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Abstract 

Multidimensional image retrieval (MIR) views an image 
as a multidimensional object, where each dimension is a 
channel for  retrieval. MIR has the potential of putting at 
work together the many methods and techniques for im- 
age retrieval proposed in several different fields of com- 
puter science. We have developed a model of MIR, based 
on a f u u y  description logic, that identijies two main di- 
mensions in an image cfom and content) and views MIR 
as a special form of uncertain implication. In this pa- 
pel; we present ARIANNA,  a system that implements the 
model. ARIANNA allows to quickly develop a protot)pe 
of a MIR application, and use it to test the adequacy of 
the application to the user’s finctional requirements. 

1. Introduction 

Research on image retrieval (IR) has witnessed a boom- 
ing interest during the last decade. The most striking 
feature of this research is its simultaneous but indepen- 
dent materialization within several fields of computer 
science. This fact reveals that there are many different 
aspects involved in IR, each requiring a specific back- 
ground and methodology to be successfully tackled; but 
also that there may be complementary approaches to 
the same problems, not only within the same discipline 
(such as two different index structures for image data), 
but also cutting across different disciplines (such as 
similarity- versus semantic-based image retrieval). Such 
a richness of paradigms, methods and systems, on the 
long run, may result in a fragmentation prone to slow 
down progress. In order to overcome this problem, we 
have developed a model of IR [ 5 ] ,  named the Termi- 
nological Image Retrieval Model (TIM) after the tool 
we have used to specify it, that places in a unified and 
coherent perspective the many efforts and results that 
are being produced under the IR label. The model has 
been successively extended to deal with multimedia [4]. 
The basic feature of TIM is to allow the capturing of 
all kinds of retrieval on images that have been deemed 

as useful, and therefore investigated in the various ar- 
eas mentioned above. These kinds of retrieval can be 
broadly classified on the basis of the aspect of images 
that each of them addresses. Thus we have a first, broad 
categorization of IR in: syntactic similarity vs semantic 
IR. The former, in turn, can be categorized depending 
on the addressed image feature: thus we have color-, 
shape-, texture-based similarity, and there may be more. 
Finally, our TIM is parametric with respect to the func- 
tions that are used to asses similarity of image features, 
as it is well-known that those functions vary depending 
on the subject matter and the goals underlying the MIR 
application being developed. 

The present paper describes an implementation of 
TIM aimed at supporting the construction of fast pro- 
totypes of MIR applications. For space reasons, the pre- 
sentation just touches upon the most important aspects 
of A R I A N N A .  The readers interested in knowing more 
about the model or the system are referred to a long ver- 
sion of this paper [6]. 

2. The terminological image retrieval model 

As any retrieval model, TIM consists of a language for 
representing images and queries, namely fuzzy descrip- 
tion logic [SI, and a retrieval function (implication re- 
lation) establishing the retrieval status value (RSV) of 
each image for each query. RSV estimates the degree of 
relevance of an image to a query. 

2.1.  Image! representation 

In TIM, each image has a form and a content dimen- 
sion. The former, named “image layout”, consists 
of the pixels that make up the image. No language 
facility is provided to represent a layout, as it  can 
be dealt with in an entirely automatic way. Content, 
on the other hand, requires interpretation to be dis- 
closed and is therefore of a subjective nature. TIM 
provides the means to represent explicitly image 
contents in terms of the assertions of the fuzzy de- 
scription logic dLC[8]. The syntactic components of 
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ACC are: individuals (names for objects), concepts 
(unary predicate symbols) and roles (binary predicate 
symbols). Concepts can be either primitive Gust 
names) or complex, i.e. expressions involving primitive 
concepts and constructors, which, not surprisingly, 
closely mimic Boolean operators. For instance, the 
complex concept MusiciannVPlays.-,Electriclnstrurnent 
is obtained by combining the primitive concepts 
Musician and Electriclnstrurnent and the primitive 
role Plays by the conjunction ( f l ) ,  universal quan- 
tification (V) and negation (7) constructors. Under 
the intended interpretation, such concept denotes the 
musicians who do not play any electric instrument. The 
syntax rule for ALC-concepts (cpt) are given below: 

(cpr) ::= (prim-cpt) 1 -(cpr) 1 (cpr) n ( cpr) 1 (cpt)  U ( cpr) I 
V(roLe).( cpr) 1 3(role).( cpr) 

