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Abstract

The logical approach to information retrieval has recently been the object of active re-
search. It is our contention that researchers have put a lot of effort in trying to address
some difficult problems of IR within this framework, but little effort in checking that the
resulting models satisfy those well-formedness criteria that, in the field of mathematical
logic, are considered essential and conducive to effective modelling of a real-world phe-
nomenon. The main motivation of this paper is not to propose a new logical model of
IR, but to discuss some central issues in the application of logic to IR. The first issue we
touch upon is the logical relationship we might want to enforce between formulae d, re-
presenting a document, and n, representing an information need; we analyse the different
implications of models based on truth, validity or logical consequentiality. The relationship
between this issue and the issue of partiality vs. totality of information is subsequently
analysed, in the context of a broader discussion of the role of denotational semantics in
IR modelling. Finally, the relationship between the paradoxes of material implication and
the (in)adequacy of classical logic for IR modelling purposes is discussed.

1 Information Retrieval and modelling

In recent years, researchers in Information Retrieval (IR) have devoted an increasing amount
of work to the design of models of IR, i.e., of theoretical descriptions of the IR task that
could serve both as specifications for building running systems, and as theoretical tools for
abstractly investigating the relative effectiveness of systems built along their guidelines.

Modelling is fundamentally an activity of abstraction. A model is a description of a system
that concentrates on the most important, architectural features of the system, and leaves out
details that are believed not to be fundamental to the understanding of how the system
works. For instance, a model of an IR system might contain a description of how documents
and information needs are represented within the system, but leave out details on the data
structures used to store these representations. Of course, more or less details can be left out
from the description, depending on the purpose of the model. Different levels of abstraction
can then be envisaged, and different models of the same system can then be produced, each
at a different level of abstraction.

∗This work has been carried out in the context of the project FERMI 8134 - “Formalisation and Experimen-
tation in the Retrieval of Multimedia Information”, funded by the Commission of the European Communities
under the ESPRIT Basic Research scheme.
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Abstraction results in generalisation too, following the familiar principle according to
which an abstract (or partial) description is equivalent to the class of concrete (or total) de-
scriptions consistent with it: by leaving out non-fundamental details, the description actually
becomes a model of a whole class of systems, namely those which differ from each other only
by these details. A taxonomy of models can then be built that allows to classify IR systems
and highlight their common premises and fundamental differences.

Traditionally, the activity of modelling is ascribed to two fundamental classes of moti-
vations. Motivations of a descriptive nature reveal an intent to simply acknowledge “as is”
the previous work of system builders, and explain the characteristics of a class of systems
without being hampered by unimportant details, thus achieving clarity of exposition in the
description of these systems. Motivations of a prescriptive (or normative) nature, that may
be regarded as the primary driving force behind the activity of IR modelling, reveal instead
an intent to steer, or influence, the work of system builders, dictating (or proposing) what
the characteristics of a class of systems ought to be.

In the IR case (as in other subdisciplines of computer science), a third class of motivations
that somehow escapes the previous, traditional classification, has recently gained prominence:
motivations of a predictive nature reveal an intent to predict the behaviour of a real system
by running “abstract experiments” on an artificial, simplified setting. The properties of the
fundamentals of a system, or class of systems, can then be analytically tested: the theorist
can thus be sure that the results so obtained are not influenced by the (supposedly non-
fundamental) features that have been left out of the model.

Whatever the nature of the motivations for building models, however, it seems clear that,
in order to achieve the breakthrough in effectiveness that nowadays applications demand,
a better understanding is needed of IR and of the nature of information, and that such
an understanding may be achieved only by abstracting away from particular systems and
techniques, thus concentrating on the study of the core, foundational principles underlying the
IR endeavour. The recent interest that researchers have shown in the logical approach to IR
finds its roots in the belief that formal logic (and its companion discipline, formal semantics)
is the discipline that provides the right tools for studying these foundational principles.

Surely, IR is not the first discipline within computer science in resorting to logic and
methods of formal analysis. Researchers in other subfields of computer science, such as
databases or programming languages, have gained much deeper insights in their discipline by
analyzing it by means of logical techniques. In doing so, they have often uncovered deep-
seated assumptions that had previously gone undetected, or inconsistencies that undermined
the very foundations of the whole discipline, or problems previously unknown. Above all, they
have gained a new perspective from which to look at their discipline, a perspective from which
they have been able to take advantage of razor-sharp analytical tools whose effectiveness has
been widely recognised by the computer science community as a whole.

It might even be claimed that some disciplines, such as Artificial Intelligence (AI), have
been totally revolutionised by the advent of a “logic-oriented” mentality. By the late 70’s, AI
researchers had grown increasingly aware of the need for the methodological tools provided
by mathematical logic for the construction of AI models of the domains of interest (see
e.g., (Israel, 1985; McDermott, 1978)). Since then, the application of these methodologies
has shaken the foundations of AI, and the theories that have withstood the test of logic
have gained, as a consequence, strength and wider applicative impact, also arising interest
in practitioners and theorists of other subfields of computer science (e.g., database theory,
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distributed systems) or of science as a whole (e.g. economic theory). A representative example
of this is offered by AI “frame-based knowledge representation languages”. In the late 70’s
there existed a plethora of them, each based on its own custom primitives, each basically
incomprehensible to anyone apart from its own designers, who nonetheless remained adamant
on the fact that their languages could express what logic could not. The final insuccess of
these languages prompted the very researchers that had first proposed them to recast them in
terms of mathematical logic, resulting in what are now called terminological (or description)
logics (TLs—see e.g., (Levesque & Brachman, 1987)). These have turned out to be one of the
success stories of AI, to the point that AT&T relies on their inference engine to process billions
of dollars’ worth of customers orders (McGuinness & Alperin Resnick, 1995), and that they
are now popular among computer scientists as diverse as database language designers (De
Giacomo & Lenzerini, 1995) and factory-floor software engineers (Devanbu & Jones, 1994).

Although the history and underlying motivations of IR are profoundly different from those
of AI, we think that IR too can benefit from the application of logical tools to the design and
evaluation of its models, and our belief is indeed one of the fundamental premises that underlie
our past work (Meghini et al., 1993; Sebastiani, 1994). The methodology in the use of logic
that has been developed in AI and analytic philosophy is relevant also to IR applications,
since logical tools are not committed to a specific domain to be modelled: documents and
information needs constitute indeed one of their possible domains. Establishing logic as a
common language between IR theorists and theorists of other subfields of computer science
can also help IR in fostering cross-fertilisation with these other disciplines.

2 Incrementality and “modelness”

Information Retrieval, having been around almost since the invention of digital computers,
has grown into a greatly complex discipline. A wealth of phenomena on which the relevance
of documents to user information needs depends, have been highlighted by researchers, and a
corresponding wealth of tools have been developed in the attempt to cope with them. Building
realistic, worthwhile logical models of IR thus means modelling all these different phenomena,
which makes for an extremely severe task.

