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Abstract. Automatic verbatim coding technology is essential in many contexts in which,
either because of the sheer size of the dataset we need to code, or because of demanding
time constraints, or because of cost-effectiveness issues, manual coding is not a viable option.
However, in some of these contexts the accuracy standards imposed by the customer may be
too high for today’s automated verbatim coding technology; this means that human coders
may need to devote some time to inspecting (and correcting where appropriate) the most
problematic autocoded verbatims, with the goal of increasing the accuracy of the coded set.
We discuss a software tool for optimising the human coders’ work, i.e., a tool that minimizes
the amount of human inspection required to reduce the overall error down to a desired level,
or that (equivalently) maximises the reduction in the overall error achieved for an available
amount of human inspection work.

1. Introduction

In the last 10 years we have championed an approach to automatically coding
open-ended answers (“verbatims”) based on “machine learning” (Giorgetti and
Sebastiani, 2003). Based on these principles we have built an automated ver-
batim coding system which we have variously applied to coding surveys in the
social sciences (Giorgetti et al., 2003), in customer relationship management
(Macer et al., 2007), and in market research (Esuli and Sebastiani, 2010).

This system (see Figure 1) is based on a supervised learning metaphor : the
system learns, from sample manually coded verbatims (training examples), the
characteristics a new uncoded verbatim (a test example) should have in order to
be attributed a given code; the human operator who feeds the training examples
to the system plays the role of the “supervisor” (Alpaydin, 2010; Mohri et al.,
2012).

The machine learning approach to automated verbatim coding has shown
very good accuracy in many real-world studies (see (Esuli and Sebastiani,
2010) for examples). However, there may indeed be scenarios in which the
accuracy standards imposed by the customer (e.g., as specified in a Service Level
Agreement) are too demanding, not only for this approach but for any existing
automated verbatim coding technology. If full manual coding by expert coders is
not a viable option (due to the sheer size of the dataset that needs coding, or to
demanding time constraints, or to cost issues, or to a combination of all these),

† The order in which the authors are listed is purely alphabetical; each author has given
an equally important contribution to this work.
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Figure 1. Architecture of a verbatim coding system based on supervised machine learning.

a possible strategy may consist in coding the data by means of an automatic
method, and then having one or more human coders inspect (and correct where
appropriate) the most problematic among the automatically coded verbatims1.

In this paper we will be interested in application scenarios of the latter kind.
Specifically, the task we will set ourselves will be that of devising software
tools that support the post-coding inspection work by the human coders. For
us, supporting the coders’ work will mean maximising the cost-effectiveness
of their work; in other words, we will be interested in software methods that
minimise the amount of human inspection work required to reduce the overall
error in the data down to a certain level, or that (equivalently) maximise the
reduction in the overall error achieved for a certain amount of human coder’s
inspection work.

2. A Worked-out Example

In order to see how human coders may be effectively supported in their post-
editing work, let us look at a specific example. Let us assume that the coding
task consists in deciding whether a given code applies or not to any of a
set of uncoded verbatims; coding according to an entire codeframe is quali-
tatively analogous, since the process above can be repeated for each code in the
codeframe.

Let us also assume that a set of uncoded verbatims have been automatically
coded; for simplicity of illustration we here assume that this set consists of 20
verbatims only. We can measure the accuracy obtained in this automatic coding
job by (a) choosing an accuracy measure, (b) filling out a contingency table,
and (c) evaluating the chosen measure on this table. For illustration purposes
we assume that our accuracy measure is the well-known F1 measure (see (Esuli
and Sebastiani, 2010) for a detailed discussion), defined as

F1 =
2 · TP

(2 · TP ) + FP + FN
(1)

1 In the rest of this paper we will simply write “inspect” to actually mean “inspect and
correct where appropriate”.
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where by TP , FP , FN , TN , we indicate, as customary, the number of true pos-
itives, false positives, false negatives, true negatives, derived from the automatic
coding; F1 values range from 0 (worst) to 1 (best).

Figure 2 depicts a situation in which the automated coding process has
returned 4 true positives, 3 false positives, 4 false negatives, and 9 true neg-
atives, resulting in a value of F1 = 2·4

(2·4)+3+4 = 0.533. The 20 verbatims are

represented in the two rows at the bottom via green and red cards; the upper
row represents the coding decisions of the system (“predictions”), while the
lower row represents the correct decisions that an ideal system would have
taken. A green card represents a “yes” (the verbatim has the code), while a red
card represents a “no” (the verbatim does not have the code); a correct decision
is thus represented by the upper and lower card in the same column having the
same colour2.

predicted

Y N

true
Y TP = 4 FP = 3

N FN = 4 TN = 9

F1 =
2TP

2TP + FP + FN
= 0.533

Figure 2. A worked-out example, representing a contingency table (upper left part of the
figure) deriving from the automatically coded examples (lower part) and from which accuracy
is computed (formula in the upper right part).

Let us imagine a scenario in which the customer insists that the data must be
coded with an accuracy level of at least F1 = 0.800. In this case, after checking
that the value of F1 that the automatic classifier has obtained is 0.533, the
human coder decides to inspect some of the verbatims until the desired level
of accuracy has been obtained3. Let us assume that the coder examines the
verbatims at the bottom of Figure 2 in left-to-right order. The first verbatim
that the coder examines is a true positive; no correction needs to be done, the
value of F1 is unmodified, and the coder moves on to the second verbatim. This

2 Note that this example is artificial, and is for illustration purposes only. In the real-world
coding studies reported in (Esuli and Sebastiani, 2010) our automated verbatim coding system
has always obtained higher F1 values, ranging from 0.55 to 0.92 depending on the number of
training examples available and on the inherent difficulty of the coding task.

