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a b s t r a c t

We apply hierarchical supervised learning technology to the problem of assigning codes from the well-
known ACR Index (a ‘‘double-hierarchy’’ classification scheme from the American College of Radiology) to
radiology reports. This task is actually two classification tasks in one: the former uses a first hierarchy of
codes describing anatomic locations, and the latter uses a second hierarchy of codes describing patholo-
gies, where the two hierarchies are closely intertwined. A requirement of each such classification task is
that the document be placed in exactly one node of depth P2 of the ‘‘anatomic location’’ hierarchy and in
exactly one node of depth P3 of the ‘‘pathology’’ hierarchy; this makes our task a (fairly uncommon) var-
iable-constraint classification task, since at the first levels of the hierarchy (2 for anatomic location, 3 for
pathology) we need to use a standard ‘‘exactly 1 class per document’’ constraint, while at the lower levels
we need to use an ‘‘at most 1 class per document’’ constraint. We have used a large dataset of about
250,000 radiology reports written in Italian and an adaptation of our TREEBOOST.MH learning algorithm to
variable-constraint classification. Notwithstanding the extreme difficulty of the task (given by the fact
that the two codes had to be picked out of a pool of 719 codes for anatomic location and 5269 codes
for pathology, respectively) our system displayed good accuracy, indicating that it may represent a viable
tool for semi-automated classification of medical reports. We also analyzed the quantification accuracy of
our system (i.e., the ability of the system at correctly estimating the frequency of the individual codes), a
concern of special interest in epidemiology; the results show that our system has excellent quantification
accuracy, making this system a valuable tool for the fully automated coding of radiology reports for epi-
demiological purposes.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Classifying (also known as ‘‘coding’’) medical reports is a stan-
dard practice in hospitals and health-related organizations, since
it helps in organizing the work of medical personnel, aids commu-
nication among different departments of the same organization,
helps the work of the hospital administration, generates data for
epidemiological studies, and improves the service to the patient
by giving a clearer organization to the patient’s medical
documentation.

However, coding medical reports is a hard task for doctors, since
(i) the classification schemes are large and difficult to remember,
(ii) doctors always work in critical time conditions, and coding re-
quires time to be performed correctly, and (iii) doctors’ real exper-
tise is in curing patients, and not in classifying data.

As a result, it would be useful for doctors to have an automatic
coding system that can either (a) recommend the correct codes to
use for a given report, or (b) suggest the correct codes for reports
that it deems likely to be incorrectly coded, or (c) automatically
code entire batches of legacy, yet uncoded reports.

In this work we experiment on the automatic coding of radiol-
ogy reports based on the ACR Index, a standard classification
scheme for the radiology discipline; we are not aware of previous
attempts at doing automated coding against the ACR Index. Given
that ACR is in the form of a taxonomy, we adopt a hierarchical
learning approach; this allows us to perform learning and coding
efficiently despite the huge size of the coding scheme. This coding
task is actually two (almost independent) coding tasks in one, the
former consisting of the assignment of a code from a first hierarchy
of codes describing anatomic locations, and the latter consisting of
the assignment of a code from a second hierarchy describing
pathologies, where the two hierarchies are closely intertwined. A
requirement of each such classification task (see Section 2 for de-
tails) is that the document be placed in exactly one node of depth
P2 of the ‘‘anatomic location’’ hierarchy and in exactly one node of
depth P3 of the ‘‘pathology’’ hierarchy. This requirement on the
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depth of the nodes makes our task a (fairly uncommon) variable-
constraint classification task, since at the first levels of the hierar-
chy (2 levels for anatomic location, 3 levels for pathology) we need
to use a standard ‘‘exactly 1 class per document’’ constraint, while
at the lower levels we need to use an ‘‘at most 1 class per docu-
ment’’ constraint.

We have run our experiments, using an adaptation to variable-
constraint classification of our TREEBOOST.MH hierarchical algorithm,
on a large dataset consisting of about 250,000 radiology reports
written in Italian by medical personnel of Policlinico Umberto I,
one of the largest hospitals in Rome. Note that coding radiology re-
ports written in Italian has additional difficulties with respect to
coding analogous reports written in English, since there is a wealth
of language tools and resources available for English that is not
available for Italian. For instance, the RadLex standard lexicon of
radiology terms developed by the Radiological Society of North
America (RSNA) (Langlotz, 2006) is available for English but not
for Italian, and this certainly makes the task of producing highly
accurate classifiers of radiology reports harder. This paper may
thus be seen as testing methods for the classification of medical re-
ports written in resource-poor languages.

We have analyzed the results of our experiments not just in the
(pretty standard context) of classification, but also according to the
novel framework of quantification, a task concerned not with decid-
ing whether an individual yet uncoded report should be attributed
a given code or not, but with correctly estimating the percentage of
yet uncoded reports that should be attributed the code. As we will
argue, quantification has important applications that make it
worthwhile studying it per se.

The paper is organized as follows. In Section 2 we describe the
ACR classification hierarchy and structure. In Section 3 we present
the methods and algorithms we have used to tackle the problem,
while in Section 4 we report the results of our classification exper-
iments. Section 5 reanalyzes the results of these experiments un-
der the light of quantification. In Section 6 we discuss related
works from the literature, and we conclude in Section 7.

2. The ACR classification scheme

The American College of Radiology’s Index for Radiological
Diagnoses (known as the ACR Index – see American College of
Radiology, 1992) is a classification scheme developed by the Amer-
ican College of Radiology2 aimed at allowing the categorization of
radiology-based documentation, including radiology reports.

