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Abstract
Using cross-validation to predict the accuracy of a classifier on unseen data can be done reliably only in the absence of

dataset shift, i.e., when the training data and the unseen data are IID. In this work we deal instead with the problem of

predicting classifier accuracy on unseen data affected by prior probability shift (PPS), an important type of dataset shift.

We propose QuAcc, a method built on top of “quantification” algorithms robust to PPS, i.e., algorithms devised for estimating

the prevalence values of the classes in unseen data affected by PPS. QuAcc is based on the idea of viewing the cells of the

contingency table (on which classifier accuracy is computed) as classes, and of estimating, via a quantification algorithm,

their prevalence values on the unseen data labelled by the classifier.We perform systematic experiments in which we compare

the prediction error incurred by QuAcc with that of state-of-the-art classifier accuracy prediction (CAP) methods.
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Introduction
The standard way of predicting the accuracy of a classifier
on unseen data is using cross-validation (CV).1 However,
the accuracy estimates that CV returns are accurate only
when the training data T and the unseen data U are IID,
i.e., when no dataset shift (Quiñonero-Candela et al.,
2009) is present in the data. Unfortunately, dataset shift is
ubiquitous in real-world applications, for a variety of
reasons. One such reason is the possible non-stationarity
of the environment across time and/or space and/or other
variables, in which case the deployment conditions are irre-
producible at training time. Another reason is the possible
presence of sample selection bias in the training data, as
when the process of labelling these data has introduced
bias in them intentionally (e.g., when oversampling the
minority class) or unintentionally (e.g., when using active
learning). In all these cases, predicting the accuracy of a
classifier on unseen data is problematic.

In this paper we tackle the problem of predicting the
accuracy of a classifier on unseen data affected by prior
probability shift (PPS), an important type of dataset shift
in which P(X|Y), the class-conditional distribution of the
covariates, is invariant across the training data and the test
data, but P(Y), the distribution of the class labels, is not.
We propose a novel classifier accuracy prediction (CAP)
method based on two key ideas.

The first idea is that of viewing the cells of the contin-
gency table (on which classifier accuracy is computed) as
classes, so that estimating the accuracy of a classifier can
be performed by counting the number of test datapoints
assigned to each such class by a (different) classifier. In
other words, this involves a relabelling of the datapoints,
i.e., from the original set Y of classes to a new set C of
classes representing contingency table cells.

The second idea starts from the observation that, when
there is PPS between training data and test data labelled
according to Y, there is (as we prove) PPS also when the
same training data and test data are relabelled according
to C. This observation allows us to estimate the counts of
the contingency table cells via quantification algorithms
(Esuli et al., 2023) robust to PPS, i.e., algorithms whose
task is predicting the prevalence values of the classes (i.e.,
the class priors) in samples of unseen data affected by
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PPS. We thus name our novel CAP method QuAcc
(“Quantification for Accuracy Prediction”).

We present experiments in which we test QuAcc against
state-of-the-art CAP methods on data generated by a robust
experimental protocol, i.e., on settings characterised by dif-
ferent amounts of training data imbalance, test data imbal-
ance, and PPS. In order to show how well QuAcc deals
with the binary case and with the multiclass case, we
present separate experiments for these two settings. In order
to ensure the reproducibility of our experiments we make
available the code and the data on which they are based.2

The rest of the paper is structured as follows. After dis-
cussing the problem setting (Section “Preliminaries”) and
reviewing related work (Section “Related Work”), in
Section “QuAcc” we illustrate our method for classifier
accuracy prediction. Section “Experiments” presents our
experimental results, while Section “Conclusion” wraps
up, pointing at avenues for future research.

Preliminaries
In this paper we adopt the following notation. By x we indi-
cate a datapoint drawn from a domain X . By y we indicate a
class drawn from a set of classes Y = {y1, . . . , yn}, which
we call the codeframe; when n = 2 we write Y = {⊕ , ⊖
} to indicate that ⊕ is the “positive” class, which is usually
the minority class and represents the concept we aim to
characterise, and ⊖ is the “negative” class. We write
(x, y) to indicate that y is the class label of x. By T (the train-
ing set), V (the validation set), andU (the unlabelled set) we
denote three sets of labelled datapoints, where the labels of
U are assumed unknown.

We use symbol σ to denote a sample, i.e., a non-empty
set of labelled datapoints (x, y). We use pσ(y) to denote
the (true) prevalence of class y in sample σ (i.e., the fraction
of items in σ that belong to y); note that pσ(y) is just a short-
hand of Pr (Y = y | x ∈ σ), where Pr indicates probability
and Y is a random variable that ranges on Y. Note that
(pσ(y1), . . . , pσ(yn)) ∈ Δ(n−1) is a probability distribution
over Y, where Δ(n−1) denotes the probability simplex, i.e.,
the set of all probability distributions over n classes.

We define a quantifier as a function q : 2X → Δ(n−1), i.e.,
a function that maps a sample σ into a probability distribu-
tion ( p̂qσ(y1), . . . , p̂

q
σ(yn)) ∈ Δ(n−1), where p̂qσ(yi) denotes

the estimate of pσ(yi) returned by q. A quantifier is thus
an estimator of class prevalence values, and is trained
by an inductive learning algorithm on a set of labelled
datapoints. Since in the binary case it holds that
pσ(⊖ ) = 1− pσ(⊕ ), binary quantification reduces to
estimating the prevalence of class ⊕ only.

By h :X → Y we denote a classifier trained on T . We
assume h to return labels in Y by the usual rule

h(x) = argmax
yi∈Y

Pr (yi|x)

where the Pr (yi|x) (the posterior probabilities, which we
assume to be well-calibrated) each represent the probability
that the classifier subjectively attributes to the fact that x
belongs to class yi. This assumption brings about no loss
of generality, since a classifier that returns generic confi-
dence scores (instead of posterior probabilities), or posterior
probabilities that are not well-calibrated, can be made to
return well-calibrated posterior probabilities by means of
a calibration function.

Given a a set of classes Y = {y1, . . . , yn}, we indicate
by C = {C11, . . . , Cnn} the contingency table used for
measuring the accuracy of (single-label) classifiers that
map datapoints into Y. We denote by cUij the value of cell
Cij that results from the application of a classifier h :X →
Y to an unlabelled set U, i.e., the number of datapoints in
U that belong to class yi and have been assigned class y j
by h. By A(h, U) we denote a function that measures the
accuracy of classifier h on an unlabelled set U, while by
E(A(h, U), Â(h, U)) we denote a function that measures
the CAP error incurred by estimating A(h, U) as Â(h, U).

Problem Setting
Our goal is to estimate the accuracy A(h, U) of a classifier h
on an unlabelled setU. In this paper we make three assump-
tions that are typically made in the CAP literature (see
Section “Related Work”), i.e., (i) that the set T on which
h has been trained is no longer available, (ii) that a valid-
ation set V is instead available, and that (iii) T and V are
drawn IID from the same distribution P(X, Y) (where X is
a random variable that ranges on X ) while U is drawn
from a different distribution Q(X, Y).3 In this paper we
assume the presence of PPS between P(X, Y) and
Q(X, Y), i.e., we assume that

P(X|Y) = Q(X|Y) (1)

P(Y) ≠ Q(Y) (2)

Hereafter, we call Equations 1 and 2 the PPS assumptions.
Note that the goal (of QuAcc and of its competing methods)
is not to adapt h to U (as in domain adaptation), but merely
to estimate its accuracy on U.