3 Actually, the human coder does not know the level of accuracy that the automatic
classifier has obtained, since she does not know the true code assignments of the verbatims.
However, this level of accuracy can be at least estimated in real time, via a technique called
“10-fold cross-validation” that will be discussed in Sections 4.1.4 and 7.
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is a false negative, and correcting it decreases FN by 1 and increases TP by
1, which means that F1 now becomes F1 = 2·5

(2·5)+3+3 = 0.625. The third is

a false positive, and correcting it decreases FP by 1 and increases TN by 1,
which means that F1 now becomes F1 = 2·5

(2·5)+2+3 = 0.667. The fourth is a false

negative, which brings about F1 = 2·6
(2·6)+2+2 = 0.750, and the fifth is a false

positive, which yields F1 = 2·6
(2·6)+1+2 = 0.800. At this point, having reached the

minimum level of accuracy required by the customer, the human coder’s task
is over.

3. Ranking the Automatically Coded Verbatims

In the example illustrated in the previous section, bringing F1 from 0.533 up
to 0.800 has required the inspection of 5 verbatims, i.e., 25% of the entire set.
Could the human coder have achieved the same improvement in accuracy with
a smaller effort (i.e., by inspecting fewer verbatims)? Could she, by putting in
the same effort, have reached a level of accuracy higher than F1 = 0.800? The
answer to both questions is yes, and the key to doing better is the order in
which the verbatims are inspected.

For instance, the fact that the first inspected verbatim was a true positive
was suboptimal. Inspecting verbatims that have been coded correctly is, for the
human coder, wasted time, since no correction is performed and F1 remains
thus unmodified. Of course, there is no way to know in advance if the verbatim
has been coded incorrectly or not. However, it would at least be desirable to
know how likely it is that the verbatim has been coded incorrectly, i.e., to
know its probability of misclassification; in this case, the system might rank the
automatically coded verbatims in such a way as to top-rank the verbatims that
have the highest such probability.

A second fact that jumps to the eye in the worked-out example of the pre-
vious section is that the increase in accuracy (i.e., the gain) determined by the
correction of a false negative is higher (sometimes much higher) than the gain
determined by the correction of a false positive. For instance, in correcting the
second verbatim (a false negative) F1 jumped from 0.533 to 0.625 (a +17.1%
relative increase), while in correcting the third verbatim (a false positive) F1

only moved from 0.625 to 0.667 (a mere +6.6% relative increase). This is not
an idiosyncrasy of the F1 measure, since for many accuracy measures the gain
deriving from the correction of a false positive is different than the one deriving
from the correction of a false negative4. So, the fact that two false positives
were inspected and corrected while two false negatives were left uninspected
and uncorrected (in 11th and 20th position, respectively) was also suboptimal.

4 Note that this asymmetry holds despite the fact that F1 pays equal attention to the ability
of the system to avoid false positives (known as precision, and defined as π = TP

TP+FP
) and to

the ability of the system to avoid false negatives (known as recall, and defined as ρ = TP
TP+FN

);
in fact, F1 = (2 · π · ρ)/(π+ ρ) = (2 · TP )/((2 · TP ) +FP +FN). In other measures that pay,
e.g., more attention to recall than to precision, the difference between the gain obtained by
correcting a false positive and the gain obtained by correcting a false negative is amplified.
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This means that the system should, other things being equal, rank higher those
verbatims (the false negatives, in our case) that bring about a higher gain when
corrected. In the example of the previous section, had we ranked the four false
negatives at the top four rank positions and a false positive at the fifth, the same
amount of human coder inspection work would have brought about an increase
in F1 from 0.533 to 0.889 (instead of 0.800); had we instead been happy with
reaching F1 = 0.800, the human coder would have reached it by inspecting
and correcting only the four top-ranked verbatims (actually, by doing this she
would have reached F1 = 0.842).

In sum, we have learnt two key facts.
The first fact is that the order in which the human coder inspects the auto-

matically coded verbatims is what determines the cost-effectiveness of her work.
This fact should come as no surprise: the task of ranking a set of digital objects
in terms of perceived usefulness to a given task is of paramount importance
in nowadays’ computer science as a whole, as perfectly exemplified by todays’
search engines5. The task of ranking the automatically coded verbatims with the
goal of maximising the cost-effectiveness of a human coder who scans (inspecting
and correcting) the ranked list down to a certain depth, has been called Semi-
Automatic Text Classification (SATC – (Berardi et al., 2012; Martinez-Alvarez
et al., 2012)), to reflect the fact that it attempts to optimise a pipeline in which
human and machine cooperate in achieving the goal of accurate classification.

The second fact we have learnt is that, if we want to order these verbatims
so as to maximise the cost-effectiveness of the human coder’s work, we should
take two main factors into account, i.e., (a) the probability of misclassification
of a given verbatim, and (b) the gain in coding accuracy that the verbatim
brings about once inspected and corrected.

4. Utility Theory

What kind of mathematical theory should we use in order to devise such a
ranking function?

The need to account for probabilities and gains immediately evokes utility
theory, an extension of probability theory that incorporates the notion of gain
(or loss) that accrues from a given course of action (Anand, 1993; von Neumann
and Morgenstern, 1944). Utility theory is a general theory of rational action
under uncertainty, and as such is used in many fields of human activity. For
instance, utility theory is of paramount importance in betting, since in placing
a certain bet we take into account (a) the probabilities of occurrence that we
subjectively attribute to a set of outcomes (say, to the possible outcomes of the
Arsenal FC vs. Chelsea FC game), and (b) the gains or losses that we obtain,
having bet on one of them, if the various outcomes materialise.