The ACR Index is actually two classification schemes in one,
since it caters for (i) classification according to the anatomic loca-
tion that was the subject of investigation (i.e., the part of the body
where the radiologic image has been taken), and (ii) classification
according to the pathology suspected or detected by the radiologist.
Both classification schemes are hierarchical in nature, and nodes at
increasing levels of depth in either hierarchy identify anatomic
locations/ pathologies at increasing levels of detail (e.g., the high-
er-level nodes of the ‘‘anatomic location’’ hierarchy identify
macro-components of the body, such as Breast, while lower-level
nodes identify smaller components, such as Nipple).

By convention, an ACR code is a pair of digit sequences sepa-
rated by a dot (e.g., 05.311). The numeric code for the anatomic
location identifier appears to the left of the dot, while the numeric
code for the pathology appears to the right of the dot. Both numeric
codes have at least two digits, with the leftmost digits in each code
representing more general information (i.e., concepts high up in
the hierarchy) and the rightmost digits in each code representing
more specific information (i.e., concepts at the lower levels of the

hierarchy). For instance, ACR code 05.311 identifies documents
about the breast (identified by the leading 0) and in particular
about the nipple (05), where the radiologist either has found or
suspects the presence of a benign neoplasm (.31) of the fibroade-
noma type (.311).

Both the anatomic location hierarchy and the pathology hierar-
chy have 10 first-level nodes (with the root conventionally taken to
be at level – or depth – 0), also known as ‘‘macro-areas’’, which are
the same for both hierarchies; they are Breast, Skull, Face, Spine,
SkeletalSystem, Heart, Lung, GastrointestinalSystem, GenitourinarySys-

tem, VascularSystem, LymphaticSystem. For the rest, the two hierar-
chies are different: for each macro-area, the anatomic location
hierarchy defines a specific sub-hierarchy of anatomic sub-loca-
tions, and the pathology hierarchy defines a specific sub-hierarchy
of pathologies that may affect that macro-area. For a given macro-
area, the anatomic location and pathology sub-hierarchies differ in
structure. Note that the first digit of the anatomic location code is
‘‘implicitly’’ present as a prefix to the pathology code; that is, code
05.311 should actually be understood as 05.0311, since there are
actually 10 different pathology hierarchies, one for each anatomic
location macro-area.

The anatomic location hierarchy has a maximum of 5 levels
(including the root). Each level has a maximum of 10 nodes, and
the leaves are all located from level 2 to level 4. The hierarchy
has a total of 730 nodes (including the root), 641 of which are
leaves. The pathology identifier hierarchy instead has a maximum
of 7 levels (including the root). Each level has a maximum of 10
nodes,3 and the leaves are located from level 4 to level 7. The hier-
archy has a total of 5,380 nodes (including the root), 4,404 of which
are leaves.

Classification according to the ACR Index consists (see American
College of Radiology, 1992) in assigning to the report exactly one
code of depth P2 (i.e., just assigning a macro-area is not allowed)
from the anatomic location hierarchy and exactly one code of
depth P3 from the pathology hierarchy. As a result, automatic
classification according to the ACR Index is an extremely hard task,
since the two classification tasks consist in:

1. Identifying the right anatomic location class of depth P2 from a
pool of (730–11) = 719 legally assignable classes (11 codes are
subtracted since 1 root and 10 first-level nodes are not assign-
able); and

2. identifying the right pathology class of depth P3 from a pool of
(5,380–111) = 5,269 legally assignable classes (111 codes are
subtracted since 1 root, 10 first-level nodes and 100 second-
level nodes are not assignable).

This is a bit like finding a needle in haystack.

3. Attributing ACR codes to radiology reports using hierarchical
classification

The system we have tested is an adaptive system for automat-
ically coding radiology reports under any user-specified classifica-
tion scheme; given such a classification scheme, the system
automatically generates an automatic classifier for this classifica-
tion scheme. Our system is based on supervised machine learning
technology, according to which the system learns from manually
coded radiology reports the characteristics that a new radiology re-
port should have in order to be attributed the code. The manually
coded radiology reports that are fed to the system for the purpose

2
http://www.acr.org/

3 The fact that in both hierarchies each level has a maximum of 10 nodes is due to
the fact that, when the ACR Index was originally defined, it was decided that each
node in the hierarchy was to be represented via a numeric sequence of decimal digits,
and this obviously limits the number of nodes representable by a given digit to 10.
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of generating the binary classifiers are called the training reports.
The training reports need to include positive examples of the code
(i.e., radiology reports to which a human classifier has attributed
the code) and negative examples of the code (i.e., radiology reports
to which a human classifier has decided not to attribute the code).
By examining both, the system identifies the discriminating char-
acteristics of the radiology reports, i.e., the characteristics that will
help the binary classifier in deciding whether to attribute a given
code or not to a yet uncoded radiology report.

3.1. The TREEBOOST.MH learning algorithm

As the learning method we have used a modified version of the
TREEBOOST.MH algorithm (Esuli, Fagni, & Sebastiani, 2008), a learning
algorithm explicitly devised for generating classifiers for hierarchi-
cally organized classification schemes.