Related Work
A number of methods for CAP under dataset shift have
appeared in the last few years.

Bhaskaruni et al. (2018) propose a “reverse testing”
framework where (i) the classifier h generates labels for
the datapoints in U, (ii) these (pseudo-)labels are used to
train another classifier h′ on U, and (iii) h′ labels the data-
points in T . Any accuracy measure can be computed on
the predictions of h′ (since the true labels of T are
known) and be used as a proxy of the accuracy of h on U.
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This idea is later refined in the Reverse Classification
Accuracy (RCA) method by Elsahar and Gallé (2019).
RCA carries out a similar “back-and-forth” process in
which a classifier h′ is trained on the (pseudo-)labels gener-
ated by h on U. The RCA score is defined in terms of the
discrepancy between the labels assigned by the two classi-
fiers h and h′ to the datapoints of a held-out validation set V .

A variant (RCA*) is also proposed that aims at factoring
out the discrepancy between the classifiers that can be
explained simply by the accumulation of errors in the
two-way training process, using additional validation
samples. This approach requires several validation sets Vi

on which the RCA (or RCA*) scores are computed.
These values, together with the true accuracy values of h
on each Vi, are used to train a regressor, which, given as
input the RCA (or RCA*) scores obtained on U, directly
predicts the accuracy of h on U.

The idea of using pseudo-labels for learning from U is
further investigated by Chen et al. (2021), who propose
an iterative self-training ensemble h′ (the “check model”)
that estimates the error of h as the fraction of test datapoints
on which classifiers h and h′ disagree. Following this idea,
Jiang et al. (2022) propose Generalization Disagreement
Equality (GDE), a CAP method based on the disagreement
of two datapoints of the same model. In a similar vein, You
et al. (2022) combine the two worlds, training a regressor on
top of the outputs generated by an ensemble model.

The idea of training a regressor is also put forth by
Redyuk et al. (2019), who use a sampling generation proto-
col on a validation sample V to generate many subsamples
Vi that hopefully mimic a type of shift similar to the one
present in the test sample. A regressor is then trained on a
representation of the entire sample (the authors propose to
use fixed percentiles of the distribution of the class-specific
posteriors) to predict classifier accuracy on every such val-
idation subsample. Somehow similarly, Deng and Zheng
(2021) train a linear regressor on the Frechét distances
between the validation samples Vi and T .

Guillory et al. (2021) propose a method that also relies
on a regressor for predicting the accuracy of h in U. In add-
ition to the validation sample V , the method assumes the
existence of different validation samples Vi exhibiting
some type of dataset shift with respect to V . For every val-
idation set Vi, the average max confidence of the classifier
(CVi ) is computed. The scores used to train the regressor are
computed as the Difference of Confidences (DoC – which is
also the name for the proposed method) between V and
each Vi, i.e., as DoC(V , Vi) = CV − CVi . Such scores are
used to train a regressor to predict the difference in accuracy
that h exhibits on V and Vi. Using this regressor, the accuracy
of h in U can be computed straightforwardly from the score
DoC(V , U) and the (known) accuracy of h in V .

Methods relying on Importance Weighting (IW) try
instead to estimate classifier accuracy on U using estimates
r̂(x) of the true density ratio r(x) = q(x)

p(x), with p and q the

density functions of the train and test probability distribu-
tions P and Q, respectively (Sugiyama et al., 2007).
Given that EQ[f (x)] = EP[

q(x)
p(x) f (x)] for any f , knowing the

density ratio would allow for direct estimation of h’s
vanilla accuracy in the test set U, by simply considering f
be the 0-1 loss L0−1(y, ŷ) = 1[y = ŷ], i.e.,

A(h, U) = 1
|U|

∑
(x,y)∈U

L0−1(y, h(x))

≈
1
|T|

∑
(x,y)∈T

L0−1(y, h(x)) · r̂(x)

One of the best-known IW approaches in the literature is the
Kullback-Leibler Importance Estimation Procedure
(KLIEP) (Sugiyama et al., 2007). A more recent approach,
called Mandoline (Chen et al., 2021), builds on top of a
variant of KLIEP that uses more elaborated representations
crafted from the original covariates by means of some
special type of user-defined transformations called slicing
functions. These representations may additionally incorpor-
ate information from the classifier itself (e.g., the posterior
probabilities). One limitation of this approach is that non-
linear evaluation measures, such as F1, cannot be estimated.

The Average Threshold Confidence (ATC) method
(Garg et al., 2022) learns instead a threshold t on (a function
of) the posterior probabilities of the classifier, such that
datapoints that obtain a score higher than t are assumed to
be correctly classified. The authors investigate two such
functions m, one based on maximum confidence and one
based on negative entropy. Threshold t is learned on the val-
idation set V as the value above which the proportion of
datapoints scoring higher than t equates the proportion of
correctly classified datapoints (i.e., coincide with the
value of vanilla accuracy). Assuming that Pr (yi|x) are
the posterior probabilities for x returned by classifier h,
the accuracy that h will obtain on U is estimated as the frac-
tion of datapoints in U that score higher than t, i.e.:

ATCm(U) = 1
|U|

∑
x∈U

1 m(( Pr (y1|x), . . . , Pr (yn|x)) > t[ ]

Linear Equations for Accuracy Prediction (LEAP) is
instead a recently proposed method (Volpi et al., 2024)
designed to predict the entries cUij of a contingency table
resulting from the application of classifier h to unlabelled
dataset U. LEAP treats the values cUij as n

2 unknowns and

constructs a system of n2 equations by leveraging (a) the
values cVij of the contingency table obtained by applying
classifier h to validation set V , and (b) Equations 1 and 2,
which derive from assuming PPS. The solution of this
system provides an estimation of the values cUij of the con-
tingency table on U, which can then be used to assess the
accuracy of h on U via the chosen evaluation measure.

Note that all the methods discussed in this section, with
the exception of those proposed in Bhaskaruni et al. (2018)
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and Volpi et al. (2024), have been tested by their authors only
with vanilla accuracy as the classifier accuracy measure.

QuAcc
QuAcc, the method we propose, comes in three different
variants, that we describe in the next three subsections.

The 1 × n2 Method
In the general multiclass case, most classifier accuracy mea-
sures can be computed from the values cUij of a contingency
table resulting from the application of classifier h to the set
U of unlabelled datapoints. Of course, in operational situa-
tions the values cUij are unknown, since the true labels of the
datapoints in U are unknown. Our method for estimating
A(h, U) under PPS is based on the following idea:

1. View the cells of the contingency table C =
{C11, . . . , Cnn} as a codeframe, i.e., consider each
cell Cij ∈ C as a class. Note that C ≡ Y × Y.

2. Train, on a labelled set V , a model that estimates the
values cUij .

3. Use the estimates ĉUij to compute Â(h, U).

Step 2 can obviously be recast as training on V a model that
estimates the prevalence values pU(Cij) of classes Cij in U,
since cUij = pU(Cij) · |U|. A key aspect of QuAcc is that it
uses, for tackling this step, techniques from quantification
(Esuli et al., 2023), since most such techniques are indeed
concerned with training estimators of the class prevalence
values under PPS.

