj

%%ci
# $

may be imper-
fect. This has led most authors (see, e.g., Forman
2008) to (i) “clip” the bpTe(ci) estimates (i.e., equate
to 1 every value higher than 1 and to 0 every value
lower than 0) and (ii) rescale them so that they
sum up to 1.

Probabilistic Adjusted Classify and Count
(PACC). The PACC method (proposed in Bella
et al. (2010), where it is called “Scaled Probability
Average”) is a probabilistic variant of ACC, i.e., it
stands to ACC like PCC stands to CC. Its under-
lying idea is to replace, in Eq. 8, pTe bcj

# $
and pTe

bcj
%%ci

# $
with their expected values. Equation 8 is

thus transformed into

E pTe bcj
# $& '

¼
X

ci, cj � C
E pTe bcj

%%ci
# $& '

) pTe cið Þ (9)

where
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E pTe bcj
# $& '

¼ 1

Tej j
X

x� Te

p cj
%%x

# $

E pTe bcj
%%ci

# $& '
¼ 1

Teij j
X

x� Tei

p cj
%%x

# $ (10)

and Tei indicates the set of items in Te whose true
class is ci. Like for ACC, once the classifier has
been trained and applied to Te, the quantity
E pTe bcj

# $& '
can be observed, and the quantity E

pTe bcj
%%ci

# $& '
can be estimated from Tr via k-fold

cross-validation, which means that we are again
in the presence of a system of |C| linear equations
in |C | unknowns that we can solve by standard
techniques. Like ACC, also PACC can return
values of bpTe cið Þ that fall off the [0,1] range;
again, clipping and rescaling is the only solution
in these cases.

Like PCC, also PACC is dismissed as
unsuitable in Forman (2005, 2008), for the same
reasons for which PCC was also dismissed. Some
experimental evidence seems instead in favor of
PACC, since the experimental results published in
Bella et al. (2010), Esuli and Sebastiani (2015),
and Tang et al. (2010) indicate PACC to
outperform all of CC, PCC, and ACC.

Expectation Maximization for Quantifica-
tion (EMQ). EMQ, proposed by Saerens et al.
(2002), is an instance of Expectation Maximiza-
tion (Dempster et al. 1977), a well-known itera-
tive algorithm for finding maximum-likelihood
estimates of parameters (in our case, the class
prevalences) for models that depend on
unobserved variables (in our case, the class
labels). Essentially, EMQ (see Algorithm 1) incre-
mentally updates (Line 12) the posterior probabil-
ities by using the class prevalences computed in
the last step of the iteration and updates (Line 14)
the class prevalences by using the posterior prob-
abilities computed in the last step of the iteration,
in a mutually recursive fashion.

All of the above methods require an underlying
classifier that, given an item, predicts whether it
belongs to class c or not (CC, ACC) or outputs a
posterior probability of membership in c (PCC,
PACC); any learning method for generating this
classifier can be used. If the classifier only returns
confidence scores that are not probabilities (as is

the case, e.g., when the scores do no range on
[0,1]), for PCC and PACC, these scores must be
converted into true probabilities. If the score is a
monotonically increasing function of the classi-
fier’s confidence in the fact that the item belongs
to the class, this may be obtained by applying a
logistic function. Well-calibrated probabilities
(defined as the probabilities such that the preva-
lence pS(c) of a class c in a set S is equal to

P
x�S

p cjxð Þ) may be obtained by using a generalized
logistic function.

Within the class of aggregative methods, a
further distinction can be made between methods
that use general-purpose learning algorithms,
sometimes tweaking them or post-processing
their prevalence estimates to account for their
estimated bias, and methods that instead make
use of learning algorithms explicitly devised for
quantification. All of the methods described so far
belong to the former class; let us now look at two
methods of the latter type.

SVMs Optimized for KLD (SVM(KLD)).
SVM(KLD), proposed in Esuli and Sebastiani
(2010b, 2015), is an instantiation of SVM-perf
(Joachims 2005) that uses KLD as the loss to
optimize. (In Joachims (2005), SVM-perf is
actually called SVM-multi, but the author has
released its implementation under the name
SVM-perf; we will thus use this latter name.)
SVM-perf is a “structured output prediction”
algorithm in the support vector machines
(SVMs) family. Unlike traditional SVMs, SVM-
perf is capable of optimizing any nonlinear, multi-
variate loss function that can be computed from a
contingency table (as all the measures presented in
section “Evaluating Quantification” are). Instead of
handling hypotheses h: X ! Y that map an
individual item (e.g., a tweet) xi into an
individual label yi � Y , SVM-perf considers
hypotheses h : X ! Y that map entire tuples of
items (e.g., entire sets of tweets)x= (x1, ..., xn) into
tuples of labels y = (y1, ..., yn). Instead of learning
the traditional hypotheses of type

h xð Þ ¼ signw ) xþ bð Þ (11)