In order to make worthwhile progress in this direction, we think that a logical model should
be built incrementally. According to this line of thought, a relevant number of simplifying
assumptions on what IR is should be made in the beginning, so as to allow the provisional
design of a simple model of (an “idealised” version of) IR along methodological guidelines
previously set. These simplifying assumptions should then be relaxed one by one, leading to
the design of successive, more complex models that deal with a more and more complex and
realistic picture of IR. Of course, care must be taken that the chosen methodology does allow
the relaxation of these assumptions.

This way of proceeding places then more importance on the requirement that a first model
of IR being preliminarily designed satisfy well-formedness adequacy criteria well accepted in
the field of formal modelling, than on the requirement that the coverage of the model be
comprehensive, i.e., that the model deals with all the wealth of phenomena which are of
interest to IR. In some sense, we are saying that logical models of IR can be judged by two
different yardsticks: “modelness” (or “logical well-formedness”) and coverage.

An analysis of the logical models of IR proposed so far in the literature reveals, in our
opinion, that coverage has been the primary goal to attain for most researchers who have
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engaged in IR modelling through logic, and that most of the models designed so far hardly
satisfy the well-formedness criteria that are standard in applied logic. Instead, we think
it is much more fruitful to first design a logically well-formed, albeit simple, model of IR
and incrementally make it more respondent to the complex reality of IR, than to start with
a logically flawed, although comprehensive, model of IR and incrementally eliminate the
(possibly inherent) flaws. This position is not only ours, but underlies practically all work in
applied logic. For instance, the problem of modelling logically the diagnosis of faulty circuits
has first been solved for circuits with single faults (Reiter, 1987), and only later the problem of
multiple faults has been tackled (de Kleer & Williams, 1987). This and other experiences in
applied logic show in our opinion that modelness is to be considered a sine qua non condition
from the start, and coverage a goal to attain incrementally. The purpose of this paper is then
to take modelness issues at heart, and discuss methodologies and criteria for the design of
logical models of IR. This will be the topic of Sections 3 to 6.

3 The logical model of Information Retrieval

Although interest in logic on the part of IR researchers may be traced back at least to the
early 70’s (see e.g., (Cooper, 1971)), the first clear statement that IR should be understood
in logical terms is, to our knowledge, due to van Rijsbergen1. In (van Rijsbergen, 1986)
and in a number of subsequent papers (van Rijsbergen, 1989, 1992), van Rijsbergen proposed
that the retrieval of document d as a result of information need n should be seen in terms
of the logical formula P (d → n), where “→” is the conditional connective formalised by a
logic to be chosen and where P (α) is to be read as “the probability of α”2. Accordingly, the
central problem of this way of looking at IR becomes that of selecting the “right” implication
connective, i.e. selecting the logic whose implication connective best mirrors relevance and
all the factors that influence it. The “ideal” logic should be the one in which P (d → n)
equals the probability that the document represented by d is relevant to the information need
represented by n. To this respect, van Rijsbergen also argued that material implication (i.e.,
the implication connective formalised by classical logic) is not adequate for this task. He
speculated that the answer might instead lie in the brand of implication formalised by some
non-classical logics, also suggesting that the C2 logic, from the tradition of “conditional”
logics (Stalnaker, 1968; Stalnaker & Thomason, 1970), might be promising in this respect.

In a “P (d → n)” model, the role of probability is a key one, as logical formulae are
inherently imperfect representations of documents and information needs; the relevance of
a document to an information need can thus be established only up to a limited degree of
certainty. In the discussion that follows, however, we will ignore this issue, and make the

1Darlington (1969) has been suggested by some to be the first researcher to point out that IR could be
conceived in terms of logic. However, an examination of his work shows that the notion of IR that he takes
into account is more akin to “data retrieval” as in database systems, and he gives no suggestion as to how the
ideas presented could be extended so as to take into account information retrieval as we understand it. For this
reason, we will not consider Darlington’s work as relevant to our purposes; the same will happen, essentially
for the same reasons, with the work of Patel-Schneider et al. (1984).

2In this paper we are taking a slight detour from the terminology used in van Rijsbergen’s papers, as we will
take queries to be representations of information needs. Information needs and documents are the “concrete
entities” of our domain, while what we actually deal with in logic is their representations; “noise” is introduced
in the translation from information needs to their representations (queries) and from documents to their
representations. As a consequence, the rightmost symbol in the implication is for us not “the representation
of a query”, but “the representation of an information need” (or “a query”).
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simplifying assumption that “perfect” representations of documents and information needs
can indeed be obtained, and that they are logical formulae of a simple non-probabilistic (e.g.,
propositional) language. This is an obviously unreasonable assumption once one attempts
to build a realistic model of IR. It is however an assumption that will momentarily allow us
to concentrate on discussing what characteristics a “good” formal model of IR should have
by drawing our examples from a simple, non probabilistic logic. This is in keeping with the
policy exposed in Section 2, as the very first “modelness” issues we need to clarify are those
affecting very simple logical models of IR; only after these have been agreed upon may we
tackle those concerning more complex ones. As a matter of fact, all the claims we make in
this paper for the non-probabilistic case apply equally well once we plug in probability.

van Rijsbergen’s proposal is fascinating for three quite distinct reasons. The first, more
obvious reason is is that this model provides a bridge with database research, as the logical,
proof-theoretic model of databases (Reiter, 1984) precisely establishes that a tuple t is to be
returned as a result of query q iff t → q3.

The second reason is apparent once we consider, instead of the proof-theoretic, “symbol-
crunching” level of logic, its model-theoretic, semantic level. In terms of this latter, the
logical approach to IR amounts to sanctioning that relevance coincides with (set-)inclusion of
information content, or semantics: only documents whose information content includes that
of the information need are to be retrieved. Building effective IR models means then designing
formal theories of the semantic (or information) content of documents, possibly taking into
account context-dependence and other situational aspects of information (van Rijsbergen &
Lalmas, 1996).

The third reason springs from the existence of the proof-theoretic aspect of logic, and is
related to the predictive intent of the modelling task discussed in Section 1. The adoption
of the logical model means that, once the document and the information need are given a
representation, “abstract experiments” can be performed by running a theorem prover for the
logic in question and establishing whether d → n. The logical model of IR is then an effective
model (in the sense of computability theory). The idea of “running abstract experiments” is
especially interesting for IR, as it might produce good insights into phenomena and techniques
of IR that are not yet well understood. In fact, experimental methodologies of the standard
kind, while allowing to determine that certain techniques work better than others on a given
experimental setting, do not always help in understanding the reasons that lie at the root of
such behaviour. A logical model, instead, might prove a better “experimental” tool in this
respect. We might thus envisage, for instance, coding a particular IR technique in a given
logic; once the fact that this is a faithful encoding of the technique has been established
(e.g., by cross-checking the results of theorem proving, or proof checking, with those obtained
experimentally), the semantics of the logical language would give insight into how and why
such results are obtained, and give directions as to how the technique should be implemented
in real systems. If two techniques, for some yet unknown reasons, do not fit together well in
real IR systems, they could both be encoded in the model, and the reasons for their interaction
could be investigated by inspecting the semantics of the language.

