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We describe an industrial-strength software system for automatically coding 
open-ended survey responses.  The system is based on a learning metaphor, 
whereby automated verbatim coders are automatically generated by a general-
purpose process that learns, from a user-provided sample of manually coded 
verbatims, the characteristics that new, uncoded verbatims should have in order 
to be attributed the codes in the codeframe.  In this paper we discuss the basic 
workings of this software and present the results of experiments we have run on 
several datasets of real respondent data, in which we have compared the accuracy 
of the software against the accuracy of human coders.

Introduction

Open-ended questions are an important way to obtain informative data 
in surveys, and this is so for a variety of applications, including market 
research, customer relationship management, enterprise relationship 
management, and opinion research in the social and political sciences 
(Schuman & Presser 1979; Reja et al.  2003). Closed questions generate 
data that are certainly more manageable, but suffer from several 
shortcomings, since they straitjacket the respondent into conveying her 
thoughts and opinions into categories that the questionnaire designer has 
developed a priori. As a result, a lot of information that the respondent 
might potentially provide is lost. On the contrary, open-ended questions 
allow freedom of thought, and the responses that are returned may provide 
perspectives and slants that had not been anticipated by the questionnaire 
designer, thus providing far richer information on the opinions of the 
respondent.  Furthermore, asking an open question tells the respondent 
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that her opinions are seriously taken into account and her needs cared 
about; the same cannot be said of closed questions, since these may instead 
convey the impression that the interviewers are interested only in orthodox 
responses and orthodox respondents.

Unfortunately, the price one has to pay for including open-ended 
questions in a questionnaire is a much greater difficulty in using the 
data obtained from the respondents.  Once the designer has developed 
a codeframe (aka ‘codebook’) for the question under consideration, a 
human coder needs to read the returned answers one by one in order to 
assign them the appropriate codes; this may require a lot of human effort, 
depending on the size of the respondent pool, and does not lend itself to 
the fast turnaround of results.

In the recent past, computer-assisted methods of coding open-ended 
verbatim responses (henceforth ‘verbatims’) have been proposed as a 
solution. Unfortunately, they still fall short of truly automating the coding 
process, since they all require a lot of human involvement in the coding 
process. Some of these systems, such as Confirmit1 (O’Hara & Macer 2005), 
Voxco’s Command Center2 (Macer 2007b), SPSS’ mrInterview,3 and Snap4 
are (as far as open-ended questions are concerned) essentially powerful, 
user-friendly systems that assist and enhance the productivity of the user 
in manually coding the verbatims; the only difference with coding as it was 
performed before computers were born, is that all the objects of interest 
are in digital form, so that paper and pencil are not involved. Some other 
systems, such as Language Logic’s Ascribe5 (Macer 2002), SphinxSurvey6 
(Macer 1999), streamBASE GmbH’s Coding-Modul7 (Macer 2007a), SPSS’ 
Text Analysis for Surveys,8 Provalis Research’s Wordstat9 (Macer 2008), 
and the no longer available Verbastat (Macer 2000), further assist the user 
by means of (sometimes sophisticated) word searching, text matching or 
‘text mining’ capabilities; still, the decision whether a given code should or 
should not be attributed to a verbatim ultimately rests with the user. Other 
systems, such as iSquare’s i2 SmartSearch,10 rely on the user to engineer 
rules for automated verbatim coding; while these rules are indeed capable 

1  www.confirmit.com/ access date 29 June 2010
2  www.voxco.com/ access date 29 June 2010
3  www.spss.com/mrinterview/ access date 29 June 2010
4  www.snapsurveys.com/ access date 29 June 2010
5  www.languagelogic.info/ access date 29 June 2010
6  www.sphinxsurvey.com/en/home/home_sphinx.php access date 29 June 2010
7  www.streambase.de/ access date 29 June 2010
8  www.spss-sa.com/spss_text_analysis_for_surveys.html access date 29 June 2010
9  www.provalisresearch.com/wordstat/Wordstat.html access date 29 June 2010
10  www.isquare.de/i2SmartSearch.htm access date 29 June 2010
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of automating the coding process, the human effort involved in writing the 
rules is still high, as is the level of expertise required.

In this paper we propose instead a radically different approach 
to developing automated verbatim coding systems.  The approach is 
based on a learning metaphor, whereby automated verbatim coders are 
automatically generated by a general-purpose process that learns, from a 
user-provided sample of manually coded verbatims, the characteristics that 
new, uncoded verbatims should have in order to be attributed the codes 
in the codeframe. This approach adds a further level of automation to the 
methods described above, since no human involvement is required aside 
from that of providing a sample of manually coded verbatims.  The net 
effect is that any human coder – not necessarily a computer-savvy one – 
may set up and operate such a system in full autonomy.

In the remainder of the paper we will exemplify this approach by 
describing an industrial-strength software system (dubbed VCS: Verbatim 
Coding System) that we have developed along these lines. This software 
can code data at a rate of tens of thousands of open-ended verbatims per 
hour, and can address responses formulated in any of five major European 
languages (English, Spanish, French, German and Italian).

The rest of this paper is organized as follows. The next section describes 
the basic philosophy underlying the machine learning approach to 
verbatim coding and the overall mode of operation of the VCS system. 
After that, we present the results of experiments in which the accuracy and 
the efficiency of VCS are tested on several datasets of real respondent data. 
Then we add further insight to VCS by giving, in question-and-answer 
format, a number of clarifications of its workings. Next, we look at some 
further features available in VCS, and this is followed by the conclusion.

VCS: an automated verbatim coding system

VCS is an adaptive system for automatically coding verbatim responses 
under any user-specified codeframe; given such a codeframe, VCS 
automatically generates an automatic coder for this codeframe.

Actually, the basic unit along which VCS works is not the codeframe 
but the code: given a codeframe consisting of several codes, for each such 
code VCS automatically generates a binary coder, i.e. a system capable of 
deciding whether a given verbatim should or should not be attributed the 
code. The consequence of this mode of operation is that all binary coders 
are applied to the verbatim independently of each other, and that zero, 
one or several codes can be attributed to the same verbatim (however, 
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see Q&A 5 in the section titled ‘Frequently asked questions’, below, for 
exceptions).