A fuzzy assertion y is an expression of the form (CY, n), 
where n E [0,1] and (I: is one of the following: (1) 
C(a) ,  asserting that the individual a is an instance of 
the concept C; for example, (Musician fl Teacher)(tirn) 
makes the individual constant tirn a Musician and a 
Teacher; (2) R(al , a2) (e.g. Friend(tirn,torn)); (3) 
C1 C C2, asserting that C1 is more specific than 
C2 (e.g. Pianist 5 (Artist fl 3Plays.Piano)). A set of 
assertions will be called a knowledge base. From a 
semantics point of view, please refer to [8], where 
the notions of interpretation, satisfiability, model and 
logical consequence are defined. Just let us mention that 
a fuzzy assertion like (Musician(tirn), 3) has intented 
meaning, “the degree of being tirn a Musician is 2 3”. 
With C /= y we denote the fact that from the KB C 
we may infer the fuzzy assertion y. We define the 
maximal degree of truth of (I: with respect to C (written 
Mazdeg(C ,a ) )  to be max(n  > 0 : C (cqn)} 
(max 0 = 0). 

Let us now see how our logic is to be employed in 
order to represent image contents. Let 1 be an image 
layout, identified by individual I. In TIM, 1 may have 
an arbitrary number of associated content descriptions. 
Each such content description is the union of four com- 
ponent subsets of fuzzy assertions: (1)  The layout iden- 
tification, (Self(l), 1) whose role is to associate a con- 
tent description with the layout it refers to. a(l) denotes 
the set of the content descriptions associated to the lay- 
out 1. (2) The object anchoring, a set of (Rep(r,o),n) 
fuzzy assertions where r is an individual identifying a 
region r of 1 and 0 is an individual identifying the ob- 
ject represented in T .  (3) The situation anchoring, a set 
of (About(1, o), n) fuzzy assertions where I and o are as 
above. By using these assertions, it can be stated what 
the situation described by the layout is “globally” about. 
(4) The situation description, a set of fuzzy simple as- 
sertions (different from (I) ,  (2) and (3)), describing im- 
portant facts stated in the layout about the individuals 
identified by assertions of the previous two kinds. 

2.2. Query representation 

Queries referring to the form dimension of images are 
called visual queries. TIM addresses the following vi- 
sual query types: (a) concrete visual queries: these con- 
sist of full-fledged images that are submitted to the sys- 
tem as a way to indicate a request to retrieve “similar” 
images w. r. t. e.g. color, texture features, etc.; (b) ab- 
stract visual queries: these are artificially constructed 
image elements (hence, “abstractions” of image layouts) 
that address specific aspects of image similarity; they 
can be categorized into: (b.1) color queries: specifica- 
tions of color patches (retrieve images with similar color 
patch); (b.2) shape queries: specifications of one or 
more shapes (closed simple curves in the 2D space) (re- 
trieve images with similar shapes); (b.3) any combina- 
tion of the above. In order to express these queries, TIM 
offers a language that is considerably richer than the lan- 
guage for representing images, as it includes the sym- 
bols (termed SPSs) for expressing all the above query 
kinds. Essentially, SPSs are roles that make up an image 
mereology. For TIM, the atomic image element is the 
atomic region (a connected region, homogeneous from 
the color viewpoint). Connected aggregates of atomic 
regions constitute regions. Colors and shapes are asso- 
ciated to regions. The following SPSs are, thus, con- 
sidered: let i be image layout and image region and r 
of its image regions. (i) HAIR(i,r) relates i to an atomic 
r; (ii) HIR(i,r) relates i to r; (iii) HS(r,s) relates r to its 
shape S; (iv) HC(r,c) relates r to its color C. In order 
to properly handles SPSs, we restrict the models of TIM 
image databases to those that capture the intended mean- 
ing of these symbols, expressed through conditions that 
will not be given here for space reasons. 

The syntax of image queries is given below. 