3This approach may more precisely be classified along the line of the “hybrid approaches” hinted at in
Footnote 11.
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4 On the status of d → n

van Rijsbergen’s proposal has proven very influential, to the extent that a number of papers
have appeared in the literature tackling, in a variety of ways, the problem of modelling IR
within the above-mentioned paradigm. However, a comparative analysis of these papers
reveals that it is far from clear what the logical status of the d → n formula should be,
in order to indicate that the document represented by d is relevant to the information need
represented by n. In particular, authors seem to take different stands on which among the
following facts should indicate this:

1. d → n is true in some particular interpretation of the chosen logic L;

2. d is a logical consequence of n in L;

3. d → n is valid in L;

4. n is derivable (or provable) from d in L;

5. d → n is a theorem of L.

These notions mean substantially different things in logic, and it should be apparent that
any logical model of IR (or of any other real-world phenomenon, for that matter) should take
a clear stand on this issue if “modelness” is to be a key concern4. This variety of different
approaches opens up questions such as: “Is there one ‘right’ notion, among the ones above,
on which a logical model of IR should be based?”; “Is there more than one?”; “Are there
‘wrong’ ones?”. And a problem incumbent in the background is, of course, that if different
notions are employed, comparison of these models may be difficult to achieve. Bruza and
Huibers (1994) have quite appropriately expressed their concern on this:

Research has not yet produced a powerful enough framework whereby informa-
tion retrieval systems can be compared inductively instead of experimentally . A
breakthrough in this area would mean that a theorem could be proven stating,
for example, that vector space retrieval is more effective than Boolean retrieval.
Such a result would not only spare us the efforts of experimentation, but more
importantly, it would allow us to side step the controversies surrounding the ex-
perimental process.

Let us then try to analyse the different stands which have been taken. In (van Rijsbergen,
1989), van Rijsbergen seems to indicate that Option 4 (derivability) is the relevant notion to
use:

4 We recall that: 1) a formula α is a logical consequence of a set of formulae Γ when α is true in all
the interpretations in which all the formulae in Γ are true; 2) a formula α is valid when it is true in all
interpretations, i.e., when it is a logical consequence of the empty set; 3) a formula α is derivable (or provable)
from a set of formulae Γ when α can be obtained by applying the rules of inference to the axioms of the logic
and the formulae in Γ; 4) a formula α is a theorem when it can be obtained by applying the rules of inference to
the axioms of the logic, i.e., when it is derivable from the empty set. While “derivability” and “theoremhood”
are syntactic (or proof-theoretic) notions “truth”, “validity” and “logical consequentiality” are semantic (or
model-theoretic) notions. When the syntactic apparatus (i.e., the set of axioms and inference rules) of a logic
is weakly sound and complete with respect to its semantics, theoremhood coincides with validity; when it is
strongly sound and complete, we also obtain equivalence between derivability and logical consequentiality.
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The proposal of this paper is that all retrieval be based on a well-defined inference
mechanism. This requires that objects and queries be given a formal semantics
and that retrieval is expressed as a proof.

although also Option 5 (theoremhood) is no doubt consistent with this formulation. Bruza
and van der Gaag (1993) explicitly side for Option 4 (derivability):

In this approach, an information object is deemed relevant with respect to a
searcher’s request if this request can be proven from the characterization of the
object by employing a set of rules of inference.

Nie (1989) has Option 1 (truth in a particular interpretation) in mind when he says:

For document D to be a “right” answer for query Q, it must “imply” the query,
i.e., D → Q. (. . . ) The symbol → does not signify the “material implication”
as in classical logics. A counterexample for the material implication is that an
empty document cannot imply a nonempty query (. . . ).

as none among the other four options would result, in classical logics, in the behaviour he
describes.

In their review paper on logical models of IR, Chiaramella and Chevallet (1992) agree de
facto with Nie in embracing Option 1 (truth in a particular interpretation), as their rebuttal
of classical logic is based on the truth of material implication in a single interpretation:

If we consider the third line of this truth table, saying that when a predicate A is
false and B is true, then A implies B is true has certainly no intuitive meaning:
algebraic considerations somehow overrode common sense interpretations. We
have left the domain of reality for the domain of mathematical abstraction.

In their model based on Terminological Logics (TLs), Meghini et al. (1993) embrace instead
Option 3 (validity)5:

The terminological model then sees IR as the task of retrieving, as a response to
a query C, all and only those documents i such that (sing i) �Ω C, where Ω is
a TL representation of the document base [and �Ω denotes hybrid subsumption
between terms]. In other words, IR is the task of retrieving all those documents
whose membership in the class denoted by C is a direct consequence of the truth
of all the assertions and axioms of Ω.

An analysis of various other works concerning logical models of IR (such as (Wong & Yao,
1991; Müller & Thiel, 1994; Fuhr, 1995; Hunter, 1995)) confirms that there is a general lack
of agreement on this issue.

What stand should one take then, given that we want to take “modelness” seriously and
given that these options are in general not equivalent? For ease of discussion, we will make the

5In reference to this work, however, it should be noted that neither of the five notions discussed above
applies to TLs, as TLs deal with terms rather than formulae, while all these notions apply to formulae only.
However, a closer look at TLs reveals that hybrid subsumption is the TL analogue of validity (on this see also
Footnote 11).
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simplifying assumption that our logic has a strongly sound and complete inferential apparatus.
As we observed in Footnote 4, this will allow us to restrict our discussion to truth, validity
and logical consequentiality; everything we will say about validity and logical consequentiality
will thus also apply to theoremhood and derivability, respectively6.

4.1 Truth

Truth is not a suitable notion on which to base a logical model of a real-world phenomenon.
In the IR case, this may be seen by noting that, if we wanted to model the relevance of the
document represented by d to the information need represented by n with the truth of d → n,
we should also specify in which interpretation the truth of d → n has to be evaluated. A
formula cannot be true tout court, simply because truth is not a property of formulae, but
a binary relation between formulae and interpretations. We might naively answer that we
should take “the interpretation that corresponds to the real world” (i.e., the interpretation
in which the sentence “Glasgow is in Scotland” evaluates to true, “Birds are mammals”
evaluates to false, and so on). But what is then the truth value to which “The number of
water molecules in my glass is even” should evaluate? In the “interpretation that corresponds
to the real world” this sentence surely has a truth value, i.e., that number either is even or is
not. The answer is that we do not have a clue to what the “interpretation that corresponds
to the real world” is, because our knowledge of the real world (or, more to the point, of our
domain of discourse) is partial, and often fallacious too, even in more mundane matters than
those of molecular structure. And IR is no exception, as clearly argued by Lalmas and van
Rijsbergen (1993):

Partiality is an important feature of an IR system because it is common that it is
unknown whether or not an item of information is contained in a document. So,
assigning a truth-value to every existing formula that can be defined in the logic
is meaningless.