VCS is based on a learning metaphor, according to which the system 
learns from manually coded data the characteristics that a new verbatim 
should have in order to be attributed the code.  The manually coded 
verbatims that are fed to the system for the purpose of generating the 
binary coders are called the training verbatims.  The training verbatims 
need to include positive examples of the code (i.e.  verbatims to which a 
human coder has attributed the code) and negative examples of the code 
(i.e.  verbatims to which a human coder has decided not to attribute the 
code). By examining both, the system generates a ‘mental model’ of what 
it takes for a verbatim to be attributed the code; once these mental models 
(namely, the binary coders) are generated, they can be applied to coding as 
yet uncoded verbatims (from now on the as yet uncoded verbatims that are 
automatically coded by the binary coders will be called test verbatims). It is 
typically the case that, in a real application, the training verbatims will be 
much fewer than the test verbatims, so that the human coder, after coding 
a small portion of a survey and training the system with it, will have the 
binary coders code automatically the remaining large part of the survey.

In practice, it is not the case that training proceeds on a code-by-code 
basis.  In VCS a user wanting to provide training examples to the system 
typically reads a verbatim and attributes to it the codes she deems fit; the 
intended meaning is that for all the codes in the codeframe that she does 
not attribute to the verbatim, the verbatim is to be considered a negative 
example.

It is important to recognize that VCS does not attempt to learn how 
to code in an ‘objectively correct’ fashion, since coding is an inherently 
subjective task, in which different coders often disagree with each other 
on a certain coding decision, even after attempts at reconciling their views. 
What VCS learns to do is to replicate the subjective behaviour of the 
human coder who has coded the training examples. If two or more coders 
have been involved in manually coding the training examples, each coding 
a separate batch of verbatims, then VCS will mediate between them, and 
its coding behaviour will be influenced by the subjectivities of both. This 
means that it is of key importance to provide training examples that are 
reliably coded, if possible by an expert coder (however, see the sub-section 
entitled ‘Training data cleaning’, below, for some computer assistance in 
this phase).

Advantages of the learning-based approach are that, unlike with several 
other computerised solutions for coding open-ended data:
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•	 no domain-dependent dictionaries are involved; VCS can be called a 
‘plug-and-play’ system, where the only input necessary for the system 
to work is manually coded data for training

•	 there is no need to pay experts for writing coding rules in some 
arcane (Boolean, fuzzy, probabilistic, etc.) language; what the system 
does is basically generate those rules automatically, without human 
intervention, from the training examples

•	 it is easy to update the system to handle a revised codeframe, a brand 
new codeframe or a brand new survey; if a user, after training the 
system, needs to add a new code to the codeframe, she need only add 
training examples for the new code (this may simply mean checking 
which of the previously coded examples have the new code too) and 
have the system generate the binary coder for the new code; the binary 
coders for the other codes are unaffected; if a user, after training the 
system, needs to set it up to work on an entirely new question, or an 
entirely new survey, she does not need to ‘re-program’ the system, she 
needs only to provide the appropriate training examples for the new 
question or survey (on this, see Q&A 6 in the section titled ‘Frequently 
asked questions’, below).

Note that VCS does not even look (i) at the text of the question that 
has elicited the answer, or (ii) at the textual descriptions of the codes in 
the codeframe (the codes can thus be numerical codes with no apparent 
meaning). So, how does VCS learn from manually coded verbatims? VCS 
is endowed with a sophisticated linguistic analysis module that, given 
a verbatim, extracts linguistic patterns from it; in essence, this module 
transforms the verbatim into an internal representation that consists of 
the set of patterns extracted from the verbatim. Patterns may vary widely 
in nature.  Some patterns are of a lexical nature (i.e.  they are simple 
words), some are of a syntactic nature (e.g.  noun phrases, verb phrases, 
clauses, entire sentences), some have a semantic nature (in which semantic 
categories – some of them sentiment-related – have been substituted for 
actual words), and some are of yet different types.  More importantly, 
once the patterns have been extracted from the training verbatim, VCS 
learns how each pattern is correlated to a given code. For instance, if a 
given pattern occurs in most training verbatims labelled with code C, and 
occurs in only a few of the training verbatims that are not labelled with 
C, then it is deemed to be highly correlated with code C. Such a pattern 
is useful, since when it is discovered in an as yet uncoded verbatim, it will 
bring evidence that the verbatim should be attributed code C. All patterns 
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encountered in the uncoded verbatim will thus bring a little piece of 
evidence, for or against attributing code C to the verbatim; a complex rule 
for the combination of evidence will then take the final decision.

A visual description of the process upon which VCS is based is given in 
Figure 1. The area at top left represents the training phase: a human coder 
manually codes a (typically small) sample of uncoded verbatims and feeds 
them to a ‘trainer’, who then generates the binary coders. The area at the 
bottom represents the automatic coding phase: the binary coders generated 
in the training phase are fed to a general-purpose coding engine that, once 
fed with a (typically large) set of yet uncoded verbatims, automatically 
codes them. Now these verbatims are ready for use in reporting (bottom 
left) or for taking individual decisions based on the codes automatically 
attributed to the individual responses, such as calling up a customer 
whose response has been given the code ‘Very unhappy; may defect to the 
competition’ (bottom right).

Figure 1  A visual description of the process upon which VCS is based 
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The area at top right represents a phase we have not discussed yet: the 
validation phase.  After automatic coding has been performed, the user 
may wish to take a look at some of the automatically coded verbatims 
and correct any potential mistakes she spots. If she does so, the manually 
corrected verbatims may be used as further training examples, so that 
the system can be re-trained with an augmented training set. It turns out, 
unsurprisingly, that the re-trained binary coders tend to be more accurate 
than the previously generated ones, especially when coding verbatims that 
are somehow ‘similar’ to the ones that have been manually corrected. More 
than one re-training iteration can be performed, depending on available 
‘humanpower’ and on whether or not the desired level of accuracy has 
been reached.