Before describing our learning method, let us first define our
notation and terminology. Given a set of textual documents D
and a predefined class (also known as label, or code) cj, a binary clas-
sifier for cj is a function bUj : D! R such that the sign of bUjðdiÞ, indi-
cated by sgnðbUjðdiÞÞ, is interpreted as the classifier’s prediction
whether di belongs to cj or not, and the absolute value of bUjðdiÞ,
indicated by jbUjðdiÞj, is interpreted as the confidence that the clas-
sifier has in this prediction, with higher values indicating higher
confidence. A multi-label classifier for a set of classes C is a set
fbUj : D! Rgcj2C of binary classifiers, where each bUj decides
whether a document belongs to cj or not independently of the clas-
sifiers for the other classes in C; as a consequence, a multi-label
classifier can attribute to a document di zero, one, or several classes
in C at the same time.

Let C = hI,Li be a tree-structured set of classes, where I = {i1,
. . . , im} # C is the set of internal (i.e., nonleaf) classes of C and L = {l1,
. . . , ln} is the set of leaf classes of C. By r we denote the root class of C;
note that r 2 L if the tree is degenerate, i.e., it consists of the root
only, while r 2 I otherwise. In our notation, we thus have C = {c1,
. . . ,cm+n} = r [ {i1, . . . , im} [ {l1, . . . , ln}. For each class cj 2 C we will
use the notation ;(cj) to indicate the set of children classes of cj.

The TREEBOOST.MH algorithm was originally devised for generating
multi-label (hierarchical) classifiers, i.e., classifiers that can associ-
ate to a document di zero, one, or several classes in C at the same
time. In TREEBOOST.MH the multi-label hierarchical classification prob-
lem is broken down into several smaller multi-label ‘‘flat’’ (i.e.,
non-hierarchical) classification problems, one for every internal
class is of the hierarchy. For each is 2 I the algorithm calls a flat
learning algorithm that generates a set fbUjgcj2#ðisÞ of binary classifi-
ers, one for each child cj of is, and carries on recursively until a bin-
ary classifier is generated for each nonroot node of C.

When classifying a new document di, classification is then per-
formed in ‘‘Pachinko machine’’ style (Koller & Sahami, 1997): the
test document is first submitted to the classifiers corresponding
to the top-level nodes, and recursively percolates down to the low-
er levels of the hierarchy only if the classifiers at the higher levels
have deemed that the document belong to their associated class. In
this way, entire subtrees are pruned from consideration, which al-
lows exponential savings at classification time (Chakrabarti, Dom,
Agrawal, & Raghavan, 1998; Koller & Sahami, 1997).

3.2. Modifying TREEBOOST.MH to account for the semantics of the ACR
hierarchy

The multi-label nature of TREEBOOST.MH (and all other hierarchical
learning algorithms, for that matter) is slightly at odds with the
constraints inherent in the ACR hierarchy, that (as noticed in Sec-
tion 2) prescribe that both numeric codes (the one for anatomic
location and the one for pathology) have at least two digits; i.e.,
for each document di

� exactly one node cj of depth 1 in the anatomic location hierar-
chy (corresponding to the anatomic ‘‘macro-area’’) must be
selected, and
� at least one node in ;(cj) in the anatomic location hierarchy and

at least one node in ;(;(cj)) in the pathology hierarchy (the for-
mer node having thus depth 2 and the latter node having depth
3) must be selected.

This means that, for both taxonomies:

1. At the levels of depth 62 (anatomic location) and 63 (pathol-
ogy) we have an ‘‘exactly-1’’ constraint (i.e., at both levels each
document must be assigned to exactly one class). For solving
this problem, both at the first 2 levels of the anatomic location
hierarchy and at the first 3 of the pathology hierarchy we clas-
sify di in the class

arg max
cj

bUjðdiÞ

i.e., in the class which receives the highest score for di.
2. At the levels of higher depth we have instead an ‘‘at-most-1’’

constraint (i.e., at each such levels each document may be
assigned to 0 or 1 classes): if di has been already assigned to
class cj in a previous step, then we assign di to the class

arg max
cj

bUjðdiÞ

if di has received a score higher than 0 for this class; otherwise no
class is assigned to di at this level.

This modification effectively turns TREEBOOST.MH into what we
might call a variable-constraint hierarchical learning algorithm.

3.3. Generating flat multi-label classifiers via MP-BOOST

In order to generate a flat multi-label classifier at each recursive
step of the TREEBOOST.MH algorithm (see Section 3.1), we use the
MP-BOOST ‘‘boosting’’ learning algorithm (Esuli, Fagni, & Sebastiani,
2006). Boosting algorithms have strong justifications from compu-
tational learning theory (Meir & Rätsch, 2003) and, at the same
time, are among the supervised learning algorithms that have ob-
tained the best performance in several learning tasks. MP-BOOST is a
variant of ADABOOST.MH (Schapire & Singer, 2000), and has been
shown in Esuli et al. (2006) to obtain considerable effectiveness
improvements with respect to ADABOOST.MH.

MP-BOOST works by iteratively generating, for each class cj, a se-
quence bUj

1; . . . ; bUj
S of classifiers (called weak hypotheses). A weak

hypothesis is a function bUj
s : D! R where (as in Section 3.1)

sgn bUj
sðdiÞ

� �
represents the prediction of bUj

s on whether di belongs

to cj and jbUj
sðdiÞj represents the confidence that bUj

s has in this
decision.

At each iteration s MP-BOOST tests the effectiveness of the most
recently generated weak hypothesis bUj

s on the training set, and
uses the results to update a distribution Dj

s of weights on the train-
ing examples. The initial distribution Dj

1 is uniform by default. At
each iteration s all the weights Dj

sðdiÞ are updated, yielding
Dj

sþ1ðdiÞ, so that the weight assigned to an example correctly (resp.,
incorrectly) classified by bUj

s is decreased (resp., increased). The
weight Dj

sþ1ðdiÞ is thus meant to capture how ineffectivebUj
1; . . . ; bUj

s have been in guessing whether training document di be-
longs to class cj or not. By using this distribution, MP-BOOST generates
a new weak hypothesis bUj

sþ1 that concentrates on the examples
with the highest weights, i.e., those that had proven harder to clas-
sify for the previous weak hypotheses.