An interpretation (i.e., “a way the world could be”) is not something we can pick out and
stipulate to correspond to the real world, simply because we do not have a “direct grasp” (i.e.,
total and infallible knowledge) of the real world. Henceforth, truth is not simply difficult or
impossible to compute; it is just not an object of computation, and to speak of “computing
truth” is a bit of an epistemological oxymoron. We take up again the topic of truth in
Section 6.1.

4.2 Validity

This argument, we think, illustrates that the notion of truth is unsuitable for modelling
substantial fragments of reality; indeed, this is the reason why, in devising a logic, a logician
is usually not interested in specifying the notion of truth per se, but is rather interested
in specifying truth as functional to the specification of the notions of validity and logical
consequence7.

6Quite obviously, when proposing a particular logical model for IR we should check whether this assumption
holds or not in the particular logic we have chosen. In fact, among the logics that have been proposed as
foundations for a model of IR, some do not enjoy this property (e.g., propositional modal logic, proposed in
(Nie, 1989)).

7Many logicians take a logic to be the set of its valid formulae.
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But how then could such a model be based on e.g., validity, given that the notion of
validity is defined in terms of truth? The key observation is that valid formulae are true (in
any interpretation) in virtue of their form, and not in virtue of their content. Because of
this, we do not need to have a grasp on the real world (i.e., to know which interpretation
corresponds to it) to assess the validity of a formula (in the IR case: to assess whether we
should retrieve the document or not); we only need to perform a purely symbolic check of the
formula itself. For instance, the formula of propositional logic

John-likes-football ∨ ¬John-likes-football (1)

is true in any interpretation (i.e., valid). In order to assess its validity it is not necessary
to know whether in the interpretation that corresponds to the real world (or in any other
particular interpretation, for that matter) John actually likes football or not; it is instead
sufficient to apply the well-known syntactic rules for validity checking in propositional logic.
This formula remains valid even if we substitute any other propositional formula to the two
occurrences of John-likes-football, which indicates that content has really nothing to do
with validity. The formula

John-is-a-man → John-likes-football (2)

instead, may well be true in the interpretation that corresponds to the real world, but is false
in others, hence is logically not very interesting.

One might argue that (2) is at least an informative formula (“it says something”), and
that valid formulae like (1), being tautologous, carry no information content. The notion
of informativeness that is being hinted at here is the one by Carnap and Bar-Hillel (1953)
(henceforth “CBH-informativeness”), according to which a formula is the more informative
the more countermodels it has (i.e., the more interpretations falsify it)8; valid formulae are
then minimally CBH-informative, as they have no countermodels. But in the IR case it
is not the formula d → n that carries information to us; it is the very fact that it is (or
that it is not) valid, as it informs us whether we should retrieve the document or not. For
instance, if we cast the Boolean model of IR in terms of the validity of formula d → n in
propositional logic, the fact that the formula (p1∧p2∧p3) → (p1∨p2) is valid informs us that
a document indexed by terms p1, p2 and p3 should be retrieved as a result of the information
need represented by p1 ∨ p2; and the fact that the formula (p3 ∧ p4 ∧ p5) → (p1 ∨ p2) is
not valid informs us that a document indexed by terms p3, p4 and p5 should not be retrieved
as a result of the same information need. In other words, we might say that although the
valid propositional formula (p1 ∧ p2 ∧ p3) → (p1 ∨ p2) is CBH-uninformative, the meta-
formula V ALID((p1 ∧ p2 ∧ p3) → (p1 ∨ p2)) (where V ALID is a meta-predicate symbol) is
CBH-informative, as is also the meta-formula ¬V ALID((p3 ∧ p4 ∧ p5) → (p1 ∨ p2)).

This notion of “meta-level informativeness” is, of course, task-oriented, and the task here
is IR. In fact, we are not interested in the validity or non-validity of formulae which are not
of type d → n; thus, a meta-formula such as V ALID(p1 ∨ ¬p1) has no information content
to us, as it informs us of the validity of a formula that is not meant to represent relevance of
documents to information needs.

In sum, the interesting fact is that adopting a form-based notion as validity is, rather
than a content-based notion as truth is, allows us to effectively (in the sense of computability
theory) reason about information content.

8We would like to thank Gianni Amati for pointing this out to us.
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4.2.1 Truth, validity and the “false document problem”

A further hint that validity, rather than truth, is a better way to go comes from the observa-
tion that, once we base a model of IR on validity, the model does not suffer from what has
been called the false document problem (see e.g., (Chiaramella & Chevallet, 1992)). Accor-
ding to the supporters of Option 1 (truth in a particular interpretation), propositional logic,
and classical logic in general, suffers from the problem that a so-called “false document” (i.e.,
a hypothetical document which is “about nothing”—we will rather call it a totally uninfor-
mative document (TUD)) is deemed relevant to any information need, and this is obviously
unsuitable.

In fact, suppose our term language consists of the set of propositional letters P =
{p1, p2, p3, p4}, so that a TUD is represented by the formula ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4; quite
obviously, in propositional logic the formula (¬p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4) → α is true for any
propositional formula α in at least one interpretation, i.e., in the interpretation that makes
all propositional letters in P true.

But this does not mean per se that propositional logic is unsuitable for modelling IR: it
just means that a model based on truth in a particular interpretation is. In fact, it is easy
to show that, if Option 3 (validity) is adopted, no “false document problem” obtains, and all
and only those documents whose representation has a greater “information content” than the
representation of the information need are retrieved. For those documents for which this is
not the case (as in the case of a TUD), d → n will not be valid, i.e., there will be at least
one assignment of truth values to the propositional letters for which d → n will be false. For
these documents, it may well be that, among the assignments that make d → n true, there
is some assignment that makes d false and n true, and hence makes the implication d → n
true; but this need not worry us, as long as the implication is not valid. This situation will
be better illustrated by means of an example.

Example 1 Let us define a model of IR based on the validity of d → n in propositional
logic, in the following way. Let us suppose each document is represented by a conjunction of
literals (a literal being either a propositional letter or its negation) drawn from an alphabet
P = {p1, p2, p3, p4}. Relying on propositional logic allows us to express the following facts:

1. to explicitly say that d is about pi; this is obtained by including pi as a conjunct in d’s
representation;

2. to explicitly say that d is not about pi; this is obtained by including ¬pi as a conjunct
in d’s representation;

3. to take no commitment as to whether d is or is not about pi; this is obtained by including
neither pi nor ¬pi as conjuncts of d’s representation9.