Usually, in a given iteration of the validation process the user will inspect 
and correct only a small portion of the automatically coded verbatims. 
VCS, upon returning the automatically coded verbatims, sorts them in 
terms of the confidence with which the binary coders have coded them, so 
that the verbatims that VCS has coded with the smallest confidence will be 
placed at the top of the list. The net effect is that the user is encouraged to, 
first and foremost, validate (i) the verbatims that have a higher chance of 
being miscoded, which allows her to remove mistakes from the result set; 
and (ii) the verbatims that, being problematic to VCS, convey the largest 
amount of information to VCS when provided as training examples.

Testing VCS on real-world sets of verbatim data

In this section we present the results of testing VCS on a number of 
benchmark datasets of real respondent data.  From now on, when we 
refer to a dataset we mean a set of manually coded verbatims returned by 
respondents to a given question, plus the codeframe that the human coders 
have used for coding them.

Different qualities of a system may be tested in an experiment.  In our 
experiments we test three aspects, namely:

•	 accuracy, which measures how frequently the coding decisions of VCS 
agree with the coding decisions of the human coder who originally 
coded the data

•	 training efficiency, which measures how fast is VCS in training the 
binary coders for a given codeframe when using a given training set

•	 coding efficiency, which measures how fast the automatically generated 
binary coders are in coding as yet uncoded verbatims.
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VCS accuracy tests are the subject of the section entitled ‘Testing for 
accuracy’, below, while VCS training and coding efficiency tests are the 
subject of the section that follows it, entitled ‘Testing for efficiency’.

Usually, an experiment involving learning machines is run according to 
the train-and-test methodology, which consists of splitting the dataset into 
two non-overlapping parts:

1.	 the training set, which is used for training the binary coders
2.	 the test set, which is used for testing the binary coders; this is done 

by feeding the binary coders with the verbatims in the test set, each 
stripped from the codes that have been attributed to it by the human 
coder, asking the binary coders to code them, and comparing the 
coding decisions of the binary coders with the coding decisions the 
human coder had taken on the same verbatims.

In a well-crafted experiment it is important that there are no verbatims in 
common between the training set and the test set since, quite obviously, it 
would be unrealistically easy for a binary coder to code the verbatims it 
has been trained on.

We have carried out all our experiments according to a popular, more 
refined variant of the train-and-test technique, called 10-fold cross-
validation. This consists of splitting the dataset into ten equally sized sets 
of verbatims, and running ten train-and-test experiments, each of which 
consists of using one set (always a different one) as the test set and the 
union of the other nine as the training set. The performance of the binary 
coders is then computed as the average performance that the binary 
coders have displayed across the ten different experiments. This 10-fold 
cross-validation provides more reliable results than a single train-and-test 
experiment, since all the verbatims in the dataset are, sooner or later, being 
tested upon.

Table 1 reports the results of our experiments on 13 different datasets 
(the meaning of the various column headers will be clarified soon). The 
first ten datasets (LL-A to LL-L) consist of verbatims from market research 
surveys and were provided by Language Logic LLC. The LL-B, LL-D and 
LL-F to LL-L datasets are from a large consumer packaged good study, 
with both open-ended and brand-list questions. The LL-A, LL-C and LL-E 
datasets are instead from one wave of a continuous (‘tracking’) survey that 
Language Logic LLC codes 12 times a year, which consists of ‘semi-open’ 
brand questions (i.e. questions – such as ‘What is your favourite soft drink?’ 
– that, although in principle eliciting a textual response, usually generate 
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many responses consisting of only the name of a product or brand, with 
this name coming from a small set of such names). The next two datasets 
(EGG-A and EGG-B) consist of verbatims from customer satisfaction 
surveys and were provided by Egg plc;11 for both datasets, which were 
collected in the context of two different surveys, respondents were 
answering the question ‘Have we done anything recently that has especially 
disappointed you?’ The last dataset (ANES L/D) consists of verbatims 
from a political survey run in 1992 and was obtained from the American 
National Election Studies (ANES) committee. Two sets of verbatims were 
used: the first was returned in answer to the question ‘Is there anything in 
particular about Mr Clinton that might make you want to vote for him? If 
so, what is that?’ while the second was returned in answer to the question 
‘Is there anything in particular about Mr Clinton that might make you want 
to vote against him? What is that?’ Our coding task consisted of guessing 
whether the verbatim belongs to the former or to the latter set.

11  http://www.egg.com/ access date 29 June 2010

Table 1 � Results of experiments on ten market research datasets (LL-A to LL-L), two customer 
satisfaction datasets (Egg-A and Egg-B), and one social science dataset (ANES L/D)

DS	 #V	 #C	 AVC	 AVL	 F1
μ	 PDA	 PDM	 Tt	 Ct

LL-A	 201	 18	 21.00	 1.35	 0.92	 0.8%	 4.0%	 0.9	 0.1
LL-B	 501	 34	 26.65	 1.65	 0.90	 0.6%	 4.8%	 10.0	 0.4
LL-C	 201	 20	 10.05	 1.61	 0.89	 0.7%	 7.4%	 0.9	 0.1
LL-D	 501	 27	 45.30	 3.32	 0.85	 0.8%	 5.6%	 24.7	 1.0
LL-E	 201	 39	 8.41	 2.57	 0.84	 0.4%	 2.5%	 4.7	 0.2
LL-F	 501	 57	 37.58	 6.99	 0.82	 0.7%	 4.8%	 61.0	 2.5
LL-G	 501	 104	 21.30	 6.25	 0.80	 0.5%	 5.2%	 123.3	 5.0
LL-H	 501	 86	 30.08	 7.87	 0.79	 0.7%	 5.7%	 136.4	 5.5
LL-I	 501	 69	 33.16	 7.70	 0.78	 0.8%	 5.2%	 102.3	 4.1
LL-L	 501	 65	 29.40	 5.58	 0.75	 1.0%	 9.6%	 84.9	 3.4