In order to carry out Step 2, we represent the datapoints
as pairs (ẍ, ÿ). Here ẍ is a vector

ẍ = (x, Pr (y1|x), . . . , Pr (yn|x))

which incorporates (i) the original representation x that
classifier h has used, and (ii) the posterior probabilities
Pr (yi|x) that h has returned for x. In other words, we train
a quantifier q by providing it with all the information we
have about x that q might use to figure out which cell Cij

datapoint x is likely to belong to. (Of course, the quantifier
is not interested in individual datapoints per se, but is inter-
ested in them only insofar as they contribute to the distribu-
tion of U across the classes.)

In our pairs (ẍ, ÿ), ÿ is instead a label that ranges not on Y
but on C. When ÿ is the label of a datapoint in V , it is its true
label. When ÿ is the label of a datapoint in U, instead, ÿ is
unknown. While it is not our goal to guess ÿ for this data-
point in particular, it is our goal to estimate, for each
yi, y j ∈ Y, the prevalence pU(Cij) ≡ cUij /|U| of datapoints
(x, yi) ∈ U such that h(x) = y j. It is for reaching this goal
that we use a quantifier. Once we have estimated the preva-
lence in U of all Cij ∈ C, by multiplying all these estimates

by |U| we obtain estimates of all counts cUij , and we can thus
estimate A(h, U). Since our quantifier works on a codeframe
comprised of n2 classes, we call this the 1 × n2 method.

An important aspect of this method is that it works for
any classifier accuracy measure A defined in terms of a con-
tingency table, since it does not estimate measure A directly
but estimates the values cUij of the cells of the contingency
table C on which measure A is based. Another important
aspect of this method is that it is classifier-independent
and quantifier-independent, i.e., it does not make any
assumption on which method has been used for training h
and on which method is to be used for training q.

In the binary case, in which Y = {⊕ , ⊖ }, the contin-
gency table is C = {TP, TN, FP, FN}, and we need to train
a single multiclass quantifier q that operates on these four
classes; we thus call this the 1 × 4 method.

The n × n Method
A variant of the 1 × n2 method can be obtained by observ-
ing that, once we have applied classifier h to U, we already
know the value of cUj ≡

∑n
i=1 c

U
ij for each class yj ∈ Y,

since this is the number of datapoints in U which h has
assigned to yj. This means that we can leverage this infor-
mation and solve our CAP problem by training, instead of
one multiclass quantifier operating on n2 classes, n multi-
class quantifiers operating on n classes each, where the
j-th such quantifier is tasked with estimating how the data-
points in cUj are distributed across {cU1j, . . . , cUnj}. Since
this method involves n multiclass quantifiers that operate
on n classes each, we call this the n × n method.

In the binary case, switching from the binary analogue of
the 1 × n2 method to the binary analogue of the n × n
method means switching from a single quantifier that oper-
ates on 4 classes to two binary quantifiers, which can be
trained by leveraging the value of |TP ∪ FP| (resp., the
value of |TN ∪ FN|), since this is the number of datapoints
in U that h has assigned to class ⊕ (resp., ⊖), and is thus
known. We call this the 2 × 2 method.

The 1 × (n+ 1) Method
A variant of the 1 × n2 method can be derived by observing
that all the mispredicted points can altogether be conceptua-
lized as background noise. This suggests a method that
models the correctly predicted proportions via n classes
C11, . . ., Cnn, and models background noise via an an add-
itional class C≠.

4 This solution thus involves a single multi-
class quantifier with (n+ 1) classes (we thus call this
method the 1 × (n+ 1) method), that needs to estimate
how the datapoints are distributed across classes C11, . . .,
Cnn, C≠. Even though this method cannot exploit the pair-
wise information that captures the individual class-class
correlations, it may be advantageous since it operates on a
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reduced, coarser-grain (hence, hopefully simpler) code-
frame than the original 1 × n2 method.

One potential disadvantage of the 1 × (n+ 1) method
with respect to the two previous ones is that it does not
work for all classifier accuracy measures. One example
measure for which this solution does not work is macroa-
veraged F1 (see Equation 9), since the fact that all the
misclassified datapoints are merged into a single class
C≠ prevents the evaluation of F1 for the individual classes
y1,…, yn. Other example measures for which this solution
does not work are all the measures A to which different
types of mispredicted datapoints contribute differently,
such as cost-sensitive accuracy measures. However, the 1 ×
(n+ 1) method does work for an important classifier accur-
acy measure such as vanilla accuracy, whose mathematical
form (see Equation 8) is such that knowing the value of∑

i≠j cij suffices, and knowing the individual values of cij
is not strictly required.

In the binary case, the 1 × (n+ 1) method translates into
a method employing a multiclass quantifier operating on
three classes, i.e., the classes corresponding to TP, TN,
FP ∪ FN, the latter combining the false positives and the
false negatives into a single class; we call this binary
variant the 1 × 3 method. In this case, along with vanilla
accuracy, also F1 can be employed, since for its formula
(see Equation 7) knowing the individual values of |FP| and
|FN| is not necessary, since knowing |FP|+|FN| suffices.
The 1 × 3 method is particularly interesting, since we may
conjecture that the FPs and the FNs mostly lie on a relatively
compact region of space that flanks, from different sides, the
separating surface, i.e., we may conjecture that most of the
FPs and the FNs lie in a contiguous region of the space.

Adding Covariates
We also explore the impact of enriching the vectorial repre-
sentations ẍ with additional covariates that convey informa-
tion potentially useful for the quantification process. Given
a datapoint x and the vector p = (p1, . . . , pn) (where pi is
used as a shorthand for the posterior probability Pr (yi|x)
returned by classifier h), we explore three additional covari-
ates that make explicit to the quantifier information only
implicitly present in p.

The first covariate we consider is maximum confidence,
defined as

MC(p) = max
i∈{1,...,n}

pi

MC provides a measure of how confident h is in predicting
the class label of x: the higher the value, the greater the
confidence.

A second covariate we consider is negative entropy,
given by

NE(p) =
∑n
i=1

pi log pi

which also provides a measure (alternative to MC) of how
confident h is in predicting the class label of x. Both MC
and NE (which are also used in the ATC method (Garg
et al., 2022)) reach their maximum values when pi = 1
for some i, and attain their minimum values for the
uniform distribution (i.e., when the pi’s all equal 1/n).

A third covariate we explore is based on the softmax
function s, that maps any real-valued vector z = (z1,…,zn)
into a probability distribution s(z) ≡ p = (p1, . . . , pn)
where pi = ezi · (

∑n
j=1 e

zj )−1.
We consider, as the basis for a new covariate, the values

returned by the inverse softmax s−1(p) = (z′1, . . . , z
′
n),

where z′i = log pi + c and c is the logarithm of the normal-
isation factor c = log (

∑n
j=1 e

zj ). Since c is undetermined
(the actual values zj are unknown), we set
c = − 1

n

∑n
j=1 log pj, thus centreing the resulting values z′i

around zero.
The rationale behind inverse softmax to p is that of amp-

lifying, in a non-linear way, the difference between low-
confidence and high-confidence values. As with MC, we
focus on the maximum value. The resulting max inverse
softmax (MIS) covariate is thus given by

MIS(p) = max
i∈{1,...,n}

log pi −
1
n

∑n
j=1

log pj

( )

A Look Back At the Relationships Between QuAcc
and the PPS Assumptions
Before discussing our experiments, it is worthwhile to stop
for a moment and look back at how and if QuAcc addresses
the PPS assumptions. In essence, QuAcc may be seen as
performing a relabelling of the datapoints, from a labelling
based on codeframe Y to one based on codeframe C.