SVM-perf thus learns hypotheses of type
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h xð Þ ¼ arg max
y�Y

w )C x,yð Þð Þ (12)

where w is the vector of parameters to be learnt
during training and

C x,yð Þ ¼
Xn

i¼1

xiyi (13)

(the joint feature map) is a function that scores the
pair of tuples (x,y) according to how “compatible”
x and y are. In other words, while classifiers
trained via traditional SVMs classify individual
instances x one at a time, models trained via
SVM-perf classify entire sets x of instances in

one shot and can thus make the labels assigned to
the individual items mutually depend on each
other. This is of fundamental importance in quan-
tification, where, say, an additional false positive
may even be beneficial when the rest of the data is
expected to contain more false negatives than
false positives.

While the optimization problem of classic soft-
margin SVMs consists of finding

arg min
w, x i&0

1

2
w ) wþ C

XTrj j

i¼1

x i

such that y0i w ) x0i þ b
& '

& 1$ x ið Þ
for all i� 1, . . . , Trj jf g

(14)

Input : Class prevalences pTr(c) on Tr, for all c ∈ C;
Posterior probabilities p(c|x), for all c ∈ C and for all x ∈ Te;

Output: Estimates p̂Te(c) of class prevalences on Te;

/* Initialization */
1 s ← 0;
2 for c ∈ C do
3 p̂(s)Te(c) ← pTr(c);
4 for x ∈ Te do
5 p(s)(c|x) ← p(c|x);
6 end
7 end

/* Main Iteration Cycle */
8 while stopping condition = false do
9 s ← s+ 1;

10 for c ∈ C do
11 for x ∈ Te do

12 p(s)(c|x) ←

p̂(s)Te(c)

p̂(0)Te(c)
·p(0)(c|x)

∑

c∈C

p̂(s)Te(c)

p̂(0)Te(c)
·p(0)(c|x)

13 end

14 p̂(s)Te(c) ←
1

|Te|
∑

x∈Te

p(s−1)(c|x)

15 end
16 end

/* Generate output */
17 for c ∈ C do
18 p̂Te(c) ← p̂(s)Te(c)
19 end

Sentiment Quantification of User-Generated Content, Algorithm 1 The EMQ algorithm (Saerens et al. 2002)
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(where the x0i, y
0
i

# $
denote the training examples),

the corresponding problem of SVM-perf consists
instead of finding

arg min
w, x i&0

1

2
w ) wþ Cx

such that w ) C x0, y0ð Þ $C x0,yð Þ þ b½ (
& L y0,yð Þ $ x for all y�Y=y0

(15)

where x0, y0ð Þ indicates a sequence of training
examples and the corresponding sequence of
their true labels. Here, the relevant fact to observe
is that the multivariate loss L explicitly appears in
the optimization problem.

Note that the set of possible labelsY is equal to
ci, cif g , where ci is any of the classes we are

concerned with and ci is its complement; that is,
SVM-perf can only deal with binary decisions,
which makes SVM(KLD) apt for binary quantifi-
cation only. If we want to tackle SLMC quantifi-
cation with | C | > 2 classes, we need to
independently generate |C| predicted prevalences
bp (c) for each c � C via |C | instances of SVM
(KLD) and then rescale these predicted preva-
lences so that they sum up to 1.

SVMs Optimized for Q (SVM(Q)). SVM(Q),
originally proposed in Barranquero et al. (2015),
is, like SVM(KLD), an instantiation of SVM-perf.
The authors optimize a “multi-objective”measure
(which they call Q-measure) that combines clas-
sification accuracy and quantification accuracy;
the rationale is that by maximizing both measures
at the same time, one tends to obtain quantifiers
that are not just effective (thanks to the high
quantification accuracy) but also reliable (thanks
to the high classification accuracy). The authors’
Q-measure is

Qb p, bpð Þ ¼
b2 þ 1
# $

Gc p, bpð Þ ) Gq p, bpð Þ
b2Gc p, bpð Þ þ Gq p, bpð Þ

(16)

where Gc and Gq are a measure of classification
“gain” (the opposite of loss) and a measure
of quantification gain, respectively, and
0 * b * +1 is a parameter that controls the
relative importance of the two; for b = 0, the Qb

measure coincides with Gc, while when b tends to
+1, Qb asymptotically tends to Gq. As a measure
of classification gain, the authors use recall,
while as a measure of quantification gain, they
use (1 $ RAE), where RAE is as defined in
Eq. 2. The authors motivate the (apparently
strange) decision to use recall as a measure of
classification gain with the fact that, while recall
by itself is not a suitable measure of classification
gain (since it is always possible to arbitrarily
increase recall at the expense of precision or
specificity), to include precision or specificity in
Qb is unnecessary, since the presence of Gq in Qb

has the effect of ruling out anyway those hypoth-
eses characterized by high recall and low preci-
sion/specificity (since these hypotheses are indeed
penalized by Gq).