(iPMRe-qv] ::= (itnoxr-cpi) I ( imgt-qn. )  n ( i m g c q v )  I 
(hm&V-@S) U (iPMgC-plS) 

(t!mqc-cpf) ::= 3About.(cpr) I 3Sl.{(luyour-nanr)} I 
BHAIR. (3 HC. (color-cpf) ) I 3HIR. ( 3Rep. (cpr) ) I 
3HIR.  (( 3Rep. (q l )  ) n (npim-cpt) ) 

(mgion.cpr) :;= JHC.(colorqn) I ?IHS.(rhrrpr-cpf) I 
( (  3HC. (color-ep)) n (3HS.  (shape-cpf) )) 

(color-cm) ::= { (col”r.n”m)} I 3 S C . I  (color.“otnr)} 

(shupr-cpr) ::= { (rhupfior.nu,~)) 1 3S.{ (rhup-nowr)} 

The first thing to observe is the presence, in the clauses 
defining image-, color- and shape-cpt, of a new con- 
cept constructor of the form {a} where a is an indi- 
vidual, which may be a layout-, a color- or a shape- 
name, respectively. This constructor is called singleton, 
and represents a concept having only the individual a 
as instance. Image queries are thus concepts of the DL 
ACCO, which extends ACC with the singleton con- 
structor. A query is a combination (through n and U) 
of image-cpt, having four possible forms. ( i )  image- 
cpt may be a query on some content object, explicitly 
asserted to be related to the sought images through an 
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Figure 1. T h e  decomposition function 
About role assertion (termed "situation anchoring"). In 
the query, the object is required to be an instance of 
cpr, i.e. an ACCO concept built with the symbols used 
for situation descriptions. For instance, under the ob- 
vious lexicon, the images about an Italian musician are 
retrieved via the query 3About.(Musician n 3Born.ltaly). 
(ii) image-cpt may be a concrete visual query, i.e. a 
prototype image layout 1 is provided in the query by 
specifying the singleton I in the scope of the existen- 
tial quantification on the SPS SI. By so doing, the sim- 
ilarity with 1 is captured in the query. (iii) image-cpt 
may be a color abstract visual query (using existential 
quantification on the HC SPS) followed by a color-cpt; 
the latter is a singleton with the name of the color, op- 
tionally preceded by a color similarity predicate. (iw) 
image-cpt may be a query on an image region. This 
kind of queries come in two forms. ( a )  A form address- 
ing the content dimension, and just consists of a Rep 
clause. In order to qualify for this kind of queries, an 
image must have an associated content description con- 
taining a Rep role assertion (object anchoring), relating 
a region of the image to an individual constant that is 
an instance of the cpr that follows. ( b )  A form extend- 
ing the first with an additional condition (region-cpt) on 
the color or the shape (or both) of the involved region. 
A shape condition is expressed via a shape-cpt, which 
is strictly analogous to color-cpt. As an instance of an 
image query, consider the query asking for the images 
showing a cylindric reddish hat: 3HIR.((3Rep.Hat) n 
(3HC.3SC.{red}) fl (3HS.{cylinder})). It presents an in- 
teresting case of mixed form- and content-based re- 
trieval. The Rep clause refers to the semantics of the 
image, namely to what an object is. An image is re- 
trieved only if i t  displays something that has been explic- 
itly asserted to be a hat. The HC clause refers to image 
form, and requires, in the retrieved images, the presence 
of a patch of color similar to red. The HS clause poses a 
condition on the contour of an atomic image region. The 
conjunction of these three clauses constraints the condi- 
tion that they each of them expresses to be true of the 
same region, thus capturing the query spelled out above. 

2.3. The retrieval function 

A TIM image database has three main components: a 
collectioin of image layouts; a collection of their content 
descriptions; and a knowledge base, providing defini- 
tions of the concepts employed. An image database is a 
triple D B  = (0, Cc, CO) where D is a set of layouts, 
CC is the set of content descriptions of the layouts in 
D ,  and XI, is a set of fuzzy assertions. In response 
to a query Q addressed to D B  = ( D , C C , C D ) ,  
each image is attributed a retrieval status value m 
given by: m = maxhEa(i) { M a z d e g ( C o  U 6, Q(i))}. 
where M axdeg is the restriction of M axdeg that 
assigns to SPSs the intended semantics. As an ex- 
ample, let us consider a D B  containing just the 
image named i, CC consists of the content description 
{(Self(i), I), (About(i, o), A), (DonGiovanni(o), l)}, 
and CD consists of (DonGiovanni C EuropeanOpera, l), 
(EuropeanOpera E Opera n (3ConductedBy.European), .9). 
Suppose 'we are interested in images about operas con- 
ducted by a European director. To this end, we can use 
the query 3About.(Opera n 3ConductedBy.European). 
It can be verified that the RSV attributed to i is .8. 