S. Baccianella et al. / Expert Systems with Applications 40 (2013) 3441–3449 3443
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The overall prediction on whether di belongs to cj is obtained as
a sum bUjðdiÞ ¼

PS
s¼1
bUj

sðdiÞ of the predictions made by the weak
hypotheses. The final classifier bUj is thus a committee of S classifi-
ers, a committee whose S members each cast a weighted vote (the
vote being the binary decision sgn bUj

sðdiÞ
� �

, the weight being the
confidence bUj

sðdiÞ
��� ���) on whether di belongs to cj. For the final clas-

sifier bUj too, sgn bUjðdiÞ
� �

represents the binary decision as to
whether di belongs to cj, while jbUjðdiÞj represents the confidence
in this decision.

3.4. Sets of features

Like all learning algorithms, TREEBOOST.MH needs each of our radi-
ology reports to be represented in vectorial form. To this end, in all
the experiments discussed in this paper stop words have been re-
moved, punctuation has been removed, all letters have been con-
verted to lowercase, numbers have been removed, and stemming
has been performed by means of Porter’s stemmer. Word stems
are thus our indexing units. Since MP-BOOST, which is recursively
called by TREEBOOST.MH, requires binary input, only the presence/ ab-
sence of these word stems in the document is recorded, and no
weighting is performed.

4. Experiments

4.1. Experimental setting

4.1.1. Dataset
The dataset we have used in this work (hereafter called the

UmbertoI dataset) consists of a set of 248,583 free-text radiology
reports written (in Italian) by medical personnel of the Istituto di
Radiologia of Policlinico Umberto I, one of the largest hospitals in
Rome. Consistently with the semantics of the ACR classification
scheme that we have specified in Section 2, all the reports are asso-
ciated to one and only one anatomic location code, and to one and
only one pathology code.

The raw dataset, as we received it from the Policlinico Umberto
I personnel, contained 132 reports with an invalid ACR code. The
reason why the ACR code was invalid in these reports was that
either the anatomic location identifier, or the pathology identifier,
or both, consisted of 1 digit only (plus the first digit of the anatomic
location code that is ‘‘implicitly’’ present as a prefix to the pathol-
ogy code – see Section 2), and an ACR code needs at least two digits
for each identifier (plus the implicit digit above). We have applied
the following correction routine, consisting of three simple rules,
and reinstated the 132 reports in the dataset:

1. If the anatomic location identifier consists of only one digit,
then append a 0 to the right of it, since 0 as second digit means
‘‘Generic’’.

2. If the pathology identifier is only one digit long and is a 1, then
append 1 to the right of it, since the first 1 in the pathology
identifier means ‘‘Treatment’’ and a second 1 means ‘‘Generic
treatment’’.

3. If the pathology identifier is only one digit long and is not a 1,
then append a 9 to the right of it, because a 9 as a second digit
means ‘‘No further specification’’.

In addition we discarded all the reports consisting of 4 words or
less (this resulted in discarding a total of 4,519 reports), since such
reports typically consist of uninformative keyphrases such as
Immagini in visione (‘‘Images still under examination’’), Esame
non eseguito (‘‘Examination not performed’’), etc. Such reports
cannot obviously be classified based on the text of the report alone.

In Table 1 we report some statistics about the UmbertoI dataset.
For each macro-area the table indicates the number of distinct ACR
codes (i.e., of distinct combinations of anatomic location code and
pathology code), the number of distinct anatomic location codes,
the number of distinct pathology codes, the average length of the
reports (in number of words) and the number of reports. Note that
only 431 anatomic location codes and 1,198 pathology codes are
represented in this dataset, fewer than the 719 anatomic location
codes and 5,269 pathology codes that can legally be assigned
according to the ACR rules; this means that many ACR Index codes
were never used by the radiologists who manually annotated this
dataset. Note also that the dataset is highly unbalanced, since
57.3% of the documents belong to three macro-areas altogether
(Lung, GastrointestinalSystem, and Breast). This situation is very sim-
ilar to what we are confronted with in most text classification
applications (see e.g., Hersh, Buckley, Leone, & Hickman (1994),
Lewis, Yang, Rose, & Li (2004), Liu et al. (2005)), where class fre-
quency (i.e., the number of positive examples per class) is often de-
scribed by a power law, in which very few classes have many
positive examples and are followed by a long tail of many classes
with very few, or sometimes no, positive examples (see also Table 3
on this). In our case, this is obviously due to the fact that not all
pathologies catered for by the ACR classification scheme occur
with the same frequency, and not all anatomic locations catered
for by the same scheme are affected with the same frequency.

4.1.2. Evaluation measure
As a measure of effectiveness that combines the contributions

of precision (p) and recall (q) we have used the well-known F1 func-
tion, defined as

F1 ¼
2pq
pþ q

¼ 2TP
2TP þ FP þ FN

ð1Þ

and which corresponds to the harmonic mean of precision and re-
call, where TP stands for the number of true positives, FP for the
number of false positives, and FN for the number of false negatives.
Note that F1 is undefined when TP = FP = FN = 0; in this case, consis-
tently with most other works in the literature, we take F1 to equal 1,
since the classifier has correctly classified all documents (as nega-
tive examples).