Note that, in this representation, a TUD is represented by the formula ¬p1 ∧¬p2 ∧¬p3 ∧¬p4.
Let us also suppose that each information need is represented by a formula of propositional

logic built out of alphabet P . The three types of facts that can be stated in representing
9In many approaches to Boolean retrieval, including neither pi nor ¬pi as conjuncts of d’s representation

is taken to mean that d is not about pi. This is called the closed world assumption (CWA); our arguments
would follow similar lines even in this case, as the effect of the CWA is to say implicitly what here is specified
explicitly.
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p1 p2 p3 p4 d1 d2 d3 n d1 → n d2 → n d3 → n

1 T T T T F F F T T T T

2 T T T F F F T T T T T

3 T T F T F F F T T T T

4 T T F F T F T T T T T

5 T F T T F F F T T T T

6 T F T F F F F T T T T

7 T F F T F F F T T T T

8 T F F F F F F T T T T

9 F T T T F F F F T T T

10 F T T F F F F F T T T

11 F T F T F F F T T T T

12 F T F F F F F T T T T

13 F F T T F F F F T T T

14 F F T F F F F F T T T

15 F F F T F F F F T T T

16 F F F F F T F F T F T

Figure 1: Validity-based relevance assessments

documents can also be stated in representing information needs: for instance, if we represent
an information need by formula p1 ∨ ¬p2, we mean that the system should retrieve all and
only those documents that are either about p1 or are not about p2, regardless of whether they
are also about p3 and/or p4. Figure 1 shows validity-based relevance assessments for the three
sample documents

d1 ≡ p1 ∧ p2 ∧ ¬p3 ∧ ¬p4

d2 ≡ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4

d3 ≡ p1 ∧ p2 ∧ ¬p4

with respect to information need

n ≡ p1 ∨ (p2 ∧ ¬p3)

Note that document d2 is a TUD. As can be gathered from inspection of Figure 1, formulae
d1 → n and d3 → n are valid (i.e., the corresponding columns have all T’s); this means
that the documents represented by d1 and d3 are deemed relevant to the information need
represented by n, as should indeed happen. The formula d2 → n, instead, is not valid (i.e.,
there is an F at row 16 in the corresponding column); this means that, contrary to what might
happen in truth-based approaches to relevance, the TUD represented by d2 is correctly deemed
not relevant to the information need represented by n.

It might be interesting to note that there are indeed formulae representing information needs
to which a TUD would be deemed relevant: these are precisely all conjunctions of nega-
ted propositional letters that can be built by using alphabet P (and all formulae logically
equivalent to them). For instance, the TUD represented by d2 would be deemed relevant
to the information need represented by ¬p1 ∧ ¬p2 ∧ ¬p3. But this information need is at
least as “pathological” as a TUD is a “pathological” document: and it is perfectly reasonable
that a “document about nothing” should be deemed relevant to an “information need about
nothing”.

Note also that this argument, apart from accumulating further evidence against Option 1
(truth in a particular interpretation) as a suitable notion on which to base a logical model of
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IR, has the practical consequence of invalidating a number of arguments (see the introduction
to Section 4) that were made against the suitability of classical logic for IR modelling purposes,
and that were essentially based on a truth-based view of IR modelling. We will come back to
this point in Section 5.

4.3 Logical consequentiality

Let us now discuss the case of logical consequentiality. The first thing we should point out is
that in Example 1 the same results we have obtained with validity would have been obtained
by adopting logical consequentiality. This is due to the use of propositional logic as the basis
of the simple model adopted in the example: propositional logic is in fact strongly sound and
complete with respect to its standard denotational semantics, and this ensures (see Footnote
4) that, for any formulae α and β, α → β is valid if and only if β is a logical consequence of
α.

However, given that we are seeking a general (i.e., independent of the chosen logic) cha-
racterisation of what a logical model of IR should consist of, it is necessary to assess which is
the notion of choice in case the two are not equivalent.

To a first approximation both are by and large suitable, as both are “form-based” notions,
rather than “content-based” as truth is: while truth may be checked only with reference to a
specific interpretation, validity and logical consequentiality may be established formally (and
thus effectively), by symbolic manipulation only. These two notions are the cornerstones
of logic exactly because logic is concerned with partial and possibly fallacious knowledge of
the world, and both notions specify exactly those inferences which are compatible with this
knowledge, however partial and fallacious it may be. For instance, in Example 1 we would
like document d3 to be deemed relevant to information need n: by relying on e.g., logical
consequence this indeed happens, because n is compatible with the partial knowledge we
have of document d3 (partial as it does not say anything on d3 being about p3 or not) that is
expressed by the formula p1 ∧ p2 ∧ ¬p4.

Forgetting about truth, let us now try to assess the relative merits of validity and logical
consequentiality. One aspect on which validity scores better is that logical consequentiality
would seem a bit unsuitable given that what we are really interested in is extending the
“d → n model” to a “P (d → n) model” (see Section 3), i.e., to a model in which we can
speak of the probability of relevance in terms of a formula P (d → n) = r to be read “the
probability that d implies n is r”. Given a suitable logic (e.g., the one discussed in (Halpern,
1990)), we can express formulae such as P (d → n) = r, and define appropriate notions of
truth and validity for them. However, in no logic that we know of (although it might perhaps
in principle be possible) we can formalise the sentence “the probability that n is a logical
consequence of d is r”, and define (meta-level) truth and validity conditions for it; in fact, in
any logic that we know of either n is a logical consequence of d or it is not (i.e., the probability
of this fact, to be expressed in the metalanguage, would always be either 1 or 0)10, and we
can hardly imagine a reasonable set of events on which such a probability distribution might
be defined.

10Bruza (1993, page 24) recognises this difficulty when, commenting on (Cooper, 1971), he says: “Defining
relevance in terms of logical consequence implies that an object is (logically) relevant with respect to an
information need, or it is not. Therefore, Cooper did not view relevance as being “grey”. According to
Cooper, the greyness is a product of a matching algorithm which does not fully complete the inferential
process.”.
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One aspect on which logical consequentiality gets instead a better mark is its more intuitive
character. It is quite intuitive, in fact, that relevance of a document to an information need
is a consequence of the semantic content of the document and of the information need, and
possibly of other factors such as the meaning (as specified e.g., in a thesaurus) of the terms
involved; and it is quite intuitive that relevance should not depend on the fact that the
particular logic adopted has an implication connective in its language11.

To sum up our argument, we may then say that at a first approximation both validity
and logical consequentiality are suitable (whereas truth is not), and which is best is an issue
open to debate, as each of them has advantages and disadvantages for IR modelling12.

5 IR and the paradoxes of material implication

Since the very introduction of the logical model of IR, researchers seem to have maintained
as a cornerstone of their investigations that classical logic is not adequate for IR modelling.
However, in Section 4 we have seen that a number of arguments that had been used against
employing classical logic for IR modelling are substantially invalid, as they are based on
a misuse of logic in modelling real-world phenomena. It is our contention that also other
arguments that have tried to counter classical logic are far from conclusive, and that we
should perhaps come to the conclusion that the use of classical logic in IR has been dismissed
too hastily.

Note that classical logic has been criticised on two accounts13:

1. an extension of classical logic is needed, because as it stands it can deal neither with
(a) the uncertainty, or probability, of relevance, nor with (b) the partiality, or non-
binary character, of relevance, which must be dealt with because (a) representations
of documents and information needs are inherently imperfect, and because (b) (user)
relevance can come in degrees;

2. a deviation of classical logic is needed, because as it stands (a) even if perfect repre-
sentations of documents and information needs could be obtained and were formulae
of classical logic, and (b) even if there existed no such a thing as partial relevance, it
would not be adequate.