_- 

3. The decomposition strategy 

The logical kernel of the model implementation is the 
Query Evaluation Procedure (QEP), which, given a 
query Q and a DB, returns a ranking of the images in 
DB. The basic tasks of the QEP are (1) the identification 
of the structure of the sub-queries Qi of Q; (2) the eval- 
uation of Qi; and (3) the calculation of the RSV of the 
image on the basis of the Qi. QEP relies on special pro- 
cessors for the evaluation of the Qi,  and on a Theorem 
Prover (TP) for our logic. For space reasons, we cannot 
discuss the TP here. The interested reader is referred 
to [8]'. The QEP follows a method, called the decom- 
position strategy, which guarantees the correctness of 

To download the TP refer to the author's www home page 
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the result, given the correctness of the sub-query evalua- 
tions. The rest of the section is devoted to the illustration 
of the decomposition strategy. 

3.1. Foundations 

Let Q be a query and i a candidate image in DB. By 
definition, the RSV of i to Q is the value m associated 
to Q(i). In order to derive m, the function @ is applied 
to Q(i) obtaining a decomposition of query Q, i.e. a set 
of fuzzy assertions CP(Q(i)) which satisfies the follow- 
ing property: For each b E c(i): Mazdeg(Co U S,Q(i)) 
= Mazdeg(Co  U a(Q(d)) U h,Q(i)). From this, the 
decomposition principle that is at the basis of the im- 
plementation of the model follows. Query Decomposi- 
tion Principle: “The RSV of the image i to the query Q 
is given by the maximal degree of truth of Q(i) with 
respect to the knowledge base consisting of @(Q(d)) 
and CO, maximized over the set of content descriptions 
c(i)”. A formal proof of the correctness and complete- 
ness of the query decomposition principle can be found 
in [6]. Operatively, it permits to perform query evalu- 
ation in the general context of our logic, once the sub- 
queries involving the special symbols SPSs are identi- 
fied and evaluated by the function CP and the correspond- 
ing fuzzy assertions are collected in @(Q(d)). 

is defined. For clarity, 
@ will be introduced by following the query language 
syntactical structure. 

3.2.  Decomposition-evaluation of sub-queries 

The decomposition and evaluation of image queries is 
presented in Figure 1. Recall that the object denoted 
by the individual 0 is written as oz. (i) Concrete vi- 
sual queries, having the form (3Sl.{qi})(i) are evaluated 
by generating the fuzzy assertion stating the similarity 
between the given image layout i and the query layout 
qi, with degree of truth equal to the degree of similar- 
ity between these layouts, as established by the global 
similarity function a,. Note that in case the latter value 
is zero, no assertion is generated in order not to block 
the inference on the rest of the query. The same be- 
havior is adopted whenever a similarity function is in- 
volved. (ii) Queries on situation anchoring, formulated 
in terms of the About SPS, are just ignored by @, as the 
knowledge for their evaluation is already part of the im- 
age database, namely in C c  and Co. (iii) Similarly for 
queries on object anchoring, formulated in terms of the 
Rep SPS. These queries may stand alone (i.e. be of the 
form (3Rep.C)(r)) or be conjoined to a region concept 
(i.e. ((3Rep.C) n D)(r)); in both cases, the content sub- 
query gives no contribution to @(Q(d)). (iv) Abstract 
visual queries come in two sorts, depending on the kind 
of image region addressed. ( a )  The first address exclu- 
sively atomic regions. It consists of color queries and 