However, the PPS assumptions underlying our problem
setting, and specifically the assumption that the class-
conditional densities are stationary (Equation 1), cannot
be taken for granted after this relabelling; in other words,
the fact that P(X|Y) = Q(X|Y) does not mean that
P(X|C) = Q(X|C), where C is a random variable that
ranges on C.

Luckily, since the original class-conditional distributions
are partitioned into two complementary distributions by a
deterministic function (the classifier), and since the original
class-conditional distributions are assumed to be stationary,
the complementary parts remain stationary after the relabel-
ling as well, as illustrated in Figure 1. This is more formally
stated in the following proposition, a proof of which is
given in Appendix “Proof of Proposition”.

Proposition 1 If two distributions P(X, Y) and Q(X, Y)
are such that P(X|Y) = Q(X|Y), then a relabelling of
the datapoints in X from Y = {y1, . . . , yn} to
C = Y × Y, with C the set of cells of the contingency
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table resulting from classifying the datapoints in X via a
classifier h, is such that P(X|C) = Q(X|C), with C a
random variable ranging on C. □

However, while this reasoning holds for the 1×n2 and
n×n variants of QuAcc, it does not apply to the 1×(n+1)
variant. In this case, the split merges different parts of the
original distributions into the new “background noise”
class C≠, which is a mixture of all the class-specific mis-
classification types with a mixture parameter imposed by
the priors of the training distribution. In the binary case,
and considering that C≠ = FP ∪ FN and FP ∩ FN = ∅, it
follows that

P(X|C≠) =
P(X, C≠)
P(C≠)

= P(X, FP)+ P(X, FN)
P(C≠)

= P(X|FP)P(FP)+ P(X|FN)P(FN)
P(C≠)

= P(X|FP)P(FP|C≠)+ P(X|FN)P(FN|C≠)

As a result, this class cannot accommodate the new prior of
the test distribution, i.e., P(X|C≠) ≠ Q(X|C≠) since, by
virtue of the PPS assumptions it holds that P(X|FP) =
Q(X|FP) and P(X|FN) = Q(X|FN) but also that the priors
change P(FP) ≠ Q(FP) and P(FN) ≠ Q(FN), and so there
is no guarantee that P(FP|C≠) = Q(FP|C≠) nor
P(FN|C≠) = Q(FN|C≠); see Figure 2.

Despite this conceptual pitfall, this method is still inter-
esting from the point of view of efficiency: it models fewer
classes than the 1×n2 and n×n counterparts (and this is
especially true in the multiclass case), and this reduction
in the complexity of the model might well pay off in
terms of prediction accuracy. We analyse this trade-off
empirically in Section “Experiments”.

Experiments
In this section we describe the experiments we have carried
out and discuss the results we have obtained.

Evaluation Protocol
A dataset for testing quantification systems is usually the
result of the application of an extraction protocol (Esuli
et al., 2023, § 3.4) to a dataset Ω = (T , V, U) otherwise
used to test classification systems, where T is the training
pool, V is the validation pool, and U is the test pool.
(By “pool” we mean a – usually large – set from which
various samples will be extracted according to the extrac-
tion protocol.)

In the binary case we here use the widely adopted artifi-
cial prevalence protocol (APP – Esuli et al. (2023, § 3.4.2)),
which consists of randomly extracting from U a number of
test samples U1, . . . , Uk characterised by values of p(⊕ )

Figure 1. Graphical depiction of the effects of QuAcc’s “relabelling” strategy. A red area depicts a hypothetical distribution of the

covariates in the examples of class ⊖, while a blue area does the same for the examples of class ⊕; in Figure (a) these are the

distributions P(X|Y = ⊖)P(Y = ⊖) and P(X|Y = ⊕)P(Y = ⊕) of the training data, while in Figure (b) these are the distributions

Q(X|Y = ⊖)Q(Y = ⊖) and Q(X|Y = ⊕)Q(Y = ⊕) of the test data. The two figures show an example of PPS, since (i) the

class-conditional distribution of the covariates is invariant (i.e., P(X|Y) = Q(X|Y) as shown in Figure (c) and (d)), as shown by the fact

that the the two red areas have identical shape (and the same goes for the two blue areas), and (ii) the distribution of the priors is not

invariant (i.e., P(Y) ≠ Q(Y)), as shown by the fact that the two red shapes have different size (and the same goes for the two blue

curves). The bar labelled h represents the classifier, which partitions the examples into predicted positives (here assumed to be to the

right of the h bar) and predicted negatives (to the left of the h bar). The regions of the true negatives (TN), false positives (FP), false

negatives (FN), and true positives (TP), are shown in Figures (e), (f), (g), (g), respectively. It is clear from Figures (a) and (b) that each of

these four regions has the same shape, but different size, in the training and in the test data; this implies that, if we view TN, FP, FN, TP

as classes and relabel our examples accordingly, the PPS assumptions are valid also after the relabelling.
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that lie on a predefined grid of values (in this case: the
21-point grid {0.00, 0.05,…, 0.95, 1.00}). In our experi-
ments, for each value on the grid we randomly extract
(with replacement) 100 test samples consisting of 1000
datapoints each, for a total of k=2100 test samples.

For each value that lies on the 9-point grid
{0.1, . . . , 0.9} (i) we also randomly extract (with replace-
ment) from T a training sample Ti with p(⊕ ) equal to
that value, and (ii) we randomly extract (with replacement)
from V a validation sample Vi with p(⊕ ) equal to that
value. In both cases, these 9 samples are equally sized,
and their size is

|Ti| =
10
9
·min {p(⊕ ), p(⊖ )} · |T | (3)

|Vi| =
10
9
·min {p(⊕ ), p(⊖ )} · |V| (4)

In both cases, this is the largest possible number that can
result in 9 equally-sized without necessarily resorting to
re-sampling the same datapoints. In all our experiments
we keep pTi (⊕ ) = pVi (⊕ ); while using training samples
Ti characterised by different pTi (⊕ ) values is meant to
test our methods under different conditions of class imbal-
ance, stipulating that pTi (⊕ ) = pVi (⊕ ) is meant to simu-
late the fact that (as mentioned in Section “Problem
Setting”) Ti and Vi are sampled from the same distribution
P(X, Y).

In the multiclass case, since the application of the APP
would result in a number of valid combinations that
grows combinatorially with the number of classes, we
resort to a variant of the APP based on the Kraemer algo-
rithm for sampling probability distributions uniformly at
random (Esuli et al., 2023, § 3.4.3). In other words, in
our application of this protocol we still randomly extract
(with replacement) from U a number of 2100 test samples
Ui, each comprised of 1000 datapoints, but instead of

insisting that their p(yi)’s lie on a grid of predetermined
class prevalence values, for each of the 2100 samples we
impose that their p(yi)’s comply with a probability distribu-
tion drawn uniformly at random from the probability
simplex according to the Kraemer algorithm.