5 The main factor that, in the late ’90s, decreed the success of Google over its then-
competitors (e.g., AltaVista, Inktomi, etc.) was exactly its superior ranking function.
Nowadays it is fair to say that the ranking function that Google uses is as secret as the
recipe of Coca Cola.
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In order to explain our method let us introduce some basics of utility theory.
Given a set A = {α1, ..., αm} of possible courses of action and a set Ω =
{ω1, ..., ωn} of mutually disjoint events, the expected utility U(αj ,Ω) that derives
from choosing course of action αj given that any of the events in Ω may occur,
is defined as

U(αj ,Ω) =
∑
ωi∈Ω

P (ωi)G(αj , ωi) (2)

where P (ωi) is the probability of occurrence of event ωi, and G(αj , ωi) is the
gain obtained if, given that αj has been chosen, event ωi occurs. For instance,
αj may be the course of action “betting on Arsenal FC’s win” and Ω may be
the set of mutually disjoint events Ω = {ω1, ω2, ω3}, where ω1=“Arsenal FC
wins”, ω2=“Arsenal FC and Chelsea FC tie”, and ω3=“Chelsea FC wins”; in
this case,

− P (ω1), P (ω2), and P (ω3) are the probabilities of occurrence that we sub-
jectively attribute to the three events ω1, ω2, and ω3;

− G(αj , ω1), G(αj , ω2), and G(αj , ω3) are the economic rewards we obtain,
given that we have chosen course of action αj (i.e., given that we have bet
on the win of Arsenal FC), if the respective event occurs. Of course, our
economic reward will be positive if ω1 occurs and negative if either ω2 or
ω3 occur.

When we face alternative courses of action, acting rationally means choosing
the course of action that maximises our expected utility. For instance, given the
alternative courses of action α1=“betting on Arsenal FC’s win”, α2=“betting
on Arsenal FC’s and Chelsea FC’s tie”, α3=“betting on Chelsea FC’s win”, we
should pick among {α1, α2, α3} the course of action that maximises U(αj ,Ω).

4.1. Ranking Automatically Coded Verbatims via Utility Theory

How does this translate into a method for ranking automatically coded verba-
tims? Assume we have a set D = {d1, ..., dn} of automatically coded verbatims
that we want to rank, and assume that F1 is our evaluation measure. For
instantiating Equation 2 concretely we need

1. to decide what our set A = {α1, ..., αm} of alternative courses of action is;

2. to decide what the set Ω = {ω1, ..., ωn} of mutually disjoint events is;

3. to specify how we compute their probabilities of occurrence P (ωi);

4. to define the gains G(αj , ωi).

Let us discuss each of these steps in turn6.

6 The method we are going to discuss in this section is an improved variant of a method
that has already been presented in (Berardi et al., 2012) in much greater mathematical detail;
an extended version is in preparation (Berardi et al., 2014). The goal of the present paper is
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4.1.1. Courses of Action
Concerning Step 1, we will take the action of inspecting (and correcting, if
needed) verbatim dj as course of action αj . In this way we will evaluate the
expected utility U(dj ,Ω) (i.e., the expected increase in overall accuracy) that
derives from inspecting each verbatim dj , and we will be able to rank the
verbatims by their U(dj ,Ω) value, so as to top-rank the ones with the highest
expected utility.

4.1.2. Events
Concerning Step 2, we have argued that the increase in accuracy that derives
from inspecting (and correcting if needed) a verbatim depends on whether the
verbatim is a true positive, a false positive, a false negative, or a true negative; as
a consequence, we will take Ω = {tp, fp, fn, tn}. For instance, when evaluating
U(dj ,Ω), the expression P (tp) will mean “the probability that dj is a true
positive”7.

4.1.3. Probabilities of Occurrence
Concerning Step 3, we need to describe how to compute P (tp), P (fp), P (fn),
and P (tn) for each verbatim dj .

First of all let us note that, if the verbatim has been assigned the code,
then P (fn) = P (tn) = 0, so we are left with computing P (tp) and P (fp), i.e.,
the probability that the verbatim has been coded correctly and the probability
that the verbatim has been coded incorrectly, respectively; however, P (fp) =
1 − P (tp), so we only need to compute P (tp). Similarly, if the verbatim has
not been assigned the code, then P (tp) = P (fp) = 0, so we are left with
computing P (tn) and P (fn) = 1−P (tn), i.e., the probability that the verbatim
has been coded correctly and the probability that the verbatim has been coded
incorrectly, respectively.

So, for each verbatim, the only thing we need to do is to compute the prob-
ability that the verbatim has been coded correctly (let us denote it as P (cor)).
Our automated verbatim coding system helps us in this, since whenever it
automatically codes a verbatim it returns, along with a binary decision (“the
code is assigned” or “the code is not assigned”), a numerical score of confidence
in its own decision; the higher the score, the higher the confidence8. If we trust
our classifier we can take this confidence score as a proxy for P (cor); that is, we
assume that the more confident the classifier is in its own decision, the higher
the probability that the verbatim has been correctly coded.

to give a gentle introduction to the main intuitions of that approach while at the same time
abstracting away from the hard-core maths of the original paper. Additionally, in this paper we
present new experimental results obtained on survey coding datasets, while the experiments
presented in (Berardi et al., 2012) had been run on datasets of newswire reports.

7 Note the difference in notation: by TP (uppercase letters) we indicate the number of true
positives as deriving from the classification of a given set of verbatims, while by tp (lowercase
letters) we indicate the event of being a true positive, as in “the probability that the verbatim
being inspected is a true positive”.