We compute both microaveraged F1 (denoted by Fl
1 ) and macro-

averaged F1 FM
1

� �
. Fl

1 is obtained by (i) computing the class-specific

values TPi, (ii) obtaining TP as the sum of the TPi’s (same for FP and
FN), and then (iii) applying the F1 ¼ 2TP

2TPþFPþFN formula. FM
1 is ob-

tained by first computing the class-specific F1 values and then
averaging them across the various classes in the classification
scheme. In principle, Fl

1 and FM
1 may return very different results

for the same experiment, since the former tends to reward classi-

Table 1
Statistics for the UmbertoI dataset.

Macro-Area #
Codes

# Anat.
location
codes

#
Pathology
codes

Avg
length
of doc

# Docs

Breast 281 10 90 80 45,237
Skull 165 38 70 106 3,218
Face 427 44 121 148 17,558
Spine 206 33 66 117 22,073
SkeletalSystem 511 54 118 131 26,535
Heart 330 42 108 197 5,947
Lung 361 20 133 72 47,919
GastrointestinalSystem 1,059 66 172 179 46,851
GenitourinarySystem 849 53 205 194 17,804
VascularSystem 511 71 115 165 10,922
Total 4,700 431 1,198 139 244,064
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fiers that behave well on frequent classes (i.e. classes with many po-
sitive examples), while classifiers that perform well also on infre-
quent classes are emphasized by the latter.

4.1.3. Experimental protocol
As discussed in Section 2, ACR codes have two components: the

numeric code before the dot identifies the anatomic location, while
the numeric code after the dot identifies the pathology. Starting
from this observation we tackle the problem of assigning the
ACR code to a radiology report by splitting it into two hierarchical
classification problems: the first problem is the assignment of the
anatomic location code, while the second is the assignment of the
pathology code. As discussed in Section 2, the two hierarchies have
the same first-level codes, identifying the anatomic macro-areas.
As a result the two classifiers are trained with the same first-level
training sets, and this results in generating exactly the same clas-
sifiers for the level 0 of the hierarchy.

For our experiments we have randomly split the UmbertoI data-
set into a training set, containing 1

3 of the reports of the entire data-
set (for a total of 82,861 documents), and a test set, consisting of
the other 2

3 (165,722 documents); this is a challenging split, since
a low number of training documents makes the classification task
harder, while a high number of test documents makes the results
of the experiments more credible. Each class has a minimum of 1
and a maximum of 16,477 training examples.

In a supervised machine learning setting, only classes for which
there is at least one positive training example can be dealt with; for
the classes for which no positive training example is available, it is
obvious that no classifier can be generated. As a result, in our
experiments we had to remove from consideration 68 of the 431
anatomic location codes and 368 of the 1,198 pathology codes
present in the dataset, leaving us with 363 anatomic location codes
and 830 pathology codes to work with (see Table 2).

4.2. Results

The results of our experiments are displayed in Table 3, where
we report F1 results (which are computed as averages across the
363 anatomic location and 830 nodes for which we have generated
classifiers) broken down by groups of classes that have a number of

training examples in a specified range. For instance, the 1st row of
the table reports the average (both Fl

1 and FM
1 ) accuracy values for

the 242 anatomic location codes that have less than 20 training
examples, and the average accuracy values for the 675 pathology
codes that have less than 20 training examples.

Table 4 reports instead the accuracy as computed at a certain
depth in a given taxonomy. For instance, the 2nd row of the table
reports the average (both Fl

1 and FM
1 ) accuracy values for the 97

anatomic location codes of depth 2 and for the 88 pathology codes
of depth 2. In the same row, for each document that has been clas-
sified at a level deeper than 2, only the correctness of its assign-
ment at level 2 is considered; for instance, wrongly attributing
anatomic location code 031 to a document instead of attributing
it the correct code 033 counts, at this level, as a correct classifica-
tion, since the first two digits of the code have been correctly
identified.

The first insight that can be gained by looking at Table 3 is that
the accuracy of classification is, as could be expected, strongly
dependent on the number of training examples for the class, with
more frequent classes obviously obtaining higher accuracy. This is
also confirmed by the results in Table 4, which shows that classes
at the higher levels of the hierarchy are the ones on which higher
accuracy is obtained. In fact, the classes at the higher levels of the
hierarchy are obviously the most frequent, since whenever a doc-
ument di is a training document for class cj it is a fortiori also a
training example for any ancestor class of cj (e.g., a training exam-
ple for anatomic area Breast (code 0) is also a training example for
anatomic area Nipple (code 05)). As a consequence, the codes with
the highest number of training examples tend to be the top-level
ones.

If we consider all codes, irrespectively of the number of training
examples, the average accuracy of our system (see last row of Ta-
ble 3) is 0.611 (anatomic location) and 0.490 (pathology) in terms
of microaveraged F1. The second observation is thus that, relatively
to the a priori difficulty of the task, the results are reasonably good,
since we are talking of a classification task in which the correct
class must be picked from a large number of legally assignable
classes (719 for anatomic location and 5,269 for pathology), which
pretty much amounts to finding a needle in a haystack (for in-
stance, in the classification-by-pathology case the a priori probabil-
ity of picking the right class is 1/5269 = 0.00018). For a machine
learning algorithm, the task is also made difficult by the presence
within the training set of several inconsistently coded duplicate re-
ports, which obviously confuse the learning algorithm (and would
likewise confuse any human coder who attempted to learn coding
reports by examining these training examples).