We use a similar approach to randomly extract (with
replacement) from T nine training samples T1, . . . , T9,
each using a randomly generated distribution; the same dis-
tributions are similarly employed to randomly extract (with
replacement) from V nine validation samples V1, . . . , V9. In
both cases, the nine samples are again equally sized, and
their sizes are |Ti| = |T |

2 and |Vi| = |V|
2 . This increase in

size with respect to the binary case (where sample size is
defined by Equations 3 and 4) is made necessary by the
higher level of imbalance of the multiclass datasets; since,
in Equations 3 and 4, sample size depends on the size of
the least frequent class, adopting Equations 3 and 4 for
the multiclass case too would excessively reduce the size
of the samples. In this case too we keep pTi (yj) = pVi (yj)
for all yj ∈ Y, so as to simulate the fact that Ti and Vi are
sampled from the same distribution P(X, Y).

Each result we report is thus the average value of
E(A(h, U), Â(h, U)) across all combinations of

• in the binary case: 9 values of pTi (⊕ ) (and pVi (⊕ )),
21 values of pUj (⊕ ), and 100 samples for each value
of pUj (⊕ );

• in the multiclass case: 9 distributions pTi (and
pVi = pTi ), and 2100 distributions pUj ;

i.e., across 9×2100=18,900 combinations for both the
binary case and the multiclass case. Therefore, the result
of using this protocol is that of “stress-testing” the CAP
methods, i.e., testing their ability to correctly estimate clas-
sifier accuracy in a wide range of situations, characterised

Figure 2. In the 1 × 3 method, the region of the false negatives (green region to the left of the h bar) is merged with the region of the

false positives (green region to the right of the h bar) and viewed as a single class C≠. The two figures show that, after the relabelling, the

PPS assumptions do not hold any longer, since not only the green areas in the training data and in the test data have different size (which
means that P(C) ≠ Q(C), consistently with the PPS assumptions), but they also have different shape (which means that P(X|C) ≠ Q(X|C),
which conflicts with the PPS assumptions).

Volpi et al. 7



by different values of training class imbalance, test class
imbalance, and PPS.

Concerning this latter, note that this experimental proto-
col clearly simulates PPS, since the distribution of the cov-
ariates X conditional on the distribution of the labels Y is the
same for the Ti’s and the Uj’s, but the distribution of the
labels Y is not the same for the Ti’s and the Uj’s (in the lan-
guage of Section “Problem Setting”, our protocol simulates
a situation in which P(X|Y) = Q(X|Y) and P(Y) ≠ Q(Y),
i.e., enforces the PPS assumptions).

Datasets
As the datasets Ω = (T , V, U) from which the data for
testing the CAP methods are extracted, we use four
binary datasets (see also Table 1) and four multiclass data-
sets (see also Table 2), all publicly available. Most of our
datasets are extracted from Reuters Corpus Volume I -
version 2 (RCV1-v2), a multi-label dataset of Reuters news-
wire stories manually classified under 103 classes, which
comes split into a training set of 23,149 stories and a test
set of 781,265 stories (Lewis et al., 2004); the other dataset
we employ is IMDB (Maas et al., 2011), described below.

The datasets we use for our binary experiments are:

• IMDB, a binary dataset of 50,000 movie reviews
classified as positive (⊕) or negative (⊖), which
comes split into a training set and a test set (25,000
reviews each, both perfectly balanced). We split the
above training set into a training pool T and a valid-
ation pool V of 12,500 reviews each via stratified
sampling. We use the TFIDF-vectorised version of
IMDB provided by the QuaPy library (Moreo
et al., 2021).

• The CCAT, GCAT, MCAT classes of the RCV1-v2
dataset. From the original set of 103 classes we pick
the three largest classes, i.e., CCAT, GCAT, MCAT.
For each such class, we split the original training set
into a training pool T and a validation pool V of
11,575 stories each via stratified sampling. We use
the TFIDF-vectorised version of this dataset pro-
vided by Scikit-Learn (Pedregosa et al., 2011).

The datasets we use for our multiclass experiments are:

• The Root, CCAT, M1, M14 nodes in the class hier-
archy of RCV1-v2. The classes in the RCV1-v2
dataset are organised in a hierarchical structure,
where each class corresponds to a node. Each node
yk is the root of a subtree and can be treated as an
independent dataset, with its classes being the
direct children of the node and its datapoints being
those labelled as belonging to yk. We select these
four nodes as they generate the largest and best-
balanced multiclass datasets of RCV1-v2. Before

using them, we remove all multi-labelled datapoints
so as to generate a purely single-label classification
setting. For each dataset, we split its RCV1-v2 train-
ing set into a training pool T and a validation pool V
of the same size. The exact sizes of training, valid-
ation, and test pools, and the number of classes of
the four datasets, are reported in Table 2. We use
the vectorised version of RCV1-v2 provided by
Scikit-Learn (Pedregosa et al., 2011).

The reason why we choose these datasets is that they are
fairly large. Indeed, a large enough number of positive
training examples is needed for generating large enough
training samples (see Equations 3 and 4), and a large
enough number of test examples is needed for generating
test samples with only minimal overlap.

Evaluation Measures
As the measure of the error a method incurs when predicting
the accuracy A(h, U) of classifier h on a set U of unlabelled
datapoints, we use the absolute difference between the true
accuracy value and its estimate, i.e.,

Err(A(h, u), Â(h, U)) = |A(h, U)− Â(h, U)| (5)

We run experiments with two different measures A of
classifier accuracy, i.e., vanilla accuracy and F1, defined,

Table 1. Main Features of the Binary Datasets used in this Paper;

|T | is the Size of the Training Pool (Which is Equal to |V|, the Size
of the Validation Pool), |U| is the Size of the Test Pool, pT (⊕ ) is

the Prevalence Value of Class ⊕ in the Training Pool T (Which is

the Same as the Prevalence Value pV(⊕ ) of ⊕ in the Validation

Pool V), While |Ti| is the Size of the Samples used for Classifier
Training (which is the Same as the Size |Vi| of the Samples used for

Quantifier Training).

|T | |U| pT (⊕ ) |Ti|

IMDB 12,500 25,000 0.500 6,944

CCAT 11,575 781,265 0.474 5,992

GCAT 11,575 781,265 0.297 3,872

MCAT 11,575 781,265 0.255 3,267

Table 2. Main Features of the Multiclass Datasets used in this

Paper; |T |, |U|, and |Ti| are Defined as in table 1, n = |Y| is the
Number of Classes in Y, while pT is the Distribution of the

Datapoints in the Training Pool T (Which is the Same as the

Distribution pV of of the Datapoints in the Validation Pool V),
Reported as an Element of the Probability Simplex Δ(n−1)).

|T | |U| n pT |Ti|

Root 9,903 665,265 4 [0.085, 0.25, 0.24] 4,951

CCAT 4,708 319,689 4 [0.109, 0.096, 0.055] 2,354

M1 2,816 190,208 4 [0.102, 0.247, 0.441] 1,408

M14 1,188 77,671 3 [0.124, 0.248] 594
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for the binary case, as