Egg-A	 1000	 16	 123.37	 27.37	 0.62	 1.5%	 3.1%	 173.0	 7.0
Egg-B	 924	 21	 67.19	 26.47	 0.55	 1.6%	 3.6%	 175.6	 7.1

ANES L/D	 2665	 1	 1396.00	 30.83	 0.86	 4.6%	 4.6%	 47.0	 1.9

Notes: The columns represent the name of the dataset (DS), the number of verbatims in the dataset (#V), 
the number of codes in the codeframe (#C), the average number of positive training verbatims per code 
(AVC), the average number of (non-unique) words in a verbatim (i.e., the ‘average verbatim length’ – AVL), 
the accuracy at the individual level (F1

μ), the accuracy at the aggregate level (PDM and PDA), training time 
(Tt) and coding time (Ct).
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Testing for accuracy

Accuracy may be measured at two different levels:

1.	 at the individual level – a hypothetical perfect coding system is the one 
that, given a code C, assigns C to all and only the verbatims to which 
the human coder would assign C

2.	 at the aggregate level – here, a hypothetical perfect coding system is 
the one that, given a code C, assigns C to x% of the verbatims exactly 
when the human coder would assign C to x% of the verbatims.

The former notion of accuracy is especially interesting for measuring the 
suitability of the system to customer satisfaction applications, where a 
user is interested in correctly classifying each individual respondent, so 
as to be able to cater for her specific needs (e.g.  ringing her up if she is 
particularly unsatisfied).  The latter notion of accuracy, on the contrary, 
is especially interesting for opinion surveys and market research, where a 
user is typically interested in the percentage of respondents that fit under 
a given class, and may be less interested in knowing what each individual 
respondent thinks.

Note that accuracy at the individual level implies accuracy at the aggregate 
level, but not vice versa! A system perfectly accurate at the aggregate level 
may be inaccurate at the individual level; this may happen when the coding 
errors a system has made are split into two equally sized subsets of false 
positives and false negatives, respectively. Therefore, measures of accuracy 
at the aggregate level are somehow more lenient than measures of accur-
acy at the individual level (but they are certainly no less important).

Testing for accuracy at the individual level
Mathematical measures of individual accuracy  Accuracy testing requires a 
mathematical measure of accuracy to be defined and agreed upon. The one 
we adopt for accuracy at the individual level (or individual accuracy, for 
short), called F1, consists of the ‘harmonic mean’ of two other measures, 
precision and recall.

•	 For a code C, precision (denoted p) measures the ability of the 
system to avoid ‘overcoding’, i.e. attributing C when it should not be 
attributed. In other words, precision measures the ability of the system 
to avoid ‘false positives’ (aka ‘errors of commission’) for code C.

•	 For a code C, recall (denoted r) measures the ability of the system to 
avoid ‘undercoding’, i.e. failing to attribute C when it should instead 
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be attributed.  In other words, recall 
measures the ability of the system to 
avoid ‘false negatives’ (aka ‘errors of 
omission’) for code C.

In a given experiment, precision and 
recall for a code C are computed from a 
four-cell contingency table (see Table 2), 
whose cells contain the numbers of true positives, false positives, false 
negatives and true negatives, respectively, resulting from the experiment. 
Precision, recall and F1 are defined as:

π ρ

π ρ
π ρ

=
+

=
+

= ⋅ ⋅
+

= ⋅
⋅ + +

TP
TP FP

TP
TP FN

F
TP

TP FP FN1

2 2
2( )

For instance, assume that our test set contains 100 verbatims and that 
our codeframe consists of two codes: C1 and C2. Table 3 illustrates two 
possible contingency tables for C1 and C2, and the relative computations 
of precision, recall and F1.

Precision, recall and F1 can also be computed relative to an entire 
codeframe (in this case they are noted pm, rm and F1

m) by using a ‘combined’ 
contingency table. Table 4 illustrates such a contingency table as resulting 

Table 2 � The four-cell contingency 
table for code C resulting 
from an experiment

Code C

Coder says

YES NO

System 
says

YES TP FP

NO FN TN

Table 3 � Example contingency tables for two hypothetical codes C1 and C2 and the 
corresponding computations for precision, recall and F1

Code C1

Coder says

YES NO

System 
says

YES 15 7

NO 7 70

Code C2

Coder says

YES NO

System 
says

YES 22 13

NO 5 60
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from the data of Table 3 (the hypothetical codeframe here consists of codes 
C1 and C2 only).

There are several reasons why F1 is a good measure of individual 
accuracy. First of all, F1 always equals 0 for the ‘pervert binary coder’ (the 
one for which TP = TN = 0, i.e. no correct coding decision) and F1 always 
equals 1 for the ‘perfect system’ (the one for which FN = FP = 0, i.e. no 
wrong coding decision). Second, it partially rewards partial success: i.e. if 
the true codes of a verbatim are C1, C2, C3, C4, attributing it C1, C2, C3 is 
rewarded more than attributing it C1 only. Third, it is not ‘easy to game’, 
since it has very low values for ‘trivial’ coding systems – e.g.  the ‘trivial 
rejector’ (the binary coder that never assigns the code) has F1 = 0 while 
the ‘trivial acceptor’ (the binary coder that always assigns the code) has 
F1 = 2·TP/(2·TP) + FP, which is usually low). Fourth, it is symmetric – i.e. 
its values do not change if one switches the roles of the human coder and 
the automatic coder; this means that F1 can also be used as a measure of 
agreement between any two coders (human or machine) since it does not 
require us to specify who among the two is the ‘gold standard’ against 
which the other needs to be checked. For all these reasons, F1 is a de facto 
standard in the field of text classification (Sebastiani 2002, 2006).

How accurate is VCS?  In order to analyse the results of Table 1, let us first 
concentrate on individual accuracy and F1. The F1 values obtained across 
the 15 experiments vary from F1 = 0.92 (best result, on LL-A) to F1 = 0.55 
(worst result, on Egg-B), with an average of F1 = 0.77.