Are Fl
1 ¼ 0:611 (anatomic location) and Fl

1 ¼ :490 (pathology)
‘‘good enough’’ for allowing human coders of radiology reports to
be entirely replaced by a coding system such as the one we have
presented?

Scientifically speaking, a correct answer to this question would
require a thorough inter-coder agreement study, where the agree-
ment (i.e., relative accuracy) between two different human radiol-

Table 2
Numbers of codes in the ACR Index and in the UmbertoI dataset.

Anatomic
location

Pathology

# Codes in the ACR Index 730 5,380
# Codes legally assignable 719 5,269
# Codes assigned in the UmbertoI dataset 431 1,198
# Codes assigned in the UmbertoI training set 363 830

Table 3
Average Fl

1 and average FM
1 results for nodes whose number of training examples is in

a prespecified range.

# Examples Anatomic location Pathology

# Codes Fl
1 FM

1
# Codes Fl

1 FM
1

1–20 242 0.201 0.223 675 0.102 0.262
21–50 45 0.200 0.206 48 0.208 0.240
51–200 46 0.304 0.319 62 0.228 0.250
201–500 14 0.399 0.380 17 0.311 0.299
501–1000 4 0.421 0.450 11 0.323 0.300
1001–5000 7 0.471 0.479 14 0.510 0.465
5001–10000 3 0.629 0.633 2 0.599 0.575
10001+ 2 0.853 0.833 1 0.827 0.827

All 363 0.611 0.254 830 0.490 0.266

Table 4
Average Fl

1 and FM
1 results for nodes at different depths in the hierarchy.

Depth Anatomic location Pathology identifier

# Codes Fl
1 FM

1
# Codes Fl

1 FM
1

1 10 0.767 0.682 10 0.767 0.682
2 97 0.628 0.291 88 0.521 0.293
3 323 0.388 0.250 414 0.495 0.250
4 15 0.257 0.103 613 0.526 0.275
5 – – – 175 0.274 0.298
6 – – – 6 0.471 0.583
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ogists R1 and R2 at picking the correct codes for the reports in the
test set is compared with the analogous agreement between either
of R1 and R2 and our system. In this respect, F1 is an ideal function
for measuring accuracy since it is symmetric, i.e., it is invariant
with respect to swapping the predicted codes and the true codes.
One might thus compare F1(R,R2), F1(System,R1) and F1(System,R2),
thanks to the fact that F1 does not require specifying who of the
two human coders plays the role of the ‘‘gold standard.’’ Claiming
that the system performs better than humans at coding would thus
entail showing that avg(F1(System,R1), F1(System,R2)) > F1(R,R2).
Unfortunately, it was impossible for us to perform such a study,
since none of the reports in the UmbertoI dataset had indepen-
dently been coded by two human coders.

In the absence of a thorough inter-coder agreement study, it
seems clear that these results are not good enough justify the
adoption of a fully-automated coding system to replace human
coders tout court. However, while further research on coding radi-
ology reports is certainly needed, we think that our system could
already be used in partially automated contexts, such as in recom-
mending the correct codes to use for a given report, or in suggest-
ing the correct codes for reports that the system deems likely to be
incorrectly coded.

In terms of coding efficiency (i.e., time taken to code the data in
the test set), we note that the coding of the 165,722 test docu-
ments required only 1 h and 29 min (which also include the time
taken to generate the internal representations of the documents
from the raw text) on a standard 10-core, 3 GHz machine with
6 GB RAM, which means coding at a speed of more than 31 reports
per second. If we consider that each document was coded against
two large hierarchies (consisting of 719 and 5,269 codes, respec-
tively), this speaks of a very good efficiency.

5. Switching from classification to quantification

In this section we look at our classification experiments under a
different angle, that of quantification via classification (Esuli &
Sebastiani, 2010; Forman, 2008). Let us formalize this.

As already introduced in Section 3.1, classification for class cj

may be defined as the task of generating a binary classifierbUj : D! R such that, ‘‘for as many di 2 D as possible’’,
sgnðbUjðdiÞÞ ¼ UjðdiÞ, where Uj is our ‘‘ground truth’’.4 In other
words, a good classifier must correctly classify as many individual
(test) documents as possible.

Given a classification function Uj : D! R let us define freq(Uj,D)
as the (relative) frequency of Uj in D, i.e., as the fraction (or percent-
age) of the items di 2 D such that Uj(di) = 1. Quantification (via clas-
sification) for class cj may now be defined as the task of generating
a binary classifier bUj : D! R such that freqðbUj;DÞ is ‘‘as close as
possible’’ to freq(Uj,D). In other words, a classifier bUj is good at
quantification (or: ‘‘is a good quantifier’’) if it estimates as accu-
rately as possible the percentage freq(Uj,D) of documents that
actually belong to a class cj.

On the surface it would seem that the more we improve the
accuracy of classification, the more we improve the accuracy of
quantification, and that the only way to improve the ability of a
classifier to correctly estimate the distribution of test documents
across classes is to improve its ability at classifying individual doc-
uments. Unfortunately, we contend this is not necessarily true. To
see this, one only needs to look at the definition of F1: it is evident
from Eq. (1) that F1 deteriorates with (FP + FN), and not with
jFP � FNj, as would instead be required of a function that truly opti-
mizes quantification. For example, according to F1 a classifier bU1

for which FP = 50 and FN = 50 is worse (all other things being
equal) than a classifier bU2 for which FP = 0 and FN = 10. However,bU1 is better than bU2 according to any reasonable measure for eval-
uating quantification accuracy; indeed, bU1 is a perfect quantifier,
since FP and FN are equal and thus compensate each other, so that
the distribution of the test items is estimated perfectly.