Acc = |TP| + |TN|
|TP| + |FP| + |FN| + |TN| (6)

F1 =
2 · |TP|

2 · |TP| + |FP| + |FN| (7)

and, for the multiclass case, as

Acc =
∑|Y|

i=1 cii∑|Y|
i=1

∑|Y|
j=1 cij

(8)

F1 =
1
|Y|

∑|Y|
i=1

2 · cii∑|Y|
j=1 cij +

∑|Y|
j=1 c ji

(9)

with Equation 9 describing the average value of binary F1

(Equation 7) across the classes in Y (a measure usually
called macroaveraged F1, and noted FM

1 ).
We do not discuss measures of quantification error since

this error is not important in itself but only inasmuch as it
leads to accurate estimation of A(h, U). We thus do not
show experimental results in which we measure the quantifi-
cation error incurred by our quantifiers. However, the quality
of the latter can be gauged by comparing the results (see last
three rows of Table 3) obtained by using the trivial “Classify
and Count” quantification method (that simply counts the
number of times a class label has been attributed by the clas-
sifier), with those obtained by using quantification methods
(described below) robust to PPS such as SLD (Saerens
et al., 2002) or KDEy (Moreo et al., 2025).

Baselines
As the baselines for our experiments we use the five CAP
methods that, in comparative experiments reported in the
literature, have proven the best-performing ones, i.e.,

• Reverse Classification Accuracy (RCA) (Elsahar &
Gallé, 2019), of which we use both variants (RCA
and RCA*), since in the authors’ experiments
neither of the two was clearly superior to the other;5

• Mandoline (Chen et al., 2021);6

• Difference of Confidences (DoC) (Guillory et al.,
2021);7

• Average Threshold Confidence (ATC) (Garg et al.,
2022), of which we use the “maxconf” variant
since Garg et al. (2022) found it to be the best-
performing variant;8

• Linear Equations for Accuracy Prediction (LEAP)
(Volpi et al., 2024), of which we use the “KDEy”
variant, reported to be the best performing one by
its authors.9

See Section “Related Work” for a description of these five
methods; none of the methods from (a) to (d) has

hyperparameters to optimise; for LEAP we could fine-tune
the hyperparameters of the underlying quantifier (KDEy),
but we decided to use the default ones, mirroring the experi-
mental setup of the original paper (Volpi et al., 2024). We
also test a naïve baseline consisting of applying classifier
h to V and using the value of A(h, V) as the estimate
Â(h, U) of the accuracy of h on U.

Configuring QuAcc
Within our CAP methods, as the quantification algorithm
for estimating the prevalence values pU(Cij) of classes
(i.e., contingency table cells) Cij in U, we experiment
with two alternatives, i.e., (a) the well-known
Saerens-Latinne-Decaestecker method (SLD) (Saerens
et al., 2002), thus called from the names of its proposers,
and (b) the recently proposed KDEy method (Moreo
et al., 2025); both methods are natively multiclass, which
is important since the QuAcc variants of Sections “The 1 ×
n2 Method” and “The 1 × (n+ 1) Method” require estimat-
ing the prevalence values of more than 2 classes in both the
binary and the multiclass case, and the QuAcc variant of
Section “The n × nMethod” requires the same in the multi-
class setting.

SLD was the best performer in a recent data challenge
devoted to tackling quantification on data affected by PPS
(Esuli et al., 2022), and works by training a (calibrated)
classifier and then using expectation maximisation
(Dempster et al., 1977) (i) to tune the posterior probabilities
Pr (Cij|x) that the classifier returns, and (ii) to re-estimate the
class prevalence values pU(Cij). SLD carries out Steps (i)
and (ii) in an iterative, mutually recursive way, until conver-
gence, which occurs when the estimates of the class preva-
lence values pU(Cij) have stabilised. Alexandari et al.
(2020) propose a variant of SLD in which, before applying
expectation maximisation, the classifier is recalibrated by
means of bias-corrected temperature scaling (BCTS – the
best performer among the recalibration techniques tested
in their paper); we leave the decision whether to apply
BCTS or not to the model selection phase.

KDEy (Moreo et al., 2025) is a recent distribution-
matching method (Esuli et al., 2023, § 4.2.8) for quantifica-
tion that models samples by means of Gaussian mixture
models over the probability simplex containing the poster-
ior probabilities of the datapoints in the sample. For this
purpose, the method relies on kernel density estimation
(hence its name). In contrast to previously proposed
distribution-matching methods that create class-specific his-
tograms of posterior probabilities, KDEy models multivari-
ate densities, thus accounting for inter-class dependencies.
In particular, we use the KDEy-ML variant since, in the
experiments of Moreo et al. (2025), it was the best per-
former and, in particular, proved superior to SLD in multi-
class problems.
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In our experiments we use the implementations of SLD
and KDEy provided by the QuaPy library (Moreo et al.,
2021).10

In this work we always use logistic regression as the
method for training (i) the classifiers whose accuracy we
want to estimate, and (ii) the classifiers that underlie
both SLD and KDEy. Note that the classifiers used in (i)
and (ii) are independent of each other, i.e., are different
classifiers (the former are trained on the Ti’s while the
latter are trained on the Vi’s) even if they are both
trained via logistic regression.

Results
Table 3 summarises all our experimental results for the
binary case, and Table 4 does the same for the multiclass
case. In both cases, we provide separate results for 8 com-
binations of a datasetΩ (4 datasets) and a classifier accuracy
measure A (2 measures). Each figure in Tables 3 and 4 is the
average value of the Err(A(h, U), Â(h, U)) measure across
the 9×2100=18,900 combinations of a training sample Ti
(paired with a validation sample Vi drawn from the same
distribution) and a test sample Uj. All results refer to
systems whose hyperparameters have been optimised on a
held-out portion of the validation sample using E as the
loss function; in particular, model selection (a) chooses
the best value for the regularisation parameter C of the
logistic regression classifier that the quantifier uses, in the
range {10i}i=3

i=−3, (b) for the same logistic regression classifier,
decides whether to rebalance (by setting the “ClassWeight”
hyperparameter to “Balanced”) the datapoints in order to
counter the possible class imbalance of the training sample,
(c) decides whether to recalibrate (via BCTS) the classifier
underlying SLD, (d) chooses the best “bandwidth” for
KDEy in the range (0.01, 0.02, . . . , 0.20), (e) checks
whether the additional covariates of Section “Adding
Covariates” are worth including, and (f) decides which of
the threevariantsofSections“The1 × n2 Method” to“The1 ×
(n+ 1) Method” should be used. Note that

• model selection here concerns the CAP methods, and
not the training of h, which in all cases we have
trained via logistic regression with default
parameters;

• the variant of QuAcc 1 × (n+ 1) is excluded from
Step (f) of model selection in the multiclass case
when the considered evaluation measure is F1

since, as discussed in Section “The 1 × (n+ 1)
Method”, this measure cannot be applied in this case.

Table 5 reports how often, in the binary case, the model
selection phase has answered positively for the choices of
(b), (c), and (e), while Table 6 reports, for both the binary
case and the multiclass case, how often each variant of
QuAcc is chosen in Step (f) of model selection.