8 This is not a prerogative unique to our system; most modern classifiers, be them based
on machine learning or not, return such a confidence score.
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Technically, a confidence score is not yet a probability, since confidence scores
(at least: those output by our system) can take values from 0 (lowest) to +∞
(highest), which are not probabilities since they do not range on [0,1]. Luckily
enough, we can convert confidence scores into probabilities via probability cali-
bration methods. Discussing them is beyond the scope of this paper, so we refer
the interested (and mathematically well-equipped) reader to (Niculescu-Mizil
and Caruana, 2005) for a general discussion of probability calibration, and to
(Berardi et al., 2012) for a discussion on how probability calibration is in fact
realized in our method.

For our purposes, we may now simply take for granted that the probabilities
discussed in Step 3 can indeed be computed.

4.1.4. Gains
Concerning Step 4, it is natural to define gain G(αj , ωi) as the increase in
accuracy that derives from inspecting and correcting verbatim dj if event ωi

occurs. For instance, G(αj , fp) will be defined as the increase in accuracy that
derives from inspecting and correcting verbatim dj if it turns out to be a false
positive.

First of all, let us note that G(αj , tp) = G(αj , tn) = 0, since there is no
increase in accuracy that derives from inspecting a verbatim that is already
coded correctly. So, only G(αj , fp) and G(αj , fn) are of interest here.
G(αj , fp) may naturally be defined as the increase in F1 that derives from

correcting a false positive, i.e., by removing a false positive from and adding a
true negative to the contingency table:

G(αj , fp) =
2TP

2TP + (FP − 1) + FN
− 2TP

2TP + FP + FN
(3)

where the first summand is F1 after the correction and the second is F1 before
the correction. Analogously, G(αj , fn) may be defined as the increase in F1

that derives from correcting a false negative, i.e., by removing a false negative
and adding a true positive:

G(αj , fn) =
2(TP + 1)

2(TP + 1) + FP + (FN − 1)
− 2TP

2TP + FP + FN
(4)

However, the problem in this formulation is that the quantities TP , FP and
FN are not known!, since at the time of computing the ranking we do not
know if a verbatim has been coded correctly or not. Luckily enough, if we do
not know these quantities we can at least estimate them. This can be done via a
well-known technique called 10-fold cross-validation (see also Figure 3), which
essentially consists of partitioning the training set into 10 equally-sized subsets
of verbatims, and running 10 train-and-test experiments, each of which consists
of using one of the 10 subsets (always a different one) as the test set and the
union of the other 9 as the training set. The final contingency table is formed by
taking the 10 contingency tables generated by the 10 experiments and pooling
them together into a single one (so that, e.g., TP contains the sum of the 10
TP ’s from the 10 experiments). If this final contingency table tells us that,
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say, 27% of the training verbatims are true positives, we make the assumption
that 27% of the test verbatims are true positives too; this process gives us an
estimate of the quantities TP , FP , FN , needed for estimating G(αj , fp) and
G(αj , fn) as from Equations 3 and 4.

Figure 3. A graphical depiction of the 10-fold cross-validation process. Each row represents
an experiment (“run”) in which the 10 equally-sized parts (“folds”) into which the dataset
has been partitioned, are subdivided between training data (the 9 blue boxes in a given row)
and test data (the magenta box in the same row).

We have now reached the point at which the gains discussed in Step 4 can
indeed be estimated. This completes the description of our utility-theoretic
method for ranking the automatically coded verbatims.

5. Evaluating the Effectiveness of Ranking Methods

What we need now is a methodology for testing the effectiveness of our utility-
theoretic ranking method over real-world datasets and for comparing it with
the effectiveness delivered by other ranking methods. We will start describing
this methodology by introducing a suitable notion of “error reduction” (i.e.,
increase in accuracy).

Given that we have employed F1 as a measure of accuracy, the function
E1 = (1 − F1) is a suitable measure of error. Let us define error at rank k
(noted as E(k)) as the amount of E1 still present in the set D = {d1, ..., dn} of
automatically coded verbatims after the coder has inspected the verbatims at
the first k rank positions. Given this definition, E(0) is simply the initial error
generated by the automated classifier (i.e., the value of E1 before any verbatim
in D has been inspected), and E(|D|) is 0 (where |D| indicates, as customary,
the number of elements in D). The notion of “error at rank k” allows us to
define our final evaluation metric, error reduction at depth x (noted as ER(x)),
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defined as the reduction in E1 obtained by the human coder who inspects the
verbatims at the first x · |D| rank positions, i.e.,

ER(x) =
E(0)− E(x · |D|)

E(0)
(5)

For instance, ER(0.25) is the reduction in E1 obtained by the human coder
who inspects 25% of the verbatims in D, starting at the top and working down
the ranked list. It is clear from the definition that ER(x) ranges on the [0, 1]
interval, where 0 indicates no reduction at all and 1 indicates total elimination
of error.

Figure 4 illustrates the notion of error reduction graphically. The x axis
represents the inspection depth, i.e., the fraction of the set D that the human
coder has inspected, while the y axis represents the error reduction ER(x)
achieved for a given such depth. The four coloured curves indicate, each for a
different ranking of the same set D, the error reduction obtained by a human
coder who inspects the verbatims in D in the prescribed order. For instance,
a human coder who inspects only 20% of the verbatims in D will obtain a
reduction in the overall error present in D of about 0.20 if the ranking has
been performed by the “blue” method, and of about 0.40, 0.60, and 1.00, if
the “green”, “red”, and “pink” methods, respectively, have been used instead.
So, higher plots represent more cost-effective methods, i.e., methods that bring
about higher levels of increase in accuracy (or reduction in error) for the same
amount of human coder inspection effort. All the curves start at the origin of
the axes (meaning that, no matter what ranking method is used, no reduction
in error is obtained with no inspection effort) and end in the upper right corner
(meaning that, no matter what ranking method is used, all error is eliminated
if the human coder inspects all verbatims in D).