Quantification is still a fairly unexplored task, having drawn the
attention of researchers only in recent years (Bella, Ferri, Hernán-
dez-Orallo, & Ramı́rez-Quintana, 2010; Esuli & Sebastiani, 2010,
2010; Forman, 2008; Xue & Weiss, 2009). Its applicative interest
derives from the fact that in several applications, estimating the
accuracy of quantification is more interesting than estimating the
accuracy of classification. For instance, in a market research
application in which a questionnaire asks about the respondent’s
perception of a given ad campaign, who administers the question-
naire is likely not interested in whether John Smith’s textual an-
swer belongs or not to the class ‘‘Liked the campaign’’, but is
instead likely interested in knowing the percentage of responses
that belong to the class. Similarly, given a large set of star-rated
reviews of a given MP3 player, a survey specialist is likely not inter-
ested in the fact that it has been rated ‘‘4 stars’’ by John Smith, but
is likely interested in the percentage of reviewers that have rated it
‘‘4 stars’’.

In the medical domain, quantification is interesting for epidemi-
ological studies. Here, a researcher may be interested in the per-
centage of patients that have been diagnosed with a benign
neoplasm (.31); or in the percentage of patients for which the
diagnosed benign neoplasm (.31) is of the fibroadenoma type
(.311); or may be interested in monitoring how the percentage
of patients that have been diagnosed with a benign neoplasm
evolves with time.

As a consequence, we have tested the quantification accuracy of
our system on the UmbertoI dataset; this essentially means taking
the results of our train-and-test run described in Section 4 and
evaluating them according to a measure of quantification accuracy.
For this we have chosen the simple percentage discrepancy (PD)
measure used in Esuli and Sebastiani (2010), and defined as

PDðbUj;DÞ ¼ jfreqðUj;DÞ � freqðbUj;DÞj

i.e., the absolute value of the difference between the true and the
predicted frequency of the class; low values are better, and the per-
fect quantifier has PDðbUj;DÞ ¼ 0. For example, if the predicted fre-
quency of class cj is 0.34 and its true frequency is 0.36, then
PD = j0.34 � 0.36j = 0.02. For better clarity we will hereafter express
PD values as percentages instead of as fractions, e.g., writing PD = 2%
instead of PD = 0.02.

Table 5 reports PD results broken down by groups of classes that
have a number of training examples in a specified range. We report
both the average and the maximum of the values of PD across all

Table 5
Average PD and maximum PD results for nodes whose number of training examples is
in a prespecified range. Lower values are better, best is 0%, worst is 100%.

# Examples Anatomic location Pathology

# Codes avg
(PD) (%)

max
(PD) (%)

# Codes avg
(PD) (%)

max
(PD) (%)

1–20 242 0.00 0.12 675 0.01 0.91
21–50 45 0.02 0.43 48 0.01 0.18
51–200 46 0.05 0.87 62 0.05 0.53
201–500 14 0.11 0.31 17 0.12 0.64
501–1000 4 0.53 1.54 11 0.22 1.12
1001–5000 7 0.26 0.75 14 0.43 1.53
5001–10000 3 1.60 2.52 2 0.60 0.92
10001+ 2 1.60 2.42 1 0.40 0.44

All 363 0.05 2.52 830 0.02 1.53
4 Consistently with most mathematical literature we use the caret symbol (^) to

indicate estimation.
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the classes in the group (the maximum value represents of course a
worst-case scenario). The results show that our system is extre-
mely good at quantification. Across the 363 anatomic location
codes of our experiment, the average value of PD is 0.05%, an extre-
mely low value, while it is even lower (0.02%) across the 830
pathology codes; as an example, PD = 0.05% is the value one would
obtain by predicting a given class frequency as 30.05% (or 29.95%)
while the true class frequency is 30%. The values of PD are never
higher than 2.53% for anatomic location and 1.53% for pathology,
which indicates that class frequencies are overestimated or under-
estimated at most marginally.

In order to better visualize this, in Fig. 1 we display the quanti-
fication accuracy for the ten pathology codes children of code 2
(corresponding to macro-area Skull) in histogram form. For each
code, two bars are displayed side by side, the rightmost one (resp.,
leftmost one) representing the true percentage (resp. predicted
percentage) of documents that have the code. The figure gives a
compelling display of the quantification accuracy of our system.

These very good quantification accuracy results show that out
system can reliably be used for quantification in operational situa-
tions. One such situation springs to mind, namely, the large-scale
batch classification of legacy radiology reports for establishing
temporal trends in the evolution of pathologies. The availability
of an automatic system for doing this at a very good accuracy level
makes this a plausible scenario.