It is this latter criticism we do not completely agree with; one argument that has been brought
to its support is the following.

A number of researchers have recalled that material implication suffers from idiosyncra-
tic behaviour, resulting in what are known as “the paradoxes of material implication” (see
e.g., (de Swart & Nederpelt, 1992) and (Haack, 1978, Chapter 3)), and have implied that

11Note that a seemingly “hybrid” approach is also possible: one might require that K |= d → q, where K
represents a body of background knowledge, possibly including characterisations of d and/or n. Although this
approach involves both validity and logical consequentiality, validity is obviously the really relevant notion
here.

12Not surprisingly, in the logical approach to AI either approach is adopted from time to time, with a
tendency to adopt logical consequentiality in the case of classical logics and validity in the case of those
“esoteric” logics which do not enjoy strong soundness and completeness (Levesque, 1984).

13We recall that, given a logic L = 〈A,V〉 defined on alphabet A and with a set of valid formulae V: (a) an
extension L′ of L is a logic 〈A′,V ′〉 such that A ⊂ A′ and V ⊂ V ′; (b) a deviation L′ of L is a logic 〈A′,V ′〉
such that A = A′ and V 
= V ′. See (Haack, 1978, Chapter 9) for a more detailed discussion on this.
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this renders material implication an unsuitable starting point in the attempt to model rele-
vance of documents to information needs14. For instance, it is well-known that the following
schemata15, all of which have a distinctively counter-intuitive flavour once “→” is interpreted
as “if . . . then . . . ”, are valid in classical propositional logic:

α → (β → α) (3)
¬α → (α → β) (4)
(α → β) ∨ (β → α) (5)

However, if relevance of documents to information needs is to be modelled by the validity
of formula d → n, our interest as IR theorists in an implication connective is exclusively in
terms of its behaviour in the context of a formula d → n in which neither d nor n contain
occurrences of the “→” symbol. Of course, the representation of an information need may well
be a formula of type ¬p1 ∨ p2, which in classical logic is equivalent to p1 → p2. But this need
not concern us, as we do not understand this occurrence of “→” as modelling relevance; in fact,
the counter-intuitive character of schemata (3)÷(5) critically depends on the interpretation
of all the occurrences of “→” as “if . . . then . . . ”. For instance, if we equivalently write (4) as
γ → (γ ∨ β) (where γ = ¬α), this says something which, far from being paradoxical, can be
absolutely subscribed to, namely that a document about γ is to be retrieved as a consequence
of an information need about γ or something else.

Hence it would seem that the only “paradoxes” that may be of interest to us are those
in which “→” occurs at a level of nesting equal to 1, and that we can instead disregard the
others; and, to the credit of classical logic, no “paradoxes” of nesting equal to 1 have ever
been pointed out (unless either the consequent or the antecedent are themselves either valid
or contradictory, a case which we discuss later).

Actually, that we can disregard schemata (3) and (4) is true only in part. In fact in
classical propositional logic, as in any logic in which modus ponens is a rule of inference16,
whenever α → β is valid, if α is valid also β is valid. This means that schemata (3) and (4) are
of interest to us, because they reflect the behaviour of the logic once either the information
need and/or the document are themselves represented by valid or contradictory formulae;
luckily enough, these cases turn out to be harmless, as the following discussion shows.

In IR terms, Schema (3) is pertinent to the case of information needs represented by
valid formulae. In fact, from (3) and modus ponens we have that if n is a valid formula
then d → n is also valid: in IR terms this means that any document will be deemed
relevant to an information need represented by a valid formula. But note that such an
information need is represented by formulae such as p1 ∨ ¬p1 (or its logical equivalents),
which corresponds to a request to retrieve “all documents that either are about p1 or are
not about p1”: it is then perfectly reasonable that all documents from the document base
should be selected for retrieval, as a query such as p1 ∨ ¬p1 asks exactly for this. It is also

14Actually, none among the papers quoted in this article mentions the “paradoxes” of material implication
explicitly; it is however clear that those are the phenomena referred to. We write the word “paradox” in quotes
because, in the case we are discussing, it is actually a misnomer: the “paradoxes of material implication” are not
cases of inconsistent behaviour (as e.g., in the paradox of the Liar), but rather of counter-intuitive behaviour.

15A schema is an expression which stands for the class of formulae of the logic that can be obtained by
uniformly substituting formulae of the logic for metavariables; for instance, the schema of propositional logic
α∨¬α stands for the set of formulae of propositional logic containing e.g., the formula p∨¬p and the formula
(p → q) ∨ ¬(p → q).

16Not all logics have this property: see the discussion on “the admissibility of γ” in (Dunn, 1986).
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clear from this example that valid formulae are representations of “pathological” information
needs: any normal information need will be represented by a formula that is neither valid
nor unsatisfiable, but true in some proper subset of the set of interpretations of propositional
logic.

Schema (4) is instead pertinent to the case of documents represented by unsatisfiable for-
mulae. In fact, from (4) and from modus ponens we have that, if ¬d is a valid formula (i.e.,
if d is unsatisfiable), then d → n is also valid: in IR terms this means that a document
represented by an unsatisfiable formula will be deemed relevant to any information need.
But note that such a document is represented by formulae such as p1 ∧ ¬p1 (or their logical
equivalents), which asserts that the document “at the same time is about p1 and is not about
p1”. It is also clear from this example that unsatisfiable formulae are representations of “pa-
thological” documents: as for information needs, any “normal” document will be represented
by a formula that is neither valid nor unsatisfiable, but satisfied in some subset of the set of
interpretations of propositional logic17.

In sum, only a few among the paradoxes of material implication are pertinent to IR mo-
delling, depending on the level of nesting of the “→” connective; we have shown that the
few pertinent ones do not rule out the use of classical propositional logic for IR modelling,
as 1) they affect the behaviour of the model only when “pathological” documents and infor-
mation needs are considered, and 2) even in these cases they arguably do not affect it in an
unreasonable way.

6 The role of denotational semantics in IR modelling

In Section 4 we have argued that either validity or logical consequentiality should be the
central notions in any logical model of IR. The denotational semantics of the representation
language used in the models under scrutiny has played a central role in our argument18. In
fact, it is by analysing the semantics (i.e., the truth conditions) of the formulae involved in
these models that we have been able to fully understand the different impact on IR models
of the five notions discussed in the previous sections. Had we relied on syntactic and proof-
theoretic notions only, we would have been able to perform this analysis only with greater
difficulty.

Denotational semantics is extremely important in logical analysis, as it provides a frame of
reference for analysing the meaning of the logical machinery used to formalise the application
domain of interest. This frame of reference is so outstanding in terms of clarity and simplicity
that it has gained the status of a “standard”, both within the logic community (Haack, 1978)
and the programming languages community (Gordon, 1979); it thus provides a means of
analysing, comparing, designing (and sometimes implementing too) logical and programming

17Straccia (1996) proposes a “four-valued” terminological logic for IR (further elaborated by Meghini and
Straccia (1996)) which is meant to overcome the paradoxes of material implication. We think his approach
is justified by the fact that, without recourse to the four-valued semantics, terminological logics would allow
creating document representations that are individually satisfiable but unsatisfiable when taken together.