6. Experiments on Real-World Datasets

Since we now have a measure of the effectiveness of a given ranking method,
we are ready to specify the experimental protocol we are going to use. Given
a dataset consisting of verbatims manually coded according to a code c, we go
through the following steps9:

1. We split the dataset into a set of training verbatims and a set of test
verbatims; we train a classifier from the training verbatims;

9 This experimental protocol, and the fact that in its description we call the codes manually
assigned to the verbatims their “true codes”, might be taken to imply that human coders are
reliable and consistent, which we know is usually not the case in practice. However, this is
actually a simplifying assumption that is necessary for making the experiments themselves
possible. All the experiments aimed at assessing the accuracy of automatic coding systems
(not only the ones discussed in this paper) need to assume that the test set has been coded
by an authoritative coder, in the sense that they need a “gold standard” against which the
results of the automatic system should be checked; no gold standard, no accuracy tests. If the
test set being used for the experiments has instead been coded unreliably and inconsistently,
this simply means that the accuracy values computed on it will be a pessimistic estimate of
the accuracy that would be obtained if the test set had been coded reliably and consistently.
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Figure 4. Four curves representing four levels of error reduction as a function of the inspection
depth, as deriving from four different ways of ranking the verbatims in D.

2. Using the classifier trained in Step 1, after hiding their true codes to the
classifier we recode all the test verbatims; for each such verbatim, the classi-
fier returns a binary decision and a confidence score; we fill the contingency
table by checking the binary decisions returned by the classifier against the
corresponding true codes;

3. Among the test verbatims not yet inspected, we find the one that maximises
expected utility, as detailed in Section 4.1;

4. We check the code assigned to this verbatim by the classifier against its
true code; if they are the same we mark it as inspected and go back to Step
3, otherwise

a) We correct the miscoded verbatim and mark it as inspected;

b) We update the contingency table accordingly and compute ER(x) as
from Equation 5;

c) We recompute the gains as from Equations 3 and 4, and go back to Step
3.

This process simulates the activity of a human coder who, after a set of uncoded
verbatims have been automatically coded, inspects all of them in the order
suggested by the provided ranking. By recording all the ER(x) values obtained
in the process, as from Step 4b, we can generate a plot similar to the one of
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Figure 4 that graphically represents the effectiveness of our ranking method.
By modifying Steps 3 and 4 suitably we can generate plots corresponding to
other ranking methods, so as to be able to compare their effectiveness against
that of our own method.

We have subjected our ranking method to thorough experimentation on
datasets of real survey data. For this purpose we have used the same datasets
used in (Esuli and Sebastiani, 2010); while in that paper we tested the ability of
our software system at coding verbatims automatically, we here test the ability
of our ranking method at maximising the cost-effectiveness of the human coders’
inspection work.

Table I lists the main characteristics of the 15 datasets we have used. The first
10 datasets (LL-A to LL-L) consist of verbatims from market research surveys
and were provided by Language Logic LLC. The LL-B, LL-D, and LL-F to LL-L
datasets are from a large consumer packaged-good study, with both open-ended
and brand-list questions. The LL-A, LL-C, and LL-E datasets are instead from
one wave of a continuous (“tracking”) survey that Language Logic LLC codes
12 times a year, which consists of “semi-open” brand questions (i.e., questions
– such as “What is your favourite soft drink?” – that, although in principle
eliciting a textual response, usually generate many responses consisting of only
the name of a product or brand, with this name coming from a small set of
such names). The next 4 datasets consist of verbatims from customer satisfac-
tion surveys and were provided by Egg PLC; for both datasets, which were
collected in the context of two different surveys, respondents were answering
the question “Have we done anything recently that has especially disappointed
you?”. Actually, the Egg-A1 and Egg-A2 datasets contain the same verbatims,
but the test verbatims differ in the codes applied to them, since they were
coded independently by two different human coders so as to provide data for
an intercoder agreement study (see e.g., (Carey et al., 2006)); so, we treat them
as separate datasets. The same goes for the Egg-B1 and Egg-B2 datasets. The
last dataset (ANES L/D) consists of verbatims from a political survey run in
1992 and were obtained from the American National Election Studies (ANES)
committee. Two sets of verbatims were used: the first were returned in answer
to the question “Is there anything in particular about Mr. Clinton that might
make you want to vote for him? If so, what is that?” while the second were
returned in answer to the question “Is there anything in particular about Mr.
Clinton that might make you want to vote against him? What is that?”. Our
coding task consisted in guessing whether the verbatim belongs to the former
or to the latter set. For all these 15 datasets, see (Esuli and Sebastiani, 2010,
Table I) for more details10.