Key Applications

One of the first applications of quantification to
the field of user-generated content was described
in Hopkins and King (2010), where the authors
estimate the prevalence of support for different
political candidates from blog posts, using the
quantification algorithm pioneered in King and
Lu (2008).

Another such application is described in Gao
and Sebastiani (2015), which discusses sentiment
quantification of tweets; the authors show exper-
imentally that SVM(KLD) outperforms a “clas-
sify and count” approach implemented via linear
SVMs on several tweet sentiment datasets. Senti-
ment quantification of tweets is also the topic of
Da San Martino et al. (2016), whose authors
tackle quantification at the ordinal level (using a
totally ordered set of five degrees of sentiment
strength) via a hierarchical quantification
approach. Tweet quantification is also one of the
subjects of the recent SemEval Task 4 “Sentiment
Analysis in Twitter” shared task (Nakov et al.
2016), where tweets are labeled according to the
sentiment they convey toward a certain topic;
Subtask D consists of a binary quantification
task, and Subtask E consists of an ordinal quanti-
fication task (with tweets labeled according to a
five-point scale).
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More in general, fields such as the social sci-
ences, political science, reputation management,
and market research are obvious application fields
for sentiment quantification of UGC. This derives
from the fact that these fields tend to be inherently
interested in aggregate (rather than individual)
views of people’s attitudes. For instance, social
scientists study the distribution of a given phe-
nomenon across a population of interest (some-
times breaking up the population according to age
or geographical location or religion or others) and
are hardly interested in whether a single individ-
ual is affected by the phenomenon. Broadly
speaking, we might say that researchers in these
fields are usually less interested in finding the
needle in the haystack than in characterizing the
haystack itself.

A large number of works in the disciplines
mentioned in the previous paragraph use quantifi-
cation “without knowingly doing so”; that is,
unaware of the existence of methods specifically
optimized for quantification, they use classifica-
tion with the only goal of estimating class preva-
lences. In other words, these works use plain
“classify and count,” but the application they are
looking at is an obvious candidate for “real” quan-
tification techniques. Among them, Mandel et al.
(2012) use tweet quantification in order to esti-
mate, from a quantitative point of view, the emo-
tional responses of the population (broken down
according to location and gender) to a natural
disaster; Esuli and Sebastiani (2010a) quantify
responses to open-ended surveys for market
research applications; O’Connor et al. (2010) ana-
lyze the correlation between public opinion as
measured via tweet sentiment quantification and
via traditional opinion polls; and Dodds et al.
(2011) use tweet sentiment quantification in
order to infer spatiotemporal happiness patterns.

Future Directions

Research in sentiment quantification of user-gen-
erated content is still at an early stage; what can
we expect for the near future?

First of all, one aspect that would be worth
investigating is how to generate sentiment-laden
vectorial representations of UGC that are specific
to quantification; up to now, the same representa-
tions used for sentiment classification have been
used, and this may be suboptimal.

Second, areas that will likely see new develop-
ments are those of single-label multi-class quanti-
fication and ordinal quantification. Up to now,
most research on quantification has focused on
the binary case, but going beyond binary is impor-
tant for sentiment analysis, where classes other
than POSITIVE and NEGATIVE are often important.

More in general, as awareness of quantification
as a task on its own grows, we may expect fewer
and fewer applied works to use simple “classify
and count” and more and more of them to apply
methods that have proven more accurate in the
quantification literature. This in turn may encour-
age the investigation of new learning methods
specific to quantification.

Cross-References

▶Microblog Sentiment Analysis
▶ Semantic Sentiment Analysis of Twitter Data
▶ Sentiment Analysis in Social Media
▶ Sentiment Analysis of Microblogging Data
▶ Sentiment Analysis of Reviews
▶ Sentiment Analysis, Basic Tasks of
▶ Social Media Analysis for Monitoring Political
Sentiment

▶Twitter Microblog Sentiment Analysis
▶User Sentiment and Opinion Analysis
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