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Abstract In many applicative contexts in which textual documents are labelled with

thematic categories, a distinction is made between the primary categories of a document,

which represent the topics that are central to it, and its secondary categories, which rep-

resent topics that the document only touches upon. We contend that this distinction, so far

neglected in text categorization research, is important and deserves to be explicitly tackled.

The contribution of this paper is threefold. First, we propose an evaluation measure for this

preferential text categorization task, whereby different kinds of misclassifications

involving either primary or secondary categories have a different impact on effectiveness.

Second, we establish several baseline results for this task on a well-known benchmark for

patent classification in which the distinction between primary and secondary categories is

present; these results are obtained by reformulating the preferential text categorization task

in terms of well established classification problems, such as single and/or multi-label

multiclass classification; state-of-the-art learning technology such as SVMs and kernel-

based methods are used. Third, we improve on these results by using a recently proposed

class of algorithms explicitly devised for learning from training data expressed in pref-

erential form, i.e., in the form ‘‘for document di, category c0 is preferred to category c00’’;
this allows us to distinguish between primary and secondary categories not only in the
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classification phase but also in the learning phase, thus differentiating their impact on the

classifiers to be generated.

Keywords Preferential learning � Supervised learning � Text categorization �
Text classification � Primary and secondary categories

1 Introduction

In many applicative contexts in which textual documents are labelled with thematic cat-

egories, a distinction is made between the primary and the secondary categories that are

attached to a given document. The primary category (or categories) of a document rep-

resent the topic(s) that are central to the document, or that the document is mainly about.

The secondary categories represent instead topics that are somehow touched upon, albeit

peripherally, in the document, and do not represent, thematically speaking, the main thrust

of the document. This distinction has been neglected in text categorization (TC) research.

For instance, a systematic search through the literature shows that all authors who have

tested their TC systems on the WIPO-alpha collection (Fall et al. 2003) have either con-

sidered the primary categories alone, thus basically using WIPO-alpha as a single-label

classification dataset (Cai and Hofmann 2004; Fall et al. 2003; Hofmann et al. 2003; Tikk

and Biró 2003; Tikk et al. 2004; Tsochantaridis et al. 2004; Vishwanathan et al. 2006), or

collapsed primary and secondary categories, thus using it as a for multi-label classification

dataset (Cai and Hofmann 2007; Rousu et al. 2006). The same happens for those who have

worked on the OHSUMED collection (Hersh et al. 1994), who have all collapsed primary

and secondary categories (Forman 2003; Lam and Ho 1998; Lewis et al. 1996; Ruiz and

Srinivasan 2002; Yang et al. 2003).1

We instead contend that the distinction between primary and secondary categories is

important, and deserves to be explicitly tackled by TC research. The main reason is that, in

most contexts in which the distinction is made, misclassifications may be more or less

serious, depending on whether they involve a primary or a secondary category.

For instance, when a patent application is submitted to the European Patent Office

(EPO), a primary category from the International Patent Classification (IPC) scheme2 is

attached to the application, and that category determines the expert examiner who will be

in charge of evaluating the application. Secondary categories are instead attached for the

only purpose of identifying related prior art, since the appointed expert examiner will need

to determine the novelty of the proposed invention against existing patents classified under

either the primary or any of the secondary categories. For the purposes of EPO, failing to

recognize the true primary category of a document is thus a more serious mistake than

failing to recognize a true secondary category.3

1 Both OHSUMED and WIPO-alpha make a distinction between primary and secondary categories. A third
dataset in which this distinction is made is the ICCCFT dataset used in the 2007 ‘‘International Challenge on
Classifying Clinical Free Text Using Natural Language Processing’’ (http://www.computationalmedicine.
org/challenge/index.php). Other well-known TC datasets such as Reuters-21578 or RCV1 instead do not
make this distinction.
2 http://www.wipo.int/classifications/en/.
3 Barrou Diallo, personal communication. Barrou Diallo is Head of the Research and Development
Directorate at the European Patent Office.
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Another instance is represented by the ACM Computing Reviews magazine,4 which

publishes reviews of articles and books related to computer science, each classified

according to one primary and several secondary categories from the ACM Computing

Classification System.5 Here the primary category determines in which section of the

magazine the review is going to be printed, while secondary categories, together with the

primary category, are used for facilitating search (e.g., allowing a user to search only the

reviews belonging to a particular category). Again, for the purposes of ACM Computing