Now let us see how such a 

aim at retrieving images having a patch of a specified 
color. They have the form (3HAIR.3HC.{c})(i), where c 
is the name of the color that an atomic region of the im- 
age layout named i must have. If this is indeed the case, 
@ evaluates the query by generating the fuzzy assertion 
made by attaching to the query assertion with degree of 
truth 1. If not, the empty set is generated. Optionally, a 
similarity condition on the specified color may be stated, 
like (3HAIR.3HC.3SC.{c))(i). The specification of the 
color similarity condition radically changes the query 
evaluation, which yields, as degree of truth, the degree 
of similarity between the given color and the color of 
the atomic regions of i that comes closest to it. If i has 
an atomic region of color c, then the degree of truth is 
1 2 ;  otherwise, the evaluation produces the “best match” 
among i’s colors and C. As a desirable consequence, the 
latter type of color queries generalizes the former. ( b )  
The second sort address both atomic and non-atomic re- 
gions and takes the form (3HIR.C)(i). As for the other 
mereological symbols, CP treats these queries by generat- 
ing an assertion of the form (HIR(i, r), 1) for each region r 
of i which is the subject of an object anchoring assertion, 
while recursively applying itself to the assertion C(r). 
The reason for this is that C is bound to include a Rep 
clause, which, of course, restricts the candidate regions 
to all and only those referenced by object anchorings. 
As discussed above, C may optionally contain a region 
concept, which may be a color query, a shape query or 
a conjunction of the two. The last case is handled, as 
customary, by separately evaluating the conjuncts, and 
is not reported in Figure 1 for brevity. Let us quickly 
review the first two cases: (i) (3HC.{c})(r): is evaluated 
by generating the corresponding fuzzy assertion, having 
as degree of truth the percentage of color c in the re- 
gion r. (ii) (3HC.3SC.{c})(r): the truth degree assigned 
is, for each color c in r, the maximum over the values 
uc, where uc is the minimum between the similarity be- 
tween c and c’, and the percentage of c in r. It is easy 
to verify that this is a generalization over the previous 
case. (iii) (3HS.{s})(r): if the shape of r equals S, the 
evaluation of this query yields the corresponding asser- 
tion with degree 1; otherwise, no assertion is generated. 
(iv) (3HS.3SS.{s})(r): same as before, except that in this 
case the similarity between r’s shape and s is assigned 
as degree of truth to the corresponding assertion. 

4. A prototypical implementation 

The prototype system that we have developed, named 
ARIANNA, consists of two main modules: the indexing 
module (hereafter 1M for short) supporting the acquisi- 
tion of images and the creation of the various represen- 

2At least as long as a,(c2,c2) = 1, which would seem a quite 
reasonable assumption on similarity functions, even though it has not 
been so stated for generality. 
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Q. level = 3 Q. level = 7 Q. level = 15 lnpul Image B a r  linage + 
Sepmenlalm 

Figure 2. Image acquisition in ARIANNA 
Figure 4. Various segmentations 

0. level = 2 0. level = 7 

Figure 3. Input and relative Basic Image 

tations needed for performing retrieval, and the quety 
module (QM), performing query evaluation. 

4.1 . The indexing module 

Figure 2 illustrates the sequence of the various opera- 
tions inherent image acquisition (rectangular boxes rep- 
resent data, while ovals represent modules). Filtering 
and Size Reduction: acquisition begins from an In- 
put Image I (CIF or JPEG). The input image is re- 
duced, if necessary, to the system size, (currently fixed 
to 128 x 128 pixels). After size reduction, the RGB color 
space is abandoned for the HSB space, and noise re- 
duction is performed on the image, by applying a color 
median filter. The result is the Basic Image Ig. Fig- 
ure 3 presents a sample input image (left) and the cor- 
responding basic image. Segmentation: the Segmenta- 
tion Module derives the Image Layout I L  from I B .  I L  
is used solely to support the user in specifying the im- 
age regions that are to be annotated via Rep assertions. 
The derivation of the Ir, implies two operations: seg- 
mentation and color quantization. These operations are 
strictly related and are both performed by the Segmenta- 
tion Module. Given the generality of the tool being pre- 
sented, we have adopted a flexible solution which pro- 
duces 7 different segmentations, each provided at sev- 
eral levels of quantization of the color space. The image 
indexer can use the image partition of anyone of these 
segmentations, or of any combination of them, in or- 
der to select the image regions to be annotated. The 
channels on which the Basic Image is segmented are: 
color, saturation, color and saturation, brightness. For 
each channel, 3 levels of quantizations are used, namely 
3, 7, and 15 levels. In order to obtain these segmenta- 
tions, textbook techniques based on region growing have 

. . 