The main observations we can derive from Tables 3 to 6
are the following:

1. In the binary case, the best performance, on 6 of the 8
combinations of a dataset and a classifier accuracy
measure, is obtained by either QuAcc(SLD) or
QuAcc(KDEy), while in the multiclass case this
happens for 5 of the 8 combinations; this confirms
the validity of the intuitions underlying QuAcc. In
the 5 cases (2 binary, 3 multiclass) in which neither
QuAcc(SLD) nor QuAcc(KDEy) are the best
method, the best method is LEAP.

2. While the best performer is inmost cases (11 out of 16
combinations) one of QuAcc(SLD) and QuAcc
(KDEy), it is not always the same. (This is true also
for the baselines, since the best baseline is not always
the same: it is LEAP in 14 out of 16 cases, and it is
DoC in the other 2 cases.) QuAcc(SLD) is the best
on 7 combinations (4 in the binary case and 3 in the
multiclass case) and QuAcc(KDEy) on 4 (2 in the
binary case and 2 in the multiclass case). It is note-
worthy, though, that in 7 out of the 11 combinations
in which the best method is one of QuAcc(SLD) and
QuAcc(KDEy), bothmethods beat the best baseline.

3. In terms of the amounts of error reduction that our
methods obtain with respect to the best baseline
when they turn out to be the best method overall
(see last row of Tables 3 and 4), these amounts
are noteworthy, with important peaks of
+28.32% in the binary case (IMDB/Acc) and
+42.96% in the multiclass case (M14/Acc).
However, it must also be noted that when the best
method overall is LEAP, also the latter displays
noteworthy amounts of error reduction with
respect to QuAcc, with peaks of 27.01% in the
binary case (GCAT/F1) and of 37.30% in the multi-
class case (Root/Acc).

4. Table 6 shows that all the three methods discussed in
Sections “The 1 × n2 Method” to “The 1 × (n+ 1)
Method” are chosen in the model selection phase a
substantive number of times. Out of 288 invocations
of model selection (8 datasets × 2 quantification
methods × 9 (Ti, Vi) pairs × 2 accuracy measures),
Method 1 × n2 is selected 98 times (42 in the
binary case and 56 in the multiclass case), Method
n × n is selected 116 times (62 in the binary case
and 54 in the multiclass case), and Method
1 × (n+ 1) is selected 74 times (40 in the binary
case and 34 in the multiclass case). This shows
that none of them is a strawman, while also confirm-
ing the intuition that Method n × n is superior to
Method 1 × n2, given that it additionally exploits
the knowledge of each cUj ∈ {cU1 , . . . , c

U
n }.
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5. QuAcc(CC), a variant of QuAcc that uses the trivial
“Classify and Count” (CC) quantifier, is (see
3rd-to-last row of Tables 3 and 4) either the best
or the second best baseline in 10 out of 16 combina-
tions. Since CC is not robust to PPS (Esuli et al.,
2023, § 1.2), this result shows that the idea of esti-
mating the prevalence values of the cells of the con-
tingency table is a good idea in itself. However,
QuAcc(CC) always dramatically underperforms
QuAcc(SLD) and QuAcc(KDEy), which shows
that using “true” quantification algorithms robust
to PPS for performing this estimation is also a
good idea. This observation is further reinforced
by the fact that the best baseline method LEAP is
also one that builds on top of quantification
techniques.

6. The best-performing baseline is always either LEAP
(Volpi et al., 2024) or DoC (Guillory et al., 2021).
ATC (Garg et al., 2022) is always worse than
LEAP, while RCA and RCA* (Elsahar & Gallé,
2019) are always worse than both LEAP and DoC;
Mandoline (Chen et al., 2021) always follows the
others at a distance.

7. Finally, as can be seen in Table 5, (a) BCTS recali-
bration and (b) class rebalancing of the logistic

regression classifier that underlies the SLD quantifi-
cation method, and (c) the use of the additional cov-
ariates when training the quantification algorithms,
are all fruitful ideas, since model selection more fre-
quently adopts them than not.

We have performed statistical significance tests at differ-
ent confidence levels so as to check the differences in per-
formance between the best method and all other methods.
In Table 3 and 4, all methods whose scores are not statistic-
ally significantly different from the best one, according to a
Student’s t-test on paired samples, are marked with † if
0.001< p-value <0.05 or with ‡ if 0.05 ≤ p-value; the
absence of any such symbol thus indicates that p-value
≤ 0.001. What emerges, for the binary results, is that the
performance of QuAcc(SLD) is not significantly different
from that of the best method LEAP in one of the two com-
binations in which LEAP is the best method (MCAT/F1);
for all the combinations in which one of QuAcc(SLD)
and QuAcc(KDEy) is the best method, the performance
of all the baselines is significantly different from the per-
formance of these two methods. In the multiclass case, in
2 of the 5 combinations in which one of QuAcc(SLD)
and QuAcc(KDEy) beats all the baselines, the performance
of the best baseline LEAP is not significantly different to

Table 5. Frequencies with which the Model Selection Phase Chooses, in our Binary Experiments, Options Additional Covariates (see

Section “Adding Covariates”), BCTS Recalibration (for the SLD quantifier), and Class Balancing (for logistic regression).

Dataset Quantifier Additional Recalibration Class

Covariates Balancing

IMDB SLD 81.49% 77.78% 59.26%

KDEy 71.43% — 88.18%

CCAT SLD 62.97% 70.38% 77.78%

KDEy 78.06% — 84.82%

GCAT SLD 76.93% 61.54% 65.39%

KDEy 71.36% — 78.65%

MCAT SLD 62.97% 48.15% 74.08%

KDEy 71.03% — 68.70%

Table 6. Frequencies with which the Model Selection Phase Chooses the three Variants of our Method (1 × n2, n × n, 1 × (n+ 1)).

Dataset

QuAcc(SLD) QuAcc(KDEy)

1 × n2 n × n 1 × (n+ 1) 1 × n2 n × n 1 × (n+ 1)

binary IMDB 66.67% 11.11% 22.22% 55.56% 11.11% 33.33%

CCAT 22.22% 66.67% 11.11% 22.22% 55.56% 22.22%

GCAT 0.00% 55.56% 44.44% 11.11% 44.44% 44.44%

MCAT 33.33% 66.67% 0.00% 22.22% 33.33% 44.44%

multiclass Root 38.89% 44.44% 16.67% 38.89% 38.89% 22.22%

CCAT 44.44% 16.67% 38.89% 50.00% 27.78% 22.22%

M1 44.44% 27.78% 27.78% 38.89% 38.89% 22.22%

M14 11.11% 72.22% 16.67% 44.44% 33.33% 22.22%

Note: Concerning the values of this table, note that they are all multiples of 5.55% (i.e., 1
18
); this is because, for each combination of a dataset and quantifier

(SLD or KDEy), 9 model selections (i.e., one for each pair (Ti, Vi)) are performed for each of 2 accuracy measures (vanilla accuracy and F1).
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Figure 3. Classifier accuracy prediction error as a function of the amount of PPS, averaged over the training samples extracted for the

binary dataset CCAT; the classification accuracy measure is vanilla accuracy. For ease of display, only the five best-performing CAP

methods are shown.