10 Since some of these datasets are fairly small (e.g., about 200 verbatims), it might be
legitimate to wonder how large a dataset needs to be in order for the conclusions drawn from
an experiment to be reliable. We do not address this point extensively since it would be beyond
the scope of this paper. Suffice it to say that what constitutes a “statistically representative
sample” of the set of verbatims that will be encountered in one’s operational environment is
hard to characterize in a few words, and is the main subject of the theory of sampling (see
e.g., (Cochran, 1977)). For our needs we may simply stick to the (simplistic and intuitive)
rule of thumb that (a) the bigger the test set, the more reliable the results we obtain on it are
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Table I. Characteristics of the ten market research datasets (LL-A
to LL-L), four customer satisfaction datasets (Egg-A1 to Egg-B2),
and one social science dataset (ANES L/D), that we have used here
for experimentation. The columns represent the name of the dataset,
the number of verbatims in the dataset (#V ), the number of training
verbatims (#Tr) and the number of test verbatims (#Te), the num-
ber of codes in the codeframe (#C), the average number of positive
training verbatims per code (AVC), the average training verbatim
length (AVL), and the F1 obtained by the automated classifier (F1).
Note that the F1 values reported are different from those reported
in (Esuli and Sebastiani, 2010) since these latter were obtained with
a different experimental protocol (10-fold cross-validation) than the
one used here (train-and-test).

Dataset #V #Tr #Te #C AVC AVL F1

LL-A 201 140 61 17 15.35 1.21 0.97

LL-B 501 350 151 31 20.48 1.62 0.91

LL-C 201 140 61 17 8.24 1.59 0.98

LL-D 501 350 151 27 31.30 2.05 0.84

LL-E 201 140 61 36 6.53 2.59 0.86

LL-F 501 350 151 56 26.45 3.96 0.81

LL-G 501 350 151 100 15.68 3.87 0.76

LL-H 501 350 151 84 21.73 4.83 0.73

LL-I 501 350 151 67 23.81 4.60 0.76

LL-L 501 350 151 65 20.55 3.15 0.75

Egg-A1 1000 700 300 16 86.56 1.98 0.61

Egg-A2 1000 700 300 16 86.56 1.98 0.59

Egg-B1 926 653 273 21 50.38 1.62 0.54

Egg-B2 926 653 273 21 50.38 1.62 0.52

ANES L/D 2665 1865 800 1 969.00 0.52 0.86

Figure 5 reports the results (in terms of ER(x)) of our experiments with five
different ranking methods, each represented by a different curve in a different
colour. Since we have 15 datasets, and since the codeframes used in the different
datasets contain up to 100 different codes (see 3rd column of Table I), it would
have been too cumbersome to report results for each individual code. As a result,
for each dataset we have computed the average performance of the method
across all the codes in the respective codeframe, and we have then computed
the average performance of the method across the 15 datasets. So, each curve

going to be, provided that (b) the test set is an “as-random-as-possible” sample of the set of
items that need to be coded.
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is the result of testing a ranking method individually on a total of 594 codes11.
Let us discuss these ranking methods.

The blue curve (marked “Random”) represents the expected ER(x) values of
the “random ranker”, i.e., of an algorithm that presents the verbatims in random
order for the human coder to inspect. The curve is a perfect diagonal line, and
shows that, e.g., by inspecting 20% of the verbatims the human coder may
expect to reduce the error present in the dataset by exactly 20%. This is indeed
what might be expected: we cannot expect better-than-random performance if
we act randomly.

The red curve (marked “U-Theoretic”) represents our method as discussed
in Section 4.1. We can see that the improvement in performance with respect
to the blue curve is no less than dramatic; for instance, by inspecting 20% of
the verbatims the human coder obtains a reduction in overall error of 60%,
instead of 20% as obtained with the random ranker. This clearly indicates that
supporting the work of human coders via appropriate ranking methods is of
fundamental importance for maximising the cost-effectiveness of their work.

The green curve (marked “Baseline”) represents a variant of our method
that, instead of using utility theory, uses probability theory alone. That is, this
curve was obtained by setting the G(αj , fp) and G(αj , fn) values of Equations
3 and 4 to 1, and keeping them at this value for the entire process. In other
words, this method only takes into account the probability of misclassification
of the verbatim, and does not take into account the fact that correcting a false
positive has a different impact on F1 than correcting a false negative. We can
observe that this method obtains a substantially inferior performance than the
method based on utility theory, which confirms the quality of the intuitions
underlying the latter.

The brown curve (marked “Oracle1”) actually represents an “idealised”
(rather than a “real”) ranking method, since it represents how our utility-
theoretic method would behave if we could perfectly guess the actual values
of TP , FP , FN , from which the gains of Equations 3 and 4 are computed. As
we noted in Section 4.1.4, since at the time of computing the rankings we do
not know these values, we need to estimate them via 10-fold cross-validation.
We obtained the results represented by the Oracle1 curve by “peeking” at the
real values of TP , FP , FN , and feeding them to our utility-theoretic method.
The reason why we engaged in this seemingly futile exercise was precisely to
know how much we lose because of our (inherent) inability to perfectly estimate
the actual values of TP , FP , FN . The answer is that we do lose something but
this loss is not dramatic, as can be can seen from the difference between the
brown and the red curves. This suggests that the estimation method we have
used is reasonable.

The black curve (marked “Oracle2”) represents an even more idealised method,
since it represents how our utility-theoretic method would behave if we could

11 Unfortunately we are not allowed to display verbatim examples of the actual data we
have used, due to the fact that, for all of the 15 data sets, we have obtained permission from
the owners (a) to use the data set for experimentation purposes and (b) to report aggregate
numerical performance data in publications, but not (c) to display any actual verbatim in
publications.
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perfectly guess whether a verbatim has been coded correctly or not. That is,
while Oracle1 has no need to estimate TP , FP , FN , since it “knows” their true
values, Oracle2 has no need to estimate the probabilities of misclassification
described in Section 4.1.3, since for each verbatim it “knows” whether the
verbatim has been miscoded or not12. Again, the reason we engaged in this
exercise was precisely to know how much we lose by our inability to precisely
know whether the verbatim has been miscoded or not. The answer is that we
lose a real lot, as can be seen from the large distance between the black and the
red curve. However, this is somehow inherent, since if we had a way to precisely
know whether a given verbatim has been miscoded or not, we would have a
way to correct its code assignment with no human intervention, and we would
have no need of engaging human coders in an inspection task. The only way
we can hope to partially close the gap between the black and the red line is by
devising automatic coding systems with better “introspective capabilities” (i.e.,
such that the confidence scores they return are more reliable than the ones we
have used as input), and by devising better probability calibration methods.
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Figure 5. Five different ranking methods at work on our 15 datasets.