18We recall that denotational semantics (also known as model-theoretic or Tarskian semantics) is the stan-
dard way of formally specifying the meaning of logical languages. Such a specification is accomplished by
postulating the existence of a number of “ways the world could be” (interpretations), and of systematically
specifying in which of these interpretations the expressions of the language are true. Inference is then defined
as the derivation of only those formulae that are true in all the interpretations in which the premises are also
true. In the case of propositional logic, discussed in the previous sections, interpretations are usually called
truth-value assignments.
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languages that constitutes a de facto “interlingua” among designer, implementor, user and
critic. Its importance in the analysis of logical models of IR has been recognised ever since the
very first logical model of IR was proposed: van Rijsbergen (1986) makes an explicit reference
to “possible worlds semantics” (PWS), a well-known type of denotational semantics, and most
proposed logical models of IR appeared since then (e.g., (Crestani & van Rijsbergen, 1995;
Meghini, 1995; Meghini et al., 1993; Nie, 1989; Sebastiani, 1994) rely heavily on notions from
denotational semantics.

However, an analysis of this latter literature reveals that there seems to be no agreement
among these researchers on the role that denotational semantics should play in IR modelling;
we might go as far as saying that there seems to be no agreement as to what denotational
semantics really is. Given that its importance also lies in its being a “standard”, it is very
important that consensus can be reached among IR theorists on how to use it.

To this respect we think that while denotational semantics is, as we said above, a frame
of reference for analysing the language of a given logic (i.e., the meaning of the connectives,
operators and of the other primitives of the language), it is by no means part of this language
itself. The entities that populate the world of denotational semantics (e.g., possible worlds,
individuals, accessibility relations, etc.) are nothing else than (immaterial) “ideas” with
reference to which one may explain, or support one’s intuitions about, the meaning of the
(absolutely material) data structures (i.e., formulae) and inference rules of the language under
consideration. For instance, the notion of “possible world” and that of “accessibility between
possible worlds” are useful clues to understanding the nature of the necessity operator of modal
logic or the implication connective of conditional logic. However, it is of key importance to
recognise that these entities are not themselves data structures open to direct manipulation.
The idea that they indeed are, and that they can thus have an active part in the IR process,
lurks behind a number of papers dealing with the logical modelling of IR (e.g., (Crestani
& van Rijsbergen, 1995; Nie, 1989)). In particular, the fact that the semantics of modal
and conditional logics relies on “possible worlds” being grouped into graph-like structures
(called Kripke structures) has led to the definition of models in which the theorists themselves
build these networks by direct manipulation (e.g., by assigning weights to the nodes and to
the “accessibility” edges of the Kripke structure). Denotational semantics stipulates instead
that the characteristics of semantic structures (e.g., the weights mentioned above) are to be
determined only by the logical formulae that appear in one’s representation of the relevant
knowledge, and are not themselves open to direct manipulation. The only way to make these
structures have certain given characteristics is to induce these characteristics by introducing,
in one’s representation, formulae that constrain the semantic structures to have exactly those
characteristics19.

This argument is not meant to invalidate those models that do not comply with this
criterion. It is meant instead to suggest that by direct manipulation of the semantic structures
underlying a given logic one may well gain an interesting metaphor, but loses touch with
inference (and, arguably, with logic), as this latter is obtained only by the indirect (rather
than direct) manipulation of all (rather than one particular) semantic structures consistent
with one’s data.

19For example, in so-called “normal” modal logics (i.e., supersets of the K modal logic) reflexivity of Kripke
structures is achieved not by adding self-loops to all nodes of these structures, but is induced by introducing
in one’s representation all formulae of type Lα → α.
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6.1 Total knowledge, truth-based models and denotational semantics

It may be interesting to understand why models of IR that do not comply with this criterion
have been so popular. We think that the reason for this is also the reason for the popularity
of the truth-based models discussed in Section 4.1, and the critical issue here turns out to
be, again, partiality. In fact, if one adopts a logic L in order to model a given domain of
discourse (i.e., to encode what one knows of this domain of discourse) and this model is a
finite set S of sentences of L, the semantics of S is the set I of all the interpretations of L
that satisfy S. This means that two interpretations in I agree on all the facts specified by
S, but may disagree on the facts on which S remains uncommitted; and there usually are
many such facts, as our knowledge of a given domain of discourse is, as argued in Section 4.1,
usually partial. However, if we suppose instead that our knowledge of the domain of discourse
is total, the set of interpretations contains a unique element i, as there are no facts on which
S remains uncommitted and that may thus give rise to different interpretations. In logic, a
set of sentences such as S is called a complete theory. If a formula α is a complete theory, the
fact that β is a logical consequence of α reduces to the truth of β in the unique interpretation
i of α, and (if modus ponens is a valid rule of inference) the validity of α ⊃ β reduces to
the truth of β in i. If the language of L is finite, then i is also finite. The uniqueness and
finiteness of i allows then its direct “representation” and manipulation, with the consequence
that inference can be substituted by computations performed directly on i. As a result of
total knowledge, the relationship between a set of sentences and its interpretations has no
more cardinality 1 : n but 1 : 1, somehow blurring the distinction between the syntactic and
the semantic level (and between logic and data structure manipulation).

In terms of IR, if we assume that our knowledge of the setting we want to model is total,
instead of describing this knowledge by means of a set of sentences S we may describe it by
“constructing” the unique interpretation i of S; models of IR such as those of e.g., (Crestani
& van Rijsbergen, 1995; Nie, 1989) may be viewed as doing exactly this. If one adopts
the Boolean model of IR, one way of making this assumption is adopting the closed world
assumption. In fact, assuming that if keyword t does not feature in the representation of
document d this means that d is not about t, is equivalent to assuming that we have total
knowledge of the document (for every keyword t, we know whether or not the document is
about t); in this case, d is basically a truth assignment to the propositional language, and
establishing the validity of d ⊃ n can be done by checking if n is true in this truth assignment.
If one adopts a more complex model such as e.g., the one by Crestani and van Rijsbergen
(1995), where keywords have associated probabilities and degrees of similarity between them,
for making the total knowledge assumption it is enough to assume that the probability of each
keyword is known and the similarity of each pair of keywords is known20. In other words, the
total knowledge assumption may be characterised by saying that, for every sentence α of the
language, either α or ¬α is a logical consequence of what we know about the domain.

This discussion shows that a truth-based model is, in some sense, a legitimate model
of a given domain of discourse, provided that there is total knowledge of this domain. In
this case, though, building and directly manipulating the unique interpretation (as done
in (Crestani & van Rijsbergen, 1995; Nie, 1989)) is computationally more convenient than
performing inference on the corresponding set of sentences S (for a discussion of this point

20In a logical model in which probability is accounted for, the difference between assuming either total or
partial knowledge corresponds to the difference between the Bayesian model and the generalised probabilistic
model of epistemic states discussed by Gärdenfors (1988, Chapter 2).
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see (Levesque, 1986)). In other words, when knowledge is total, logic is hardly needed, as the
direct computations on the unique interpretation may completely and conveniently bypass
the standard inferential processes. In some sense, the logical approach is an oversize tool for
dealing with the total knowledge assumption, and its potential is fully exploited only when
partiality is assumed.