How good are these results? Let us remember that F1 is a measure of 
how closely VCS can mimic the coding behaviour of the human coder (let’s 
call her K1) who has originally coded the test data. Since the alternative to 
computer coding is manual coding, the question ‘How good are the results 
of VCS?’ is probably best posed as ‘How accurate are the results of VCS 
with respect to the results I could obtain from a human coder?’ In order 
to make this comparison, what we can do is check how closely this latter 

Table 4 � Combined contingency table for codes C1 and C2 as resulting from the data of 
Table 3 and the corresponding computations for precision, recall and F1

Codes C1 and C2

Coder says

YES NO

System 
says

YES 15 + 22 7 + 13

NO 8 + 5 70 + 60
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coder (let’s call her K2) can mimic the coding behaviour of K1, and compare 
F1(VCS, K1) with F1(K2, K1).  In other words, an answer to this question 
can be given only following a careful intercoder agreement study, in which 
two human coders, K1 and K2, are asked to independently code a test set 
of verbatims after one coder has ‘learned how to code’ from a training set 
of verbatims coded by the other coder. Unfortunately, this question is left 
unanswered for most of the 13 datasets listed in Table 1, since for coding 
most of them only one human coder was involved, and no intercoder 
agreement studies were performed. The only exceptions are the Egg-A and 
Egg-B datasets: in Macer, Pearson & Sebastiani (2007), the accuracy of 
VCS was tested in the context of a thorough intercoder agreement study, 
which showed that VCS obtained F1 values, with respect to either K1 or K2, 
only marginally inferior to F1(K2,K1).

12

Why does the accuracy of VCS vary so widely?  A second question we might 
ask is ‘Why does the accuracy that VCS obtains vary so widely across 
different datasets? Can I somehow predict where in this range will VCS 
perform on my data?’ The answer to this is: ‘Somehow, yes.’ We have 
experimentally observed (and machine learning theory confirms) that 
the F1 of VCS tends (i) to increase with the average number of (positive) 
training verbatims per code (AVC) provided to the system, and (ii) to 
decrease with the average length of the training verbatims (AVL). In short, 
a dataset in which there are many (resp., few) training verbatims per code 
and whose verbatims tend to be short (resp., long) tends to bring about 
high (resp., low) F1.

Note that parameter (i) is within the control of the user, while parameter 
(ii) is not. That is, if there are too few training examples per code, the user 
can manually code new verbatims, thus increasing AVC at will; however, 
if verbatims are long, the user certainly cannot shorten them. So, is VCS 
doomed to inaccuracy when the dataset consists of long verbatims (i.e. AVL 
is high), as is the case in customer satisfaction datasets? No, it is simply 
the case that, if AVL has a high value, AVC needs to have a high value too 
in order to ‘compensate’ for the high AVL value.  A simple explanation 
for this phenomenon may be offered through an example drawn from 
college mathematics.  Long verbatims usually mean complex, articulated 
sentences, with many different linguistic expressions (e.g. words, phrases) 
and phenomena (e.g. syntactic patterns, idioms) showing up in the dataset. 

12  These F1 results are not reported here since, in Macer et al. (2007), experiments were run with a standard 
training-and-test methodology, with a 70/30 split of the data between training and test, and are thus not 
comparable with the F1 results of the present paper, obtained with 10-fold cross-validation and with a 90/10 split.
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If the number of phenomena to ‘explain’ is large, there needs to be a 
large amount of information in order to explain them. This information 
is nothing else than the training examples; this explains why when the 
data consists of long verbatims, many training examples are needed to 
make sense of them, i.e.  to obtain good accuracy.  This is akin to what 
happens in systems of linear equations: if there are many variables, many 
equations are needed to find a solution (if there are many variables and 
few equations, the system is underconstrained). In our case, the linguistic 
expressions and phenomena are the variables, and the training verbatims 
are the equations constraining these variables: long verbatims mean many 
linguistic phenomena, i.e. many variables, and accuracy thus requiremany 
training verbatims, i.e. many equations.

Testing for accuracy at the aggregate level
We now move to discussing accuracy at the aggregate level (or aggregate 
accuracy, for short). To measure it we use a mathematical function that we 
call percentile discrepancy (PD, for short), defined as the absolute value of 
the difference between the true percentage and the predicted percentage of 
verbatims with code C. In other words, suppose that 42% of the verbatims 
in the test set have code C, and suppose that VCS applies instead code C to 
40.5%, or to 43.5%, of the verbatims in the test set; in both cases we say 
that VCS has obtained 1.5% PD on code C. A hypothetical ideal binary 
coder always obtains PD = 0.

For all tests in Table 1 we report both the average and the maximum 
PD value obtained across all codes (noted PDA and PDM, respectively). A 
look at these results shows that VCS is indeed very, very accurate at the 
aggregate level – for instance, PDA results tell us that in 10 studies out of 
13 VCS errs, on average across all codes in the codeframe, by 1.0% or less; 
this is a tolerable margin of error in many (if not most) market research 
applications, and it is even more tolerable if this is the only price to pay 
for coding very large amounts of verbatim data with no manual effort.

In order to visualise this, Figure 2 displays an example histogram 
from one of the datasets of Table 1 (dataset LL-E); for each code in 
the codeframe, two thin bars are displayed side by side, the rightmost 
representing the true percentage of verbatims that have the code, and the 
other the percentage of verbatims that VCS predicts have the code; the 
figure gives a compelling display of the aggregate accuracy of VCS.

Why is VCS so good at the aggregate level? The explanation is slightly 
technical, and comes down to the fact that, in order to obtain results 
accurate at the individual level, the internal algorithms of VCS attempt to 
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generate binary coders that maximise F1. Maximising F1 means trying to 
balance false positives and false negatives, since F1 has the property that, 
among a set of candidate binary coders for code C that make the same 
number of mistakes on the same dataset, the one that has the highest F1 
is the one for which the mistakes are equally split into false positives (FP) 
and false negatives (FN). And when FP = FN, then PD = 0% …

Of course, similarly to individual accuracy, how good are the PD values 
obtained by VCS would be best assessed with respect to an intercoder 
agreement study.  Interestingly enough, on EGG-A and EGG-B (the only 
datasets in Table 1 for which intercoder agreement studies were performed, 
as reported in Macer et al.  (2007), the PD values that human coders K1 
and K2 obtained with respect to each other, were similar or sometimes even 
higher (i.e. worse) than the results that VCS obtained with respect to either 
coder! The reason is that it is often the case than one coder is consistently 
more liberal than the other in assigning the code (i.e.  her mistakes are 
mostly false positives) while the other is consistently more conservative 
(i.e. her mistakes are mostly false negatives);13 both these behaviours bring 

13  This is an example of so-called correlated coder error; see e.g. Sturgis (2004).

Figure 2  True percentages against predicted percentages for the LL-E dataset. The worst
 value of PD (2.5%) is obtained for code 354, where 10% is the correct percentage 
 and 7.5% is the percentage predicted by VCS
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about high PD, while VCS, by attempting to maximise F1, attempts to strike 
a balance between liberal and conservative tendencies, thus reducing PD.

Testing for efficiency

We now move to discussing efficiency (i.e.  computer time requirements) 
issues.  Training and coding running times (in seconds) for all of our 15 
experiments are reported in Table 1; each result refers to the time required 
to run one of the ten experiments involved in the 10-fold cross-validation, 
thus involving training from 90% of the verbatims and coding the other 
10%.

In order to give an idea of the efficiency of VCS on a more representative 
example, our tests on the EGG-A and EGG-B datasets translate into the 
fact that, for a 20-code codeframe, (i) the binary coders can be trained 
from 1000 training examples in approximately two minutes altogether; 
and (ii)  under the same codeframe, 100,000 verbatims can be coded 
automatically in approximately eight minutes. In our tests on the LL-A to 
LL-L datasets both training and coding were, on average, approximately 
7.6 times faster than on EGG-A and EGG-B (due to lower AVL).  In 
general, the algorithms we employ within VCS are such that training time 
(resp., coding time) increases proportionally with the number of training 
verbatims (resp., with the number of verbatims to code), with the number 
of codes in the codeframe, and with the average length of the training 
verbatims.

Overall, the results above indicate that VCS is completely up to being 
employed even on studies of gigantic size (e.g.  as when coding huge 
backlogs of data for retrospective analysis), on which training and coding 
would be performed literally in a matter of a few hours altogether.

Frequently asked questions

We now try to clarify a number of points about the workings of VCS by 
adopting a question-and-answer format, thus dealing with the questions 
that are more frequently asked about VCS.

1 Does VCS attribute identical codes to identical verbatims?
Yes, as may be expected, two or more identical copies of the same verbatim 
that are encountered at coding time are attributed exactly the same codes. 
Unless, of course, the binary coders have been retrained after validation, 
or have been retrained with a different (e.g.  augmented) set of training 
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verbatims, in which case a verbatim that had been coded one way before 
retraining could be coded another way after retraining.

2 What about multiple (consistently coded) training copies of the same 
verbatim? Will VCS treat them as if a single copy had been included in 
the training set?
No, VCS is sensitive to the presence of multiple consistently coded training 
copies of the same verbatim; these have the effect of ‘reinforcing the point’, 
e.g. telling the system that this verbatim is an important positive example 
of the codes that are attached to it.  This case indeed occurs often, e.g. 
in ‘semi-open questions’ from market research questionnaires, in which 
answers, albeit textual in nature, are typically very short, often consisting 
of one or two words. It certainly seems natural that verbatims frequently 
encountered in training should be treated in a ‘reinforced’ way.

3 If two inconsistently coded copies of the same verbatim are provided 
for training, does the system fall apart?
No, VCS was designed to handle these types of inconsistency, since it is 
frequently the case that inconsistently coded copies of the same verbatim 
are encountered at training time (especially if the training set has been 
generated by two or more human coders, each working independently of 
the others and each coding a separate batch of examples). VCS implements 
a ‘fail soft’ policy, such that, if two copies of verbatim v are encountered at 
training time, one a positive and the other a negative example of code C, 
the binary coder for code C will simply behave as if it had been provided 
with neither of these two training examples – i.e. contradictory pieces of 
training information neutralise each other.  The binary coders for codes 
other than C are obviously unaffected.

4 If a given verbatim is provided as a training example, and an identical 
copy of it is encountered again, uncoded, in the coding phase, does this 
copy receive the same codes that the training copy has?
Not necessarily. The ‘training’ copy of the verbatim can have a set of codes, 
and the ‘uncoded’ copy may be automatically attributed a different set of 
codes, since the coding behaviour of the system is determined, holistically, 
by all the training it has received, and not by a single training example. 
Were it not like this, of course, the system could not ‘fail soft’ as discussed 
in the answer to question 3.



Machines that learn how to code open‑ended survey data

792

5 Does VCS always attribute at least one code to each verbatim?
No. In the default setting VCS may attribute several codes, one code or no 
code at all to a given verbatim, since each code in the codeframe is treated 
in isolation of the others. If no code at all is attributed to the verbatim, this 
is akin to giving the verbatim the special code ‘Others’.

However, the user may change this default setting on a question-by-
question basis, i.e. for a given question the user may specify that one and 
only one of the following constraints should be enforced: (i) at least n 
codes must be attached to a verbatim; (ii) at most n codes must be attached 
to a verbatim; (iii) exactly n codes must be attached to a verbatim. In all 
these, the value of n can be specified by the user.