12 Note that Oracle2 a fortiori also knows the actual values of TP , FP , FN , so it is strictly
a more idealised method than Oracle1. Actually, it can be proven that Oracle2 is the best
possible ranking method, i.e., it is an absolute upper bound that no other ranking method, real
or idealised, can possibly outperform.
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6.1. ENER(y)

While ER(x) curves provide a nice graphical way of understanding the per-
formance of a given ranking method, it may also be useful to have a measure
that summarizes this performance in a single number. One obvious candidate
might be the area under the curve that represents the method. However, one
problem with this notion is that a very large portion of this area (namely, the
portion below the blue curve) represents an improvement in accuracy that is
due to chance (since the blue curve represents the expected performance of the
random ranker); this large area tends to dwarf any difference between curves
representing genuinely engineered methods (e.g., Baseline and U-Theoretic). A
second problem is that this notion does not take into account the fact that lower
values of x (e.g., 0.20) are more important than higher ones (e.g., 0.80), since
human coders are more likely to inspect the top-ranked verbatims than the
bottom-ranked ones; so, an improvement in the top 20% portion of the graph
is more important than an improvement in the bottom 20%.

In (Berardi et al., 2012) we introduce a measure called ENER(y) (standing
for expected normalized error reduction). ENER(y) is essentially the area be-
tween the curve representing the method and the “Random” curve, aside from
the fact that it pays more importance to small values of x than to high ones.
Exactly how much more importance it pays to the former than to the latter
is determined by the y parameter, which indicates the expected value of the
fraction of the set D that the coder is going to inspect. For example, y = 0.05
represents the scenario in which coders tend to inspect very small portions of the
list, while y = 0.20 envisages coders with higher perseverance. The smaller the
value of y, the less the high values of x weigh in the computation of ENER.
As usual, the interested reader should consult (Berardi et al., 2012) for the
mathematical details.

Table II lists the ENER(y) values obtained by the methods we have tested,
for three important values of y, i.e., 0.05, 0.10, 0.20. (As mentioned above, high
values of y represent unlikely scenarios.) The ENER(y) results reported in the
table witness the quality of the intuitions that underlie our utility-theoretic
method, which is seen to substantially outperform the probability-theoretic
baseline for all chosen values of y.

7. Discussion

7.1. The Law of Diminishing Returns

All of the curves (aside from the one representing the “Random” method) in
Figure 5 are fairly steep at the very beginning (i.e., for very low inspection
percentages) and are decreasingly steep as these percentages increase, flattening
out as they reach inspection depth values close to 1.

One practical effect of this is that the methods represented by these curves
are characterized by a sort of “law of diminishing returns”, which essentially
says that the very first phases of annotation work are extremely cost-effective,
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Table II. ENER(y) results as a function of the expected fraction of the ranked list
that gets inspected. Improvements indicated for the utility-theoretic method are relative
improvements with respect to the baseline. Oracle2 represents the theoretical upper
bound for the performance of any ranking method.

Method ENER(0.05) ENER(0.10) ENER(0.20)

Random 0.000 0.000 0.000

Baseline 0.109 0.182 0.240

Utility-theoretic 0.165 (+51.3%) 0.234 (+28.5%) 0.286 (+19.1%)

Oracle1 0.196 0.270 0.320

Oracle2 0.344 0.437 0.483

the subsequent ones are “just” cost-effective, and the ones after them are less
cost-effective. For instance, with reference to the example reported in Section
2, if the annotator’s target is to move up from the initial F1 = 0.533 value to
a value of F1 = 0.800 (a 50% increase in F1) she only needs to scan 25% of
the ranked list, but if she instead wants to go up to 0.850 (a 60% increase in
F1) she needs to scan 40% of the list. So, requiring just (0.850/0.800 =) 6%
more accuracy requires (40/25 =) 60% more annotation effort. Of course the
example of Section 2 is artificial; however, it is realistic enough to illustrate
qualitatively a “law of diminishing returns” that, as evident from the curves of
Figure 5, also holds in practice. Note that it is indeed a goal of a good ranking
algorithm for such a law to be in place; to witness, the “Random” ranking
algorithm implements a situation of constant returns, and this is undesirable.

7.2. Easier Datasets and Harder Datasets

As discussed above, the plots of Figure 5 result from averaging across the 15
different datasets of Table I. However, it is apparent from the last column of
Table I that the LL-A to LL-L and ANES L/D datasets appear “easier” (since
they give rise to F1 values between 0.73 and 0.98), while the Egg datasets
appear “harder” (with values of F1 between 0.52 and 0.61). We might wonder
what kind of impact these two groups of datasets have on the collective results
of Figure 5; in particular, we might wonder whether the datasets characterized
by higher F1 are also characterized by higher ER(x) values. To investigate this,
in Figures 6(a) and 6(b) we have plotted the results of the same five methods
of Figure 5, separately averaged across the 11 “easier” datasets (Figure 6(a))
and across the 4 “harder” ones (Figure 6(b)).