7 Discussion

Although, as remarked in Section 2, “modelness” is the main topic of the present paper,
no discussion on logical modelling of IR would be complete without touching on “coverage”
issues too. Ultimately, it is the effectiveness achieved by systems designed along a given model
to decree its success or insuccess, and the logical model will be no exception. Although a
number of interesting ideas underlie much of this research, their experimentation has so far
been limited: only the models by Turtle and Croft (1990) and Crestani and van Rijsbergen
(1995) have undergone experimentation to IR standards (Turtle & Croft, 1991; Crestani et al.,
1995)). Why is that so? We think that the problem of experimenting with logic-based models
of IR has two main aspects.

The first aspect is one of knowledge entry. If the model has to be checked against a
document collection of realistic (i.e., TREC) size, we need to produce many thousands of
document representations in the form of logical formulae. The problems raised by this are
twofold:

• If the model to be tested is based on some (classical or non-classical) propositional
logic (this is the case of e.g., (Crestani & van Rijsbergen, 1995; Nie, 1989)), this me-
ans that algorithms that produce weighted keyword-based representations (Salton &
Buckley, 1988) can be used. However, it may well be that these algorithms produce
representations whose meaning is at odds with the intended semantics of the language
used. Even if extensive automatic knowledge acquisition, hence experimentation, is in
principle possible in this case, the meaning of the experimental results becomes difficult
to interpret.

• If the model is based instead on structures more complex than simple sets of weighted
keywords (such as the “object-oriented” structures of (Meghini et al., 1993; Lambrix
& Padgham, 1995; Chevallet & Chiaramella, 1996)), the lack of algorithms that can
automatically produce complex structures faithfully representing the meaning of docu-
ments is an additional problem. Although promising research exists in this field (see
e.g., (Franconi, 1994)), fully automatic indexing is not yet a viable option.

For the moment being, the availability of automatic knowledge acquisition tools seems a
somehow less stringent problem in logical models of non-textual document retrieval. Appro-
aches that combine (non-logical) processing of automatically acquired representations of the
form of such documents, with logical reasoning on manually input representations of their
content, have been proposed (Meghini et al., 1997). The multimedia indexing case is one in
which the logical approach does not have much of a gap to fill, as for multimedia there are no
satisfactory automatic content analysis tools outside the logical camp either. In fact, while it
is indeed possible to index e.g., images based on their visual features (such as colour, shape
and texture), human intervention is still inevitable at present (and it appears that it is going

18



       

to be for quite some time) for indexing images conceptually: telling “red” from “yellow” can
be done automatically, but telling “man” from “woman” cannot.

The second aspect is one of inference-in-the-large. Once proper representations of docu-
ments and information needs are created, relevance needs to be established through inference
techniques of some sort. Again, the problems raised by this are twofold.

• If the model is one based on the total knowledge assumption, as discussed in Section 6.1,
direct manipulations of a data structure representing the unique interpretation may
conveniently bypass the standard inferential process. Although the process may still
be computation-intensive (as e.g., in (Crestani et al., 1995)), it is undoubtedly much
simpler due to the absence of disjunction, the operator that, practically in any logic,
singlehandedly renders all attempts at large scale inference problematic.

• If the model is not based on the total knowledge assumption, inference of the standard
(e.g., validity-based) kind must be performed. This may be extremely arduous, given
the well-known negative complexity results of the validity problem for most logics. Two
avenues seem of particular interest in this respect. First, inference techniques may
be experimented that yield correct results only most of the times (see e.g., (Selman
et al., 1992)), at the advantage of a much greater speed. The price to be paid for this
would arguably be tolerable, as information retrieval results in imperfect precision and
recall anyway. Second, inference techniques may be experimented with in which partial
results of the computation are stored and reused for later computations. For instance, in
both the techniques used in (Turtle & Croft, 1991) and (Meghini et al., 1997), one single
processing of the set of document representations and of the background knowledge base
serves multiple queries, and one single processing of a query representation serves the
relevance assessment of multiple documents, thus consistently reducing the query-time
inference operation.

All in all, this discussion points out that experimentation is still a major problem for logical
models of IR. We think, however, that this research trend is starting to show results that
go beyond those of a purely theoretical nature: experimentation is being increasingly tackled
(see also (Fuhr, 1997)), systems are being implemented and applied to real-sized retrieval
situations 21 and, especially, integration with other non-logical techniques is being attempted.
We think that exactly this latter approach is where a lot of potential for the logical model
resides. It is obvious to all that a lot of problems of concern in IR (especially in its multimedia
incarnation) are best tackled by techniques that have not much to do with logic. Logic is
suitable for reasoning about semantics, and not every aspect of concern to IR is, arguably, best
conceived in terms of semantics. IR systems that integrate logical reasoning about the content
of documents with form processing techniques coming from statistics, corpus linguistics and
digital signal processing, may well be one of the most promising avenues for IR research.

8 Concluding remarks

In this paper we have discussed a number of issues which we deem of central importance
to the logical modelling of information retrieval, arguing that progress in the field may be

21See e.g., the “hyperindex” system at http://www.dstc.edu.au/cgi-bin/RDU/hib/hib, a direct outcome
of (Bruza, 1993).
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accomplished only by also taking into account “well-formedness” issues of a formal nature.
In logic, well-formedness criteria are not meant to satisfy aesthetic demands, but are the
guarantees of the computational effectiveness of the proposed models. In particular, we have
investigated the consequences of basing a model of IR on notions as diverse as truth, validity
and logical consequentiality. Only these latter two, we have argued, guarantee a role for
inference, as they are the semantic counterparts of theoremhood and derivability, that are
computable notions. Truth instead is not computable, and is of some interest only in the
case in which the total knowledge assumption is made (a very strong assumption for every
modelling endeavour, and one that puts into question the real need for logic), as in this case
truth and validity coincide. A related point we have made is that the semantic structures
that feature in the denotational semantics of the adopted language should not be considered
as data structures to be freely manipulated, lest the logical character of the enterprise is
lost. We have also argued that the infamous paradoxes of material implication are not very
interesting for IR modelling. All these issues, although of independent interest, have one point
in common: they somehow put into question some arguments (the “deviation” arguments of
Section 5) that had been made against the use of classical logic for IR. Although we do not
claim here that classical logic is adequate for modelling IR (the “extension” arguments of
Section 5 are, we think, conclusive in this respect), our arguments suggest that the rebuttal
of classical logic has been too hasty. Reconsidering classical logic, maybe sieving out the real
reasons of its inadequacy to the IR case, may thus be a way of better understanding the
merits of non-classical approaches.
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