6 I have trained the system to work for a certain question, using a 
certain codeframe. Now I need to set it up to work on a different 
question, but using the same codeframe as before. Can I use for this new 
question the binary coders I had trained on the same codeframe for the 
previous question?
Yes, or sort of. The best course of action is to use the previously generated 
binary coders and then to engage in an accurate validation effort.  The 
reason is that there are both commonalities and differences in meaning 
between the same code as used in two different contexts.  It is our 
experience that the commonalities are stronger than the differences, so 
this suggests that we should leverage on the previously generated binary 
coders; however, careful validation will smooth out the differences, and 
will attune the binary coders to the meaning that the codes take up in the 
new context. In sum, if the manual effort one can afford is, say, manually 
coding 500 (or even fewer) verbatims, one can certainly start from scratch, 
but it is probably better if one instead runs on the uncoded verbatims 
the binary coders previously generated for the same codeframe and then 
validates 500 of the automatically classified ones.

7 Does VCS cater for sentiment-related codes/distinctions, such as 
‘Positive’ and ‘Negative’?
Yes, VCS was designed with survey research in mind – i.e.  with the 
awareness that surveys not always attempt to capture purely topic-related 
distinctions but often attempt to capture notions that have to do with 
the emotions, sentiments and reactions of respondents.  See ‘Concluding 
remarks’, below, for more details.
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8 How much time and money am I going to save on a project by using 
VCS?
The answer depends very much on how many training examples are 
provided, how many verbatims are then coded automatically, how high is 
the per-verbatim cost of human coding, whether fast turnaround of results 
is important to you, how accurate the resulting system is required to be, 
and many other variables.  A detailed study of practical benefits can be 
found in operation can be found in Macer et al. (2007, p. 15).

9 Will accuracy keep increasing if I keep adding more and more training 
data, no matter how much I have already added?
No, it is typically the case that accuracy will, at a certain point, plateau. 
In general, the increase in accuracy due to the increase in the number of 
training examples tends to be brisker at the earlier stages, and slower at 
the later stages: adding ten training documents to a training set consisting 
of 100 documents usually brings about higher benefit than adding ten 
training documents to a training set consisting of 1000 documents.

10 If so, do I then run the risk of making accuracy decrease as a result of 
adding too many training examples?
No, it is practically never the case that there is such a risk. While it is always 
possible, although rare, that accuracy decreases as a result of adding more 
training examples (e.g.  this might certainly happen in case these newly 
added examples have been miscoded by the human coder), these are 
usually local phenomena of small magnitude; in these cases, adding further 
training examples should bring the situation back to normal.

11 If I want to increase accuracy for a given code, I know I should add 
more training examples. Are positive and negative examples of this code 
equally valuable?
No. While it is true that both positive and negative examples are necessary, 
positive examples are more informative than negative examples.  Just 
imagine a child being taught by her father what a tiger is.  It is certainly 
more informative for the father to show the child a picture of a tiger and 
say to her ‘This is a tiger!’ than to show her a picture of a penguin and say 
to her ‘This is a not a tiger!’ So, one should strive to add positive examples 
of the code. Note that, since adding a training verbatim means telling the 
system, for each code in the codeframe, whether the verbatim has the code 
or not, and since each verbatim typically has only one or few out of the 
many codes in the codeframe, negative examples abound anyway.
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12 Can I tune the internals of VCS, so as to attempt to increase its 
accuracy?
No, VCS does not contain manually inspectable and manually tuneable 
coding rules. The only way a user can improve the coding behaviour of 
VCS is by providing more training data (i.e. adding more training data or 
validating more automatically coded data). This is not a limitation of VCS, 
it is its beauty, since no skills are required to operate this software other 
than standard coding skills.  The internals of VCS are already optimised 
based on sophisticated mathematics, and allowing the user to turn knobs 
would inevitably mean damage to the accuracy of coding.

Other features of VCS

Robustness to ill-formed input

One VCS that is of particular interest in customer satisfaction and market 
research applications is robustness to orthographically, syntactically or 
other type of ill-formed input.  Certainly, we cannot expect verbatims 
to be conveyed in flawless English (or other language), since in most 
cases verbatim text is produced carelessly, and by casual users who are 
anything but professional writers.  So, a system that requires verbatim 
text to conform to the standard rules of English grammar and to be free 
of typographical errors would be doomed to failure in this application 
context. VCS is instead devised to be robust to the presence of ill-formed 
input; to illustrate this, the results of Table 1 were obtained on datasets 
of authentic verbatim text, and are indeed fraught with ill-formed text of 
many types.  Indeed, VCS learns to deal with ill-formed verbatims from 
ill-formed training verbatims; in other words, once the binary coders 
are trained from a training set that itself contains ill-formed input, they 
will tend to outperform, in coding as yet uncoded ill-formed verbatims, 
binary coders that have instead been trained on well-formed input, since, 
upon coding, they will encounter ill-formed linguistic patterns they have 
encountered in the training stage (e.g.  common abbreviations, common 
syntactical mistakes, common typos, slang, idioms).

Dynamic estimation of current and future accuracy levels

A second VCS feature we have not yet discussed has to do with letting 
the user know what accuracy she can expect from VCS on a given set of 
verbatims, given the amount of training she has performed already, and 
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letting her know whether it is likely that there is room for improvement by 
undertaking further training or validation. Indeed, once the user submits 
a set of training examples, VCS generates the binary coders and returns 
the (F1, PDM, PDA) values computed by 10-fold cross-validation on the 
training set; these figures thus represent an estimate (actually a pessimistic 
estimate, given that only 90% of the training set has been used for training 
in each of the ten experiments) of the accuracy that the generated binary 
coders will display on as yet uncoded verbatims. Moreover, VCS computes 
(F1, PDM, PDA) by 10-fold cross-validation on 80% of the training set, 
and returns to the user the percentile difference between this triplet of 
results and the previously mentioned triplet; this difference thus represents 
the difference in performance that providing the other 20% of training 
brought about, and can thus be interpreted as the current ‘accuracy trend’, 
i.e. an indication of whether performing further training or validation is 
still going to bring about an improvement in accuracy, and to what degree.

Mock verbatims

Even when the training set is reasonably sizeable it often happens that, 
while for some codes there are lots of training examples, other codes are 
heavily undersubscribed, to the point that, for some of them, there may 
be only a handful of or even no training examples at all. For these latter 
codes, generating an accurate binary coder is hardly possible, if at all. In 
these cases, hand coding other verbatims with the intent of providing more 
training data for the underpopulated codes may be of little help, since 
examples of these codes tend to occur rarely.