Two insights can be obtained by looking at these two figures:

1. all the methods (aside from the “Random” one) perform better on the 11
datasets characterized by higher F1 than on the 4 datasets characterized
by lower F1, as witnessed by the fact that the former curves are markedly
more convex than the latter;
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2. while the utility-theoretic method outperforms the baseline (probabilistic)
method in both cases, the difference between the two is higher for the 11
datasets characterized by higher F1 than for the 4 other ones.

The likely reason for the first fact is that, when a dataset is easy to classify (i.e.,
it gives rise to high F1), the confidence scores that the classifier outputs are
more reliable, i.e, they tend to correlate better with the true code assignments;
and reliable confidence scores bring about speedier improvements, since the
misclassified examples tend to be concentrated towards the top of the ranking
more densely than they would if the confidence scores were unreliable.

The likely reason for the second fact is not that the latter 4 datasets are
easier, but that the average imbalance between positive and negative examples
(i.e., the ratio between the value in the AVC column and the value in the
#V column of Table I) happens to be smaller for these 4 datasets than for the
other 11 datasets; a smaller imbalance means that the difference in gain between
correcting a false positive and correcting a false negative is smaller, which makes
the utility-theoretic method more similar to the baseline (probabilistic) method.
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Figure 6. Five different ranking methods at work: (a) on the LL-A to LL-L and ANES L/D
datasets, and (b) on the Egg datasets.

7.3. On the Practical Value of Utility-Theoretic Ranking

It is worthwhile to add a couple of observations on aspects of this method
related to its practical use.

A first observation is that this method lends itself to having more than one
human coder work in parallel on the same inspection task. For instance, if two
human coders work in parallel, coder C ′ may be asked to inspect the verbatims
at the odd-numbered positions in the ranking while coder C ′′ may be asked to
inspect the ones at the even-numbered positions. In a similar vein, any number
of coders may be put to work in parallel on the same task and still achieve the
same cost-effectiveness guaranteed by the single-coder scenario.
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A second observation is that this method is of practical value also because
it allows the human coder to have an estimate, at any stage of the inspection
process, of what level of accuracy has been attained so far. This is obtained by

1. Estimating the contingency table at the beginning of the process (e.g., after
the verbatims have been automatically coded and before the inspection
process begins) via 10-fold cross-validation. From the contingency table one
can compute F1, which returns an estimate of the accuracy obtained by the
automated classifier.

2. Updating the contingency table after each correction is made. Again, from
the contingency table one can compute an updated value of F1, which
is an estimate of the accuracy deriving from the combined action of the
automated classifier and the inspection activity of the human coder.

The human coder can thus make an informed decision on when to stop inspect-
ing, e.g., she may decide to stop when the estimate of the accuracy obtained so
far coincides or exceeds the accuracy level that was requested by the customer.

8. Concluding Remarks

In more and more application contexts that require verbatim coding, the use
of automated tools is a necessity, due either to the sheer amount of data that
requires coding, or to strict time constraints that may be imposed on the task,
or to issues of cost. However, in some of these scenarios the customer may insist
that coding is to be performed according to a certain level of accuracy, a level
that for some datasets may not be achievable by current automated coding
technology. In these cases, the only way to achieve the goal may consist in
coding the data by machine and then having one or more human coders review
some of the verbatims, with the goal of performing enough corrections so as
to bring accuracy up to the required level. The method we have presented in
this paper explicitly attempts to maximise the cost-effectiveness of the human
coders’ review work by presenting the verbatims as a ranked list, with the
intended meaning that the effort will be minimized if the coder inspects the
verbatims in the provided order.

What are the takeaway messages that derive from this study? The first
important one is that the order in which the verbatims are inspected by the
human coder is of paramount importance, as witnessed by the more-than-solid
improvements obtained, on 15 survey coding datasets, by two genuinely en-
gineered ranking methods (indicated as “Baseline” and “Utility-Theoretic” in
Section 6) with respect to the “Random” method (which represents a coder
that inspects verbatims by picking them in random order).

The second important message is that we should be very serious about the
mathematical measure we use for evaluating the accuracy of our verbatim cod-
ing systems. A first, fundamental reason (that goes beyond the specific task and
methods discussed in this paper) is that the evaluation measure must reflect
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the specific needs of the application. For instance, if the application is such that
the ability to avoid, say, false positives (“precision”) is more important than
the ability to avoid false negatives (“recall”), then a measure that reflects this
should be chosen13. A second reason is that our method tailors the rankings
it generates to the chosen accuracy measure (whatever this may be), since the
gains of Equations 3 and 4 are defined in terms of it and are thus optimized for
it. Altogether, these two facts point to the importance of developing a culture
of evaluation for verbatim coding endeavours, be they the result of automated
tools or not.

As a final (and somehow peripheral) note to the reader, we recall from
Footnote 6 that the goal of this paper is to at least convey the gist of a subject
matter that we elsewhere cover in much higher mathematical detail. We are
indeed conscious that the technical material presented here is somehow outside
the tradition of the market research literature, and may appear challenging.
However, quite aside from the specific topics dealt with in this paper, we think
this represents an opportunity to reflect, given the growing importance that text
mining / text analytics / sentiment analysis have in market research, whether
market research scholars and practitioners should or should not attempt to
understand what lies beneath the surface of the text analysis tools that are
being proposed to them by text analysis companies. Although this may require
market researchers to upgrade their mathematical toolbox a bit, we think this
should be the case, lest an entire discipline is taken hostage of vendors wanting
to hide more than they want to clarify.
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