6. Related work

In this section we review related work on the automatic classi-
fication of medical reports, showing the differences between these
works and ours.

de Bruijn, Hasman, and Arends (1997) address the problem of
the automatic classification of clinical text using the SNOMED clas-
sification scheme. In order to classify a new document the authors
use the 1-NN nearest neighbour algorithm. The problem with this
‘‘lazy’’ approach is that 1-NN does not have an offline learning

stage, and all the work is performed at classification time. This
means that the algorithm is very inefficient, since for each test doc-
ument it needs to find the maximally similar training document,
which requires a number of similarity computations linear in the
number of the training examples. Dreyer et al. (2005) try to auto-
matically identify the presence of clinically important findings or
the presence of recommendations for subsequent action in
unstructured radiology reports. Although the authors use a combi-
nation of natural language processing and machine learning tech-
niques, using decision trees as the learning device, they tackle a
multi-label classification task, which is fairly different (and easier)
than the ‘‘exactly-1’’ and ‘‘at-most-1’’ classification tasks that we
need to address at each level of the two hierarchies. Wilcox and
Hripcsak (1999) also address the problem of automatically classify-
ing radiology reports. The authors tackle this problem using ma-
chine learning techniques to automatically determine the
presence of six clinical conditions in chest radiography reports. Un-
like in our work, the dataset used by the authors is really small
(only 400 reports), and the classification algorithm is flat, while
ours is hierarchical. Aronow, Fangfang, and Croft (1999) address
the task of ‘‘ad hoc classification’’ of mammography reports. The
problem addressed is completely different from ours, since in Aro-
now et al. (1999) the authors want to identify the most relevant re-
ports within a user query; in our work we want instead to classify
the radiology reports within a fixed hierarchical classification
scheme.

Stanfill, Williams, Fenton, Jenders, and Hersh (2010) review a
large body of work in the automated coding of clinical material,
including radiology reports. They indicate that ‘‘(. . .) automating
clinical coding is a difficult task, made even more difficult by the
clinical texts that must be processed (. . .)’’, and conclude that ‘‘Fur-
ther development of these systems and a better understanding of
the tasks for which they will be used are needed before we can
conclude that automated coding and classification systems meet
performance standards adequate for use in complex clinical coding
processes (. . .)’’. While no less than 113 papers are covered in their
survey, none of them appears to use the ACR Index as the target
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Fig. 1. True percentages (first bar) against predicted percentages (second bar) for the ten pathology codes children of code 2, corresponding to macro-area Skull; code 20 is not
displayed since both the true and the predicted percentage were 0. The worst value of PD across these ten codes (0.06%) is obtained for code 29, where 0.25% is the true
percentage and 0.31% is the percentage predicted by our system. The average PD across these ten codes is 0.02%.
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classification scheme. It has to be added that Stanfill et al. (2010)
only addresses studies tackling clinical texts expressed in English.
This is not very representative of the accuracy levels that can be
obtained in languages other than English, since specialized lexical
resources are far more abundant for English than for any other lan-
guage, thus making the task of obtaining higher accuracy levels
easier.

As a general comment, we should note that out work is proba-
bly the first study in the classification of medical reports to exper-
iment at such a large scale, both in the number of medical reports
used (more than 240,000) and in the size of the classification
scheme used. We should also add that, from the standpoint of text
classification, this paper probably presents the first experimental
study in single-label (i.e., ‘‘exactly 1 code per document’’) text clas-
sification on a very large classification scheme. In fact, while it is
true that experiments on very large classification schemes have
been presented already (Bennett & Nguyen, 2009; Liu et al.,
2005; Tang, Rajan, & Narayanan, 2009; Xue, Xing, Yang, & Yu,
2008), they concerned multi-label classification. In multi-label clas-
sification there is no reason, in principle, why effectiveness should
deteriorate in moving from, say, a classification scheme consisting
of 100 classes to one consisting of 100,000 ones, since each class is
a binary classification task in itself, independent of the others. In
other words, in multi-label classification the large size of the clas-
sification scheme is challenging from the point of view of efficiency,
and not from the one of classification accuracy. In single-label clas-
sification, instead, the large size of the classification scheme is
challenging also from the standpoint of accuracy, since picking
the right class out of a very large pool of classes is of course more
difficult than picking it from a small pool of candidate classes.

Finally we remark that, to the best of our knowledge, this is the
first work that discusses the issue of quantification in the context
of medical reports, and of its possible applications in the field of
epidemiology.

7. Conclusions

In this paper we have reported our experiments on the auto-
matic coding of radiology reports written in Italian under the
ACR classification scheme. As discussed, correctly classifying data
from the UmbertoI dataset is hard, since the UmbertoI reports
are each associated to exactly 1 class, and picking the correct ana-
tomic location class from a set of 719 legally assignable ones and
the correct pathology class from a set of 5,269 legally assignable
ones is like finding a needle in a haystack. Relative to the a priori
difficulty of this task, our system has thus shown good classifica-
tion accuracy. It was not possible to scientifically determine how
good this classification accuracy is, due to the absence of data that
would allow a thorough inter-coder agreement study to be per-
formed. However, we think that the accuracy levels obtained
(Fl

1 ¼ 0:611 for anatomic location and Fl
1 ¼ :490 for pathology)

are not sufficient for envisaging fully automatic and unassisted
coding, but are sufficient for making the use of the system cost-
effective in scenarios involving semi-automatic, assisted coding,
such as in recommending the correct codes to use for a given re-
port, or in suggesting the correct codes for reports that the system
deems likely to be incorrectly coded.

We have also reported the accuracy of our system at performing
quantification, a recently defined task that merely requires the
accurate estimation of the frequency of each individual code in
the test set. Here our system displayed an excellent accuracy, with
average error rates (measured in terms of the discrepancy between
true and predicted frequency) of 0.05% or lower. These accurate
estimations clearly allow a system such as this to be used in com-
pletely autonomous, unassisted coding for applications in the field

of epidemiology, a discipline which is more concerned with esti-
mating frequencies of occurrence than with assessing individual
cases. A system such as ours, with coding speeds of more than
30 documents per second and quantification accuracy of 0.05% or
lower, could reliably be used in automatically coding huge batches
of legacy reports for the retrospective analysis of epidemiological
trends.
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