Figure 4. Estimated vanilla accuracy (y-axis) as a function of the true vanilla accuracy (x-axis) for dataset CCAT and training sample

drawn from distribution (pTi (⊖ ), pTi (⊕ )) = (0.1, 0.9).
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that of the best method; in all 3 combinations in which
LEAP is the best method, instead, the performance of
LEAP is significantly different from that of both
QuAcc(SLD) and QuAcc(KDEy). It is also noteworthy
that, on 3 of the 7 combinations (both binary and multiclass)
in which both QuAcc(SLD) and QuAcc(KDEy) beat the
best baseline, the error values of the two methods are not
significantly different.

Figure 3 displays the CAP error (measured in terms of
the Err(A(h, U, Â(h, U)) = |A(h, U)− Â(h, U)| function
of Equation 5) that different methods produce when predict-
ing the accuracy (here: vanilla accuracy) of a classifier.
CAP error (on the y-axis) is plotted as a function of the
amount of PPS (along the x-axis) between the training
sample and the test sample; the plotted values are averages
across all tested pairs consisting of a training sample (here:
of the CCAT binary dataset) and a test sample that display
the indicated amount of PPS. The plot reveals how
QuAcc(SLD) and QuAcc(KDEy) tend to perform steadily
at different amounts of PPS, predicting classifier accuracy
with a slightly higher error than the baselines when the
amount of PPS is low, but behaving substantially better
when the amount of PPS grows. Even though this plot
refers to the results for the binary dataset CCAT only, we
have observed this trend in all our experiments.

Figure 4 displays the estimated vanilla accuracy (indi-
cated on the y-axis) as a function of the true vanilla accur-
acy (indicated on the x-axis) for dataset CCAT; the example
concerns the case in which the training prevalence is
(pTi (⊖ ), pTi (⊕ )) = (0.1, 0.9). This plot shows that,
when the positive datapoints outnumber the negative data-
points, ATC and DoC tend to overestimate the classifier’s
accuracy, especially in cases in which the classifier does
not perform well. LEAP tends instead to underestimate
the classifier’s accuracy when the classifier does not
perform well, while it tends to overestimate this accuracy
in cases when the classifier performs well. QuAcc(SLD)
and QuAcc(KDEy) instead closely follow the diagonal,
which represents the ideal behaviour for a CAP method.

Conclusion
We have presented QuAcc, a new method for predicting
classifier accuracy under PPS, an important type of
dataset shift. QuAcc is built on top of “quantification”
methods robust to PPS, i.e., methods devised for estimating
the class prevalence values in samples of unlabelled data-
points affected by PPS. QuAcc is based on the key intuition
of viewing the cells of the contingency table, which is used
for computing classifier accuracy, as classes, and of training
a quantifier that estimates the values of these cells. The
experiments we run on eight large datasets simulate a
wide variety (a) of amounts of training and/or test data
imbalance, and (b) of amounts of PPS. The results of
these experiments show that QuAcc systematically

outperforms four of the five state-of-the-art baselines we
have employed, while managing to outperform the fifth
(LEAP (Volpi et al., 2024)) in 11 experimental configura-
tions out of 16, and exhibiting, in these configurations,
average levels of error reduction (with respect to the best
such baseline) ranging from 3.59% to 42.96%. QuAcc is
independent of the algorithm used for training the classifier,
of the algorithm used for training the quantifier, and of the
metric used for measuring classifier accuracy.

We plan to extend this research by testing our algorithms
on the more challenging scenario in which the data V on
which the quantifier is trained and the data T on which
the classifier was trained are related by PPS. Additional
future research we intend to carry out concerns the
problem of classifier accuracy prediction under types of
dataset shift different from PPS, such as covariate shift.
This might not necessarily mean devising methods alterna-
tive to QuAcc, but might mean instantiating QuAcc with
quantification methods which prove robust to types of
dataset shift different from PPS. This may prove non-trivial,
though, since most of the quantification literature has
focused on PPS (González et al., 2024; Pérez-Mon et al.,
2025), somehow neglecting other types of dataset shift.
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Notes
1. This paper reports and extends the results of the first author’s

MSc thesis (Volpi, 2024), which received, from the Italian
Association for Artificial Intelligence (AIxIA), the 2024
Leonardo Lesmo Award for the Best MSc Thesis discussed
in 2023/24 at an Italian university in the field of artificial
intelligence.

2. https://github.com/lorenzovolpi/CAP.
3. ForQuAcc and for all themethodswecompare it against, assump-

tions (i) and (ii) are not binding, since all these methods still work
if a validation set V is not available and the original training set T
is instead available; in this case, all these methods rely on k-fold
cross-validation to make up for the absence of V .

4. This is reminiscent of other multiclass classification-related
endeavours in which n classes represent nwell-defined concepts
and an (n+1)-th class, often calledOther, acts as a grab bag for all
datapoints that are not deemed to belong to the first n classes.

5. https://github.com/naver/domainshift-prediction.
6. https://github.com/HazyResearch/mandoline.
7. https://github.com/deving09/PerformancePred.
8. https://github.com/saurabhgarg1996/ATC_code.
9. https://github.com/lorenzovolpi/LEAP.
10. https://github.com/HLT-ISTI/QuaPy.
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Proof of Proposition 1 In this section, we offer a formal
proof of Proposition 1.

Proof. We need to prove that, if P(X|Y) = Q(X|Y) with
Y ranging on Y, then P(X|C) = Q(X|C) with C ranging
on C. Note that Cij corresponds to the random event
Y = yi ∧ Ŷ = yj, so that

P(X|C = Cij) =
P(X, C = Cij)
P(C = Cij)

= P(X, Y = yi, Ŷ = yj)

P(Y = yi, Ŷ = yj)

= P(X, Ŷ = yj|Y = yi)P(Y = yi)

P(Ŷ = yj|Y = yi)P(Y = yi)

(10)

Since Ŷ = h(X) is a random variable that depends on X
only through a deterministic measurable function (the
classifier), and since P(X|Y) = Q(X|Y), it then holds
(see Lipton et al., 2018, Lemma 1) that
P(Ŷ|Y) = Q(Ŷ|Y). For analogous reasons, since the
outcome of the deterministic function h does not alter
the stochastic relationship between Y and X across the
two distributions, and since the output of h(x) does not
depend on the underlying distribution, it also holds
that P(X, Ŷ|Y) = Q(X, Ŷ|Y), i.e.,

P(X = x, Ŷ = yj|Y = yi)

=
P(X = x|Y = yi) if h(x) = yj
0 if h(x) ≠ yj

{

Q(X = x, Ŷ = yj|Y = yi)

=
Q(X = x|Y = yi) if h(x) = yj
0 if h(x) ≠ yj

{

From Equation 10 it thus follows that

P(X|C = Cij) =
P(X, Ŷ = yj|Y = yi)

P(Ŷ = yj|Y = yi)

= Q(X, Ŷ = yj|Y = yi)

Q(Ŷ = yj|Y = yi)

= Q(X, Ŷ = yj, Y = yi)Q(Y = yi)

Q(Ŷ = yj, Y = yi)Q(Y = yi)

= Q(X|Ŷ = yj, Y = yi)

= Q(X|C = Cij)
□
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