Figure 5. Edge segmentations 

been employed; these techniques, as well as the others 
used for image segmentation, are not presented as not 
new nor central to the present context. The color, satu- 
ration, color and saturation, brightness segmentations of 
the sample image of Figure 3 are showed in Figure 4, 
in this order, from the top down (in this figure, colors 
are used to highlight regions and do not have direct cor- 
respondence with those in the image). In addition, two 
segmentations based on edges are generated, each with 
two levels of quantization: 2 and 7 colors. Edge de- 
tection techniques have been employed to obtain these 
segmentations (see Figure 5). Finally, a segmentation 
on texture is derived, at two levels of quantization (see 
Figure 6). The reason for having these segmentations 
and not others are, of course, mostly empirical: we pre- 
sume that the combination of these segmentations covers 
a significant range of "difficult" images. Different pre- 

Q. level = 3 0. level = 7 

Figure 6. Texture segmentations 

sumptions would maybe lead to a different choice, but 
this is not important for the model. Figure 7 shows how 
the screen looks like after the segmentation operation 
has been performed on the sample image. A 3 x 3 grid 
is used to display the various images (the central image 
is the input image) and is surrounded by the 7 differ- 
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Figure 7. Screen after segmentation 

ent segmentations introduced above. Only one level is 
shown for each segmentation, and the user can move 
through the different levels by clicking on the corre- 
sponding cell of the grid. The empty cell is reserved 
to region selection for annotation, as we will see in a 
moment. Image Naming: prior to any indexing opera- 
tion, I L  must be identified by means of an individual, 
and this is the objective of the Image Naming opera- 
tion: the user is asked to give an unique name for the 
image being acquired. From that point on, the name be- 
comes the unique image identifier and two operations 
are possible: Global Feature Extraction and Logical An- 
notation. Global Feature Extraction: i t  aims at deriv- 
ing the representation of the image needed to answer 
user queries. The so obtained representation, named 
Global Image Index to stress its being relative to the 
whole image, is stored into an archive which is part of 
the Image Database DB. According to the definition 
of the @ function given in Figure 1, the following fea- 
tures are extracted from the Basic Image named i: (i) 
The first three moments of the image (true) color his- 
togram for each channel c of the HBS color space, that 
is: mi, .I = ~ ~ N = ~ p $ j ,  mc = &ji:zl(pgj - miz ) Z  

-I 
and = q& ~ ~ = I ( p ~ j  - mrc)3, where P ; , ~  is the 
value of the channel c in the point j of the image lay- 
out i’. These features are extracted in order to com- 
pute a special kind of image similarity ( ~ i ,  namely 
the one based on global color [7]. Therefore, they 
will be employed upon evaluating queries of the form 
(3SI.{qi})(i), in a way to be explained upon introduc- 
ing the query module. (ii) The list of colors occur- 
ring in the image; this is used in order to process color 
queries on atomic regions, i.e. (3HAIR.3HC.{c})(i). (zii) 
In order to evaluate queries on global color similarity 
(i.e. (3HAIR.3HC.3SC.{c})(i)), the vector V is extracted: 
V has as many positions as the elements of the color set 
from which the user draws in specifying similar color 
queries on atomic regions (1 5 x 3 x 3=135, in our case); 
the V position associated to the color c* gives the de- 
gree of similarity between CI and the color in the im- 
age that best approximates it, as required by a. The dis- 

1 

Figure 8. Screen during region selection 

tance measure used as color similarity function oc is: 
oc(iZ,jZ) = c, E:=, lmic - mi,I, where c ranges, as 
above, on the 3 channels of the color space. Logical 
Annotation: it permits the specification of one or more 
Content Descriptions for named images. Upon request- 
ing it, IM automatically creates the layout identification 
assertion (i.e. (Self(i), l)), and supports the creation of 
the other kinds of assertions. In particular: (i) Situa- 
tion anchoring is supported by asking the user for the 
name of the object to be linked to the present image via 
an About assertion. (ii) Object anchoring is supported 
analogously, with an additional help to the user in se- 
lecting a region image. Region naming is done “on de- 
mand”, i.e. whenever a new Rep assertion is to be spec- 
ified, I M  automatically creates a name for the involved 
Annotation Region and proposes it to the indexer, who 
is free to use or change it. Figure 8 shows the 1M screen 
during the selection of a region to be annotated via a 
Rep assertion. The region is constructed in the cell that 
is at the right of the cell showing the input image. The 
user just clicks on any region of any segmentation and, 
as a result, the region containing the click point is dis- 
played. In the lower part of the screen, the identification 
assertion, automatically created by the system, is dis- 
played in the format the TP expects. The specification 
of situation description assertions closes the annotation 
of an image. Each content description is then passed 
to the TP, which files it in the F u u y  ACCO Knowl- 
edge Base. Local Feature Extraction Module: in or- 
der to support abstract visual queries, a feature extrac- 
tion task is performed on annotation regions. The ex- 
tracted features make up a Local Image Index (local to 
annotation regions, of course), which is filed in an ap- 
posite archive of the DB. The structure of this index, 
relatively to the annotation region r, is as follows (see 
Figure 1): (i) the name of r. (ii) r’s color histogram, 
used to process color queries on it (i .e. (3HC.{c})(r)). 
Most of the entries in this histogram will be 0, since r 
is the union of a few atomic regions. Consequently, the 
histogram is not expected to be large. (iii) The vec- 
tor T ,  having as many positions as the vector V above, 
and used to evaluate similar color queries on annota- 

.I .I 
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tion regions; the T position associated to the color cz, 
gives n = muxcE~wc, as specified in Figure 1 .  (iv) 
r’s shape represented by the 8-contour and by 7 invari- 
ant moments [3].  The former representation is used to 
process “precise” shape queries (i.e. (3HS.{s})(r)) while 
the latter is used when the optional similarity condition 
is given (i.e. (3HS.3SS.{s})(r)). 

4.2.  The query module 

The query module QM provides two basic services: 
query specification ( a )  and query evaluation ( b ) .  ( U )  

supports the construction of image queries &, performed 
by the user via the interface (see Figure 9). ( b )  is 
performed by the Image Query Evaluation Procedure. 
Given Q, the Image Query Assertion Builder iteratively 
produces a query assertion Q = Q(i) for each acquired 
image i. Q is passed on to the Image Query Decom- 
position & Evaluation (IQDE for short) function which 
implements the evaluation by decomposition process de- 
scribed in detail in Section 3. In deriving @(a)  the 
IQDE accesses the D B  in order to fetch the Global 
Image Index of i and the Local Image Index of each 
of i’s annotation regions. The way these representa- 
tions are used by the IQDE is mostly straightforward, 
once one bears in mind the definition of 4j for image 
queries and the structure of the representations them- 
selves. For instance, upon evaluating the query asser- 
tion (3HAIR.3HC.{c})(i), the IQDE checks whether c is 
in the list of colors occurring in i, which is part of the 
global index; if the check is positive, then the assertion 
((3HAIR.3HC.{c})(i), 1) is generated. Analogously, in 
order to evaluate the query (3HIR.C)(i), the IQDE gen- 
erates an assertion (HIR(i, r l ) ,  1) for each annotation re- 
gion r, then applies itself to the evaluation of C(r). As a 
final example, (3HC.3SC.{c})(r) is evaluated by gener- 
ating a fuzzy assertion whose degree of truth is the value 
found in the appropriate position of the T vector, which 
is part of r’s local index. The last step of the evaluation 
procedure is the invocation of the TP, to which Q is sent 
with the purpose of computing its m value against: (a) 
ED, (b) i’s content descriptions (both these are part of 
the Knowledge Base maintained by the TP); and (c) the 
just computed @(a).  

5. Conclusions 

We have presented a system for building prototypical 
image retrieval applications that reconciles in  a unique, 
well-founded framework the many functionalities that 
are usually found under the image retrieval label. The 
most important contribution of t he  s y s t e m  is t h e  full and 
proper use of semantics and knowledge, while offering, 
at the same time, the similarity-based kind of retrieval 
that is undoubtedly the most significant contribution of 

Figure 9. Displaying of the  result of a query 

the research carried out in these two areas during the 
last decade. At present, to the best of our knowledge, no 
other model offering the same functionalities as the one 
presented here, exists. Since the representations handled 
by the model have a clean semantics, further extensions 
to the model are possible. For instance, image retrieval 
by spatial similarity can be added: at the form level, ef- 
fective spatial similarity algorithms (e.g. [2]) can be em- 
bedded in the model via procedural attachment, while 
significant spatial relationships can be included in con- 
tent descriptions by drawing from the many formalisms 
developed within the qualitative spatial reasoning re- 
search community [ I] .  Analogously, the model can be 
enhanced with the treatment of texture-based similarity 
image retrieval. 
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