In this case, VCS allows the user to define ‘mock’ training verbatims for 
these codes, i.e. examples of these codes that were not genuinely provided 
by a respondent but are made up by the user. In other words, VCS allows 
the user to provide examples of ‘what a verbatim that would be assigned 
this code might look like’.  Such a mock verbatim may take two forms: 
(1) a verbatim that is completely made up by the user, or (2) a verbatim 
that the user has cropped away from some other genuine, longer verbatim. 
VCS treats mock verbatims differently from authentic ones, since (i) it flags 
them as non-authentic, so that they do not get confused with the authentic 
ones for reporting and other similar purposes, and (ii) it gives them extra 
weight in the training phase, since it deems that their very nature makes 
them ‘paradigmatic’ examples of the codes that are attached to them.

In order to minimise the user’s work in defining mock verbatims, given 
a training set VCS presents to the user a list of the codes in the codeframe 
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ranked in increasing number of associated training examples, so that the 
user may indeed concentrate on defining mock verbatims for those codes 
that are more in need of them.

Training data cleaning

In many situations it is actually the case that there might be miscodings in 
the verbatims that are being provided to the system for training purposes; 
this might be a result of the fact that junior, inexperienced coders have 
done the coding, that the coding had been done under time pressure, or 
some other reason. Of course, ‘bad data in = bad data out’, i.e. you cannot 
expect the system to code accurately if it has been trained with inaccurate 
data.  As a result, a user might wish to have a computerised tool that 
helps her in ‘cleaning’ the training data, i.e.  in identifying the miscoded 
training verbatims so as to be able to correct them. Of course, such a tool 
should make it so that she does not need to revise the entire set of training 
examples.

Our ‘training data cleaning’ tool returns to the user, as a side-effect 
of training, a sorted list of the training verbatims, sorted in order of 
decreasing likelihood that the verbatim was indeed miscoded. This allows 
the user to revise the training set starting from the top of the list, where the 
‘bad’ examples are more likely to be located, working down the list until 
she sees fit. The tool works on a code-by-code basis, i.e. for any given code 
the tool returns a list of examples sorted in decreasing likelihood that the 
verbatim was indeed miscoded for this code (i.e. it is either a false positive 
or a false negative for this code). This allows the user to perform selective 
cleaning – e.g. a cleaning operation for those codes whose binary coders 
have not yet reached the desired level of accuracy – and forget about codes 
on which VCS is already performing well.

How does the tool work? The basic philosophy underlying it is that a 
training verbatim has a high chance of having been miscoded when the 
codes manually attributed to it are highly at odds with the codes manually 
attributed to the other training verbatims. For instance, a training verbatim 
to which a given code has been attributed and that is highly similar to 
many other verbatims to which the same code has not been attributed, 
is suspect, and will thus be placed high in the sorted list for that code. In 
other words, VCS has a notion of the internal consistency of the training 
set, and the tool sorts the training verbatims in terms of how much they 
contribute to disrupting this internal consistency.
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Support for hierarchical codeframes

VCS natively supports codeframes structured as trees of supercodes (e.g. 
‘Soft drink’) and subcodes (e.g.  ‘Coke’).  At training time, all training 
examples of the subcodes will also be, by definition, training examples 
of the corresponding supercode.  At coding time, a given verbatim will 
be fed to the binary coder for the subcode only if the binary coder for 
the corresponding supercode has returned a positive decision; this will 
ultimately bring about an exponential increase in coding efficiency, 
since for each verbatim to code entire subtrees will be discarded from 
consideration, thus allowing VCS to operate speedily even on codeframes 
consisting of several thousands codes.

Concluding remarks

Before concluding, note that we have not given much detail on the internal 
workings of VCS. This is mostly due to the fact that a description of these 
workings, to any level of detail, would be likely to distract the reader 
from understanding the important facts about VCS, i.e. how a researcher 
should use it and what she should expect from it. The interested reader 
may in any case reconstruct, if not all details, the main tracts of how VCS 
works by looking at the authors’ published research on issues of text 
analysis for meaning and opinion extraction (Baccianella et al. 2009), 
learning algorithms for text classification (Esuli et al. 2008), and opinion 
mining for sentiment analysis (Argamon et al.  2007; Esuli & Sebastiani 
2007a, 2007b). In particular, the tool used in the validation phase (see the 
section above, entitled ‘VCS: an automated verbatim coding system) draws 
inspiration from basic research reported in Esuli and Sebastiani (2009a); 
the training data cleaning tool (see ‘Training data cleaning’, above) is based 
on the very recent work by Esuli and Sebastiani (2009b); and the support 
for hierarchical codeframes is based on insights obtained in Esuli et al. 
(2008) and Fagni and Sebastiani (2010).

Overall, we think that the VCS system we have presented has the 
potential to revolutionise the activity of coding open-ended responses 
as we know it today, since (i) it allows a user to autonomously create 
automatic coding systems for any user-specified codeframe and for any 
type of survey conducted (as of now) in any of five major European 
languages, with no need for specialised dictionaries or domain-dependent 
resources; (ii) it permits improvement of the accuracy of the generated 
coding systems almost at will, by validating, through a convenient 
interface, carefully selected samples of the automatically coded verbatims. 
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Even more importantly, for doing any of the above it requires on the part 
of the user no more skills than ordinary coding skills.

The experimental results obtained by running VCS on a variety of real 
respondent datasets confirm that the approach embodied by it is a viable 
one, since all these experiments were characterised by good accuracy at the 
individual level, very good accuracy at the aggregate level, and excellent 
training and coding speed.

The main challenge for the future will consist in obtaining even higher 
levels of accuracy, and on even more difficult types of data, such as highly 
problematic textual data (such as data obtained from OCR, or data from 
surveys administered via cellphone text messaging) or audio data (as 
collected in CATI).
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