Reviews, getting the primary category of a document wrong is thus a more serious mistake

than failing to recognize a true secondary category.6

This paper represents a first attempt at solving preferential text categorization, a task

which we define as the attribution to a textual document di not of a subset Ci � C of the set

of categories C (as in standard multi-label—aka ‘‘n-of-m’’—text categorization), but of a

partial ordering among the set of categories C; this partial ordering specifies which cat-

egory ‘‘applies more than’’ (or ‘‘is preferred to’’) which other category to the document.

This is itself a variant of the so-called ‘‘category ranking problem’’, which consists in

attributing to a textual document a total ordering among the categories (Crammer and

Singer 2002). We will here discuss a special case of preferential TC, that is, the case in

which each document is associated to a ‘‘three-layer’’ partial order, consisting of a top

layer of one or more primary categories,7 which are each preferred to each of a mid layer of

secondary categories, which are each preferred to each of a bottom layer of ‘‘non-cate-

gories’’ (i.e., categories that do not apply at all to the document).

The original contribution of this paper is threefold. First, we propose an evaluation

measure for preferential TC, in which different kinds of misclassifications involving either

primary or secondary categories have a different impact on effectiveness.

Second, we establish baseline results for this task on the WIPO-alpha collection. These

results (expressed in terms of the evaluation measure defined in the previous step) are

obtained by decomposing the 3-layered preferential TC problem into simpler TC problems

for which standard state-of-the-art learning tools can be used. In WIPO-alpha each doc-

ument is associated to a single primary category and multiple secondary categories.

Therefore, we first test a ‘‘poor man’s baseline’’ consisting of generating binary classifiers

for all categories involved by means of binary SVMs and picking, as the primary category

of document d, the category which has received the highest score. We then establish an

alternative, stronger baseline by decomposing our problem into (i) a single-label (aka 1-of-

m) TC problem, aimed at determining the primary category, and for which we use a recent,

top-performing type of multiclass SVMs (Platt et al. 1999); and (ii) a multi-label TC

problem, aimed at determining which of the remaining m - 1 categories is a secondary

category of the document, and for which we use plain binary SVMs (Joachims 1998).

The combined use of these two technologies allows us to attach primary and secondary

categories to the test documents, but uses the categories attached to the training documents

in a traditional way. That is, a training document d0 for which category c is a primary

category has the same impact on the classifier for c of another training document d00 for

which c is a secondary category; we think this is unintuitive. Finally, we formulate the

4 http://www.reviews.com/.
5 http://www.acm.org/class/1998/.
6 Carol Hutchins, personal communication. Carol Hutchins is Editor-in-Chief of ACM Computing Reviews.
7 Whether one or several primary categories are possible will depend on the application. For instance, in the
WIPO-alpha collection only one primary category per document is allowed, while in the OHSUMED
collection several primary categories for the same document may exist.
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problem as a (multivariate) ordinal regression task, where, given a document, each cate-

gory is associated to one of the three possible ordered ranks, i.e. primary, secondary, non-

category.

Our third contribution is thus an improvement on the above baseline results obtained by

using a learning model, dubbed the Generalized Preference Learning Model (Aiolli and

Sperduti 2005), that was explicitly devised for learning from training data expressed in

preferential form, i.e., in the form ‘‘category c0 is preferred to category c00 for document d’’.

This model, which does not require any decomposition into subproblems, allows us to draw

a fine distinction between primary and secondary categories not only in the testing phase

but also in the learning phase, and to leverage on the different importance that primary and

secondary categories attached to a training document have.

1.1 Outline of the paper

The paper is structured as follows. In Sect. 2 we propose an evaluation function for

preferential TC. Section 3 introduces the learning algorithms by means of which we will

tackle the preferential TC task, from the ‘‘standard’’ (both multiclass and binary) SVM

technology that will allow us to obtain baseline results (Sect. 3.1), to more novel ‘‘pref-

erence learning’’ technology by means of which we improve on this baseline (Sect. 3.2).

Section 4 reports on our experiments, by briefly reviewing the WIPO-alpha dataset we

have used and the experiments we have conducted on it. Section 5 concludes.

2 Preferential text categorization and its evaluation

The de facto standard measure for the evaluation of a binary classifier for category c is

F1ðcÞ ¼
2pðcÞqðcÞ

pðcÞ þ qðcÞ ð1Þ

which corresponds to the harmonic mean of precision (p(c)) and recall (q(c)) (Lewis 1995).

Since multi-label TC resolves to binary TC, averaging F1(c) across the categories is the

standard way of evaluating multi-label TC.

However, F1 is too coarse for preferential TC, since it is the very notions of precision

and recall that are too coarse for properly addressing this task. For instance, precision is the

probability that, if a category has been assigned to a document, this assignment was

correct. But what does, in preferential TC, ‘‘assigning a category’’ mean? Assigning it as a

primary or as a secondary category are different things.

2.1 Why Kendall distance is unsuitable

It might be tempting to hypothesize that the ‘‘right’’ evaluation measure for preferential TC

is one from the tradition of evaluating automatically produced rankings (predicted rank-
ings) rP against a ‘‘true’’ ranking rT. The (normalized) Kendall distance with penalization

p (noted Kp(rP, rT)—see Fagin et al. 2004, 2006) is nowadays considered the standard

function for the evaluation of rankings in which ‘‘ties’’ (i.e., pairs of objects which have the

same place in one of the two rankings) might occur; Kp and its variants are now heavily

used in the evaluation of several IR-related tasks involving ranking, such as ranking system

runs based on their results on a given test collection (Voorhees 1998), ranking topics by
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estimated difficulty (Yom-Tov et al. 2005), or computing the similarity between features in

terms of the document rankings that their use brings about (Geng et al. 2007). It is a non-

symmetrical8 distance (i.e., Kpðri; rjÞ 6¼ Kpðrj; riÞÞ defined as

Kp ¼ nd þ p � nu

Z
ð2Þ

where nd is the number of swappings, i.e., pairs of objects ordered one way in rT and the

other way in rP; nu is the number of false ties, i.e., pairs ordered not tied in rT and tied in

rP; p is a penalization to be attributed to each false tie; and Z is a normalization factor

(equal to the number of pairs that are ordered in the true ranking) whose aim is to make the

range of sp coincide with the [0,1] interval. True ties (i.e., pairs tied in rT) are not

considered by Kp. The penalization factor is typically set to p ¼ 1
2
; which is equal to the

probability that a ranking algorithm correctly orders the pair by random guessing, so that

there is no advantage to be gained from either random guessing or assigning ties between

objects. If rP : rT, then Kp(rP, rT) : 0; and if rP is exactly the reverse of rT, then

Kp(rP, rT) : 1. That is, lower values of Kp indicate better performance.

For preferential TC, one would use Kp on a document-by-document basis, i.e., to

measure, given a document d, the difference between how the categories in C are ordered

in the true ranking (that is: the ones that most apply to d placed on top of the ranking, and

the ones that least apply to d at the bottom of the ranking), and how they are instead

ordered in the predicted ranking.

However, a closer analysis reveals that this measure is unsuitable to dealing with

situations in which a large number of objects to be ranked are allowed to fall into a much

smaller number of ‘‘layers’’ and these layers are imbalanced in rT. This is the case for 3-

layered preferential TC, in which the number of categories that we need to rank is� 3 (in

WIPO-alpha we use 614 categories), and in which the first and second layers (primary and

secondary categories, respectively) are much less populated than the third one (non-cat-

egories), given that the average document has one primary category, a handful of

secondary categories, and hundreds of non-categories. In such cases, ties (in both rP and

rT) obviously tend to be the norm rather than the exception, and a violation involving a tie

in one of the overpopulated layers entails a large penalization, as in the following example.

Example 1 Suppose a WIPO-alpha document d1 is such that its set of primary categories

is P(d1) = {c1}, its set of secondary categories is S(d1) = {c2, c3, c4}, and its set of non-

categories is N(d1) = {c5,…,c614}. Suppose that the only mistake a classifier U does is

incorrectly deeming c4 a non-category. This will bring about a cost of 610p (since this will

generate 610 ‘‘false ties’’ between c4 and c5,…,c614), and Kp = .249. Instead, another

classifier U0 whose only mistake is to incorrectly deem c1 a secondary category (arguably a

more serious mistake) will only bring about a cost of 3p (since this will generate 3 ‘‘false

ties’’ between c1 and c2, c3, c4), and Kp = .001. Since lower values of Kp are better, U0 is

incorrectly deemed a much better system than U.

A second reason why Kp is unsuitable to our case is that it is sensitive only to the

relative order of objects, rather than to their having been placed in the correct layer, as in

the following example.

8 The asymmetric character of Kp is due to the fact that it caters for ties (since ties in the true ranking are
treated differently from ties in the predicted ranking); ‘‘pure’’ Kendall distance (i.e., with no penalization p)
is indeed symmetric, but it assumes that there are ties neither in the predicted nor in the true ranking.
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Example 2 Suppose a WIPO-alpha document d2 is such that P(d2) = {c1}, S(d2) = {}, and

N(d2) = {c2,…,c614}: a system U00 which correctly deems c1 the primary category and

incorrectly deems all of c2,…,c614 as secondary categories would bring about a perfect score,

i.e., Kp = 0.

What Example 2 shows is that preferential TC is fundamentally different from (category)

ranking. Guessing the perfect rank is not enough for preferential TC, since one (also) needs to

guess, for each category, whether it is above or below the threshold that separates one layer

from the other layer. This is not unlike binary classification, in which it is not enough, given a

document, to rank the categories according to their estimated degree of relevance to the

document. For this reason, none of the evaluation measures currently used (along Kp) in other

ranking tasks in IR—such as mean average precision (MAP), precision at position n (P@n),

normalized discounted cumulative gain (NDCG), etc.—are suitable for preferential TC.

2.2 3-Layered F1

Below we thus propose an alternative evaluation function consisting of a weighted com-

bination of different F1 measures. First of all observe that, while a ‘‘standard’’ binary

classifier for category c can be evaluated in terms of the standard 4-cell contingency matrix

(on which p(c) and q(c) are based), n-layered preferential TC brings about an n2-cell such

matrix; for instance, in 3-layered preferential TC category c is associated to the 9-cell

contingency matrix MPSN of Table 1. From this latter matrix, the three 4-cell sub-matrices

MPS, MSN, MPN of Table 2 can be extracted, each of them detailing, with respect to

category c, how many documents are correctly placed into or erroneously swapped

between two layers ti and tj. For each category c we thus have a sub-matrix for first and

second layer, one for first and third layer, and one for second and third layer. On each such

sub-matrix, p(c), q(c), and F1(c) can be computed as usual, although their meaning is

clearly changed. For instance, recall as computed on sub-matrix MSN of category c
(denoted qSN(c), where S and N stand for ‘‘secondary category’’ and ‘‘non-category’’) is

computed as qSNðcÞ ¼ SS
SSþNS; i.e., as the fraction of documents for which c has been

correctly deemed a secondary category, out of the total number of documents for which c is

in fact a secondary category and has been deemed either a secondary category or a non-

category. The meaning and definition of qPS(c), qPN(c), and those of pPS(c), pSN(c), pPN(c),

F1
PS(c), F1

SN(c), and F1
PN(c), should now be obvious.

We propose 3-layeredF1 as a measure for evaluating 3-layered TC; this is defined as

Table 1 The 9-cell contingency matrix MPSN for 3-layered preferential TC; P, S, and N stand for ‘‘primary
category’’, ‘‘secondary category’’, and ‘‘non-category’’, respectively; PS stands for the number of documents
for which ci is a true primary category and a predicted secondary category; the interpretation of the other
double-letter symbols is analogous

c Predicted

P S N

True P PP SP NP

S PS SS NS

N PN SN NN
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F3
1ðcÞ ¼

X

i2fPS;SN;PNg
aiF

i
1ðcÞ ð3Þ

i.e., as a linear combination of the three F1(c) functions computed on the MPS, MSN, MPN

sub-matrices. The ai are to be set depending on the constraints of the application. We

propose that their default values should be aPS = .25, aSN = .25, and aPN = .50; these

values have the effect of considering erroneous swappings between first and second layer

to bring about a cost as high as swappings between second and third layer, but only half as

high as erroneous swappings between first and third layer. That is, cost is viewed simply in

terms of the distance between the true and the predicted layer of a category. The definitions

of p3(c) and q3(c) are completely analogous to that of F1
3(c).

Of course, several variants of these measures can be used, including ones in which the b
parameter of any of the three component Fb measures is not necessarily set to 1; setting b
at values different from 1 is well-known to have the effect of emphasizing precision at the

expense of recall (b\ 1), or vice versa (b[ 1). For n-layered preferential TC we may

analogously define F1
n(c), a function that depends on the computation of F1 on

1
2

nðn� 1Þdifferent submatrixes.

It can be easily seen that F1
3 does not suffer from the problems from which Kp suffers, as

described in Sect. 2.1. For instance, in Example 1 system U would receive a score of

F1
3 = .95 (resulting from F1

PS = 1, F1
SN = .80, F1

PN = 1) while system U0 would receive a

score of F1
3 = .75 (resulting from F1

PS = 0, F1
SN = 1, F1

PN = 1), i.e., U would correctly be

deemed a much better system than U0. Also, in Example 2, system U00 would receive a

score of F1
3 = .75 (resulting from F1

PS = 1, F1
SN = 0, F1

PN = 1), correctly stating that U00 is

far from being the perfect system.

3 Learning algorithms for preferential text categorization

3.1 Two baselines: binary and multiclass SVMs

We concentrate on the problem of predicting, for each document, a single primary category

and several (possibly zero) secondary categories. We thus defer the problem of predicting

several primary and several secondary categories for the same document to future work;

anyway, this problem admits solutions similar to the ones presented here.

At first glance, the 3-layered classification problem of attributing a single primary

category and a (possibly empty) set of secondary categories to a given test document d
seems to have a very simple solution. In fact, one could build a binary classifier for each

ci [ C (by using as positive examples of category ci all the documents that have ci either as

a primary or as a secondary category) and use the real-valued scores output by each

Table 2 The three 4-cell sub-matrices (MPS, MSN, MPN) of the contingency matrix MPSN of Table 1
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classifier for d: the category for which the largest score has been obtained would be

selected as the primary category, while the set of secondary categories could then be

identified by optimizing a threshold for each individual category and selecting the cate-

gories whose associated classifier has returned a score above its associated threshold. We

have indeed implemented this approach (by using standard binary SVMs); in Sect. 4 this is

dubbed ‘‘Baseline1’’.

However, this simple approach has a main drawback, i.e., it does not use the distinction

between primary and secondary categories in the training phase. In other words, a training

document d0 for which category ci is a primary category has the same impact on the

classifier for ci of another training document d00 for which ci is a secondary category; we

think this is unintuitive.

A stronger approach (dubbed ‘‘Baseline2’’ in Sect. 4) consists in performing two dif-

ferent classification tasks, a first one (by means of a single-label classifier hP) aimed at

identifying the primary category of d, and a second one (by means of a multi-label

classifier hS consisting of m binary classifiers hS
i , one for each category ci [ {c1,…,cm})

aimed at identifying, among the remaining categories, the secondary categories of d. The

hP classifier is trained by using, as positive examples of each ci, only the training docu-

ments that have ci as primary category. Each of the hS
i is instead trained by using as

positive examples only the training documents that have ci as secondary category, and as

negative examples only the training documents that have ci as non-category (those that

have ci as primary category are discarded).

As an aside, we have also tested a slight variant of Baseline2 in which each of the hS
i is

trained by using as positive examples the training documents that have cieither as primary
or as secondary category; this corresponds to using the single-label classifier hP of

Baseline2 and the hS
i binary classifiers of Baseline1. In our experiments this ‘‘Baseline2a’’

has given inferior results to Baseline2 (see Table 3), and we will thus not discuss this any

further.

In our experiments, for generating hP we use a ‘‘multiclass’’ (i.e., single-label) SVM

based on combining binary classifiers, each of them generated through standard binary

SVMs, into a Decision Directed Acyclic Graph (DDAG—see Platt et al. 1999, for details,

Table 3 Micro-averaged F1
3 values obtained by the classifiers

F1
PS F1

SN F1
PN F1

3

Baseline1 .8514 .1802 .4823 .4991

Baseline2 .8861 .2002 .4642 .5041

Baseline2a .8837 .1575 .4648 .4927

Ordinal regression (SD) .7716 (.0378) .1666 (.0315) .5395 (.0202) .5042 (.0072)

GPLM Adatrona (SD) .8433 (.0238) .2138 (.0088) .5129 (.0131) .5206 (.0026)

GPLM Adatron committee of 3 .8601 .2225 .5155 .5284

GPLM Adatron committee of 5 .8533 .2252 .5190 .5291

GPLM Adatron committee of 10 .8487 .2260 .5220 .5297

GPLM Adatron committee of 15 .8490 .2262 .5221 .5298

GPLM Adatron committee of 20 .8512 .2252 .5212 .5297

a Obtained by averaging on 20 runs

SD, standard deviation

Boldface indicates the best performing system
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see also Fig. 1). Briefly, a DDAG-based multiclass SVM for categories {c1,…,cm} gen-

erates a rooted, layered binary DAG with the structure of a ‘‘Pachinko machine’’: layer 1

(the root) is placed at the top, the j-th layer (j [ {1,…, m - 1}) contains j internal nodes,

down until the m-th (bottom) layer, consisting of m leaves. The i-th node of layer j \ m
points to the i-th and (i ? 1)-th node of the (j ? 1)-th layer. Each of the 1

2
mðm� 1Þ internal

nodes is associated with a binary classifier, generated by a binary SVM, and in charge of

deciding whether or not a category c0 is less suitable than another category c00 for test

document d. The less suitable category is discarded from consideration; through a recursive

descent through the DDAG, categories are repeatedly discarded until only one is left for d.

With this method, a total of 1
2

mðm� 1Þ binary classifiers need to be trained; however, this

is less expensive than it might appear at first, since each classifier is trained only with a

small subset of examples (namely, the training documents which have either of the two

categories as primary category). This makes DDAG-based SVMs more efficient at clas-

sification time than other classes of multiclass SVMs, such as those presented in (Crammer

and Singer 2001), since the fact that few training documents are used brings about a

smaller number of support vectors, which ultimately means that the generated classifiers

consist of sparser vectors, hence more efficient at classification time. Note that, while
1
2
mðm� 1Þ binary classifiers need to be generated at training time, only m need to be

invoked at classification time for each test document.

The multi-label classifier hS is simply formed by m binary classifiers {hS
i :

ci [ {c1,…,cm}} generated by binary SVMs; see Sect. 4.1 for details on how we have

performed parameter optimization.

3.2 Moving further: the generalized preference learning model

The method proposed in the previous section has been obtained by decoupling the prob-

lems of finding the primary and the secondary categories of a document. In a sense, the

overall problem has been simplified and reduced to two almost independent modules

whose predictions are then combined. This approach would be reasonable if the primary

1 vs. 41 vs. 41 vs. 41 vs. 41 vs. 41 vs. 41 vs. 41 vs. 41 vs. 41 vs. 41 vs. 4

2 vs. 41 vs. 3

1 vs. 2 3 vs. 42 vs. 3

1 2 3 4

(not 3)

(not 4) (not 1)

(not 2)(not 1)(not 4)

Fig. 1 Scheme of a DDAG-based multiclass SVM, exemplified for a set of four categories {1,2,3,4}. Each
box represents a binary classifier c0 versus c0 0. Each circle represents the category which is finally picked for
d after a descent in the DDAG

Inf Retrieval (2009) 12:559–580 567

123



and secondary categories had been attached to the document independently of each other.

Unfortunately, in many applicative domains this is not the case. For example, it is plausible

to imagine that the set of secondary categories associated to WIPO-alpha patents depends

on the primary category. Therefore, a classifier which aims at separating secondary cate-

gories from non-categories should have access to the information about the primary

category of the document.

As a principled solution of the 3-layered classification problem, we propose the

adoption of the generalized preference learning model (GPLM) (Aiolli 2005; Aiolli and

Sperduti 2005), a recent framework which generalizes a large class of supervised learning

problems by using the notion of preference between categories. The next sections show

how this can be adapted to our needs.

3.2.1 The GPLM

The GPLM assumes the existence of a real-valued relevance function that, for each doc-

ument d and category c, returns a score r(d, c) (the relevance value) which measures the

degree to which category c applies to document d. For each document d the relevance

function thus induces a ranking among the categories. A preference is a constraint on

categories and documents, that should be satisfied by the relevance function. Specifically,

GPLM focuses on two types of preferences: (i) qualitative preferences ciBd cj (‘‘category

ci applies to document d more than cj does’’), which means that r(d, ci) [ r(d, cj); and (ii)

quantitative preferences of type cBd s (‘‘the degree to which category c applies to doc-

ument d is at least s’’, where s 2 RÞ; which means that r(d, c) [ s.

In this learning framework, supervision for a training document is provided as a set of

preferences (of either type). These preferences constitute constraints on the form of the

relevance function which has to be learned. The aim of the learning process is to return a

relevance function which is as consistent as possible with these constraints.

As a very simple example of how supervised problems can be modelled in the GPLM let

us consider the (single-label) classification problem in which a classifier has to predict the

primary category P(d) for a test document d. This case can be modelled by stating, for each

training document d0, the set of preferences fPðd0ÞBd0 cigci 6¼Pðd0Þ: Note that, when clas-

sifying a test document d, its primary category will correspond to arg maxc[Cr(d, c).

As a further example, a multi-label classification problem can instead be modelled by

stating, for each training document d0, the set of preferences

fciBd0 sgci2Cðd0Þ [ fsBd0 cjgcj2CnCðd0Þ

where s is a real-valued threshold to be optimized, C is the set of categories, and C(d0) is

the set of categories to which d0 belongs. In this case, the set of categories to which a test

document d is deemed to belong are obtained by comparing their associated relevance

value to s: d is deemed to belong to a category c if and only if r(d, c) [ s.

It should be stressed that in GPLM any set of preferences can be associated to a

document d, so if no information about the relative ranking of two categories for d is

available, no preference involving these two categories need be stated. This allows us to

impose on the learner only constraints which are needed.

We may instantiate the GPLM by assuming that the relevance of a document to a

category can be expressed in linear form, i.e.

rðd; ciÞ ¼ wi � d ð4Þ
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where d 2 R
D is a (possibly weighted) vectorial representation of d (and D is the size of

this vector) and wi 2 R
D is a weight vector (containing parameters to be learnt) associated

to category ci. Interestingly, for this case it is possible to give effective algorithms which

explicitly attempt to minimize the number of wrong predictions in the training set. In fact,

following Eq. 4, qualitative and quantitative preferences can be conveniently reformulated

as linear constraints. Specifically, let us consider the qualitative preference k1 � ðciBd cjÞ:
This preference imposes the constraint r(d, ci) [ r(d, cj) on the relevance function r, which

using Eq. 4 can be rewritten as wi � d [ wj � d, or (wi � d - wj � d) [ 0. Similar trans-

formations can be done for quantitative preferences.

A uniform treatment of quantitative and qualitative preferences can then be obtained by

concatenating all the vectors wi (for i [ {1,…,m}) and all the thresholds s1,…,sq involved

in the formulation of the problem, into a single vector

w ¼ ðw1; . . .;wm; s1; . . .; sqÞ 2 R
mDþq:

In the qualitative case, assuming i \ j with no loss of generality, k1 can then be further

rewritten as

w � ð0; . . .; 0|fflfflffl{zfflfflffl}
i�1

; d; 0; . . .; 0|fflfflffl{zfflfflffl}
j�i�1

;�d; 0; . . .; 0|fflfflffl{zfflfflffl}
m�j

; 0; . . .; 0|fflfflffl{zfflfflffl}
q

Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wðk1Þ

[ 0 ð5Þ

where wðk1Þ 2 R
mDþq is a representation of k1 and 0 stands for a vector of all 0’s of length

D.

In the quantitative case, the preference k2 � ðcjBd skÞ can similarly be expressed as

w � ð0; . . .; 0|fflfflffl{zfflfflffl}
j�1

; d; 0; . . .; 0|fflfflffl{zfflfflffl}
m�j

; 0; . . .; 0|fflfflffl{zfflfflffl}
k�1

;�1; 0; . . .; 0|fflfflffl{zfflfflffl}
q�k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wðk2Þ

Þ[ 0 ð6Þ

while preference k3 � ðskBd cjÞ is expressed as

w � ð0; . . .; 0|fflfflffl{zfflfflffl}
j�1

;�d; 0; . . .; 0|fflfflffl{zfflfflffl}
m�j

; 0; . . .; 0|fflfflffl{zfflfflffl}
k�1

; 1; 0; . . .; 0|fflfflffl{zfflfflffl}
q�k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wðk3Þ

Þ[ 0 ð7Þ

In general, the training data can then be reduced to a set of linear constraints of the form

w � w(k) [ 0 where w is the vector of weights and thresholds and w(k) is a suitable

representation of preference k. As a consequence, any preference learning problem can be

seen as a (homogeneous) linear problem in R
mDþq: Specifically, any algorithm for linear

optimization (e.g., perceptron or a linear programming package) can be used to solve it,

provided the problem has a solution.

Unfortunately, the set of preferences may generate a set of linear constraints that have

no solution (i.e., the set of the w(k)’s is not linearly separable), i.e., such that there is no

weight vector w able to fulfil all the constraints induced by the preferences in the training

set. To deal with training errors we may minimize, consistently with the principles of

Structural Risk Minimization (SRM) theory (Vapnik 1998), an objective function which is

increasing in the number of unfulfilled preferences (the training error) while maximizing

the margin 1/||w|| (where ||�|| denotes the 2-norm of a vector). To this end, let us consider

the quantity q(k|w) : w � w(k) as the degree of satisfaction of a preference k given the

hypothesis w. This value is greater than zero when the hypothesis is consistent with the
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preference and smaller than zero otherwise. Now, let us assume a training set

Tr = {(di, Ki)}i=1,…,n, where Ki is the set of preferences associated to the i-th document.

We aim at minimizing the number of preferences which are unfulfilled (and thus the wrong

predictions) on the training set, while trying to maximize the margin 1/||w||2. Let L(�) be a

convex, always positive, and non-increasing function, such that L(0) = 1. It is not difficult

to show that the function L(q(k|w)) is an upper bound to the error function on the pref-

erence k. Thus, a fairly general approach is the one that attempts to minimize a (convex)

function like

DðwÞ ¼ 1

2
jjwjj2 þ c

Xn

i¼1

X

k2Ki

LðqðkjwÞÞ ð8Þ

where c is a parameter that determines the relative contributions of the regularization and

the loss in the objective function. Note that, if we adopt the hinge lossL(q) = [1-

q]? = max(0, 1 - q), the optimization required is the same as required by a binary SVM

with an extended training set consisting of all wðkÞ 2 R
mDþq for each preference, each one

taken as a (positive) example (see Aiolli 2005 for details).

3.2.2 GPLM mappings for 3-layered classification

We now propose GPLM models for a principled solution of the 3-layered classification

task. In the following, we denote by d a document having the set P(d) = {cp} (a singleton)

as the set of its primary categories, SðdÞ ¼ fcs1
; . . .; csk

g as the (possibly empty) set of its

secondary categories, and NðdÞ ¼ fcn1
; . . .; cnl

g as the set of its non-categories, such that

C = P(d) [ S(d) [ N(d).

3.2.2.1 GPLM: ordinal regression for 3-layered classification One could be tempted to

interpret the 3-layered classification problem as a (multi-variate) ordinal regression (OR)

problem, i.e., the problem of attributing a label (here called rank) from the ordered set

fprimary; secondary; non�categoryg to each pair consisting of a document and a

category.

Now, we first present a GPLM mapping which can be demonstrated equivalent to the

ordinal regression method of (Chu and Keerthi 2007) (see Aiolli 2005 for details). Then we

discuss why, in our opinion, this setting does not exactly match the notion of preferential

classification. Our experiments, which will be reported in the experimental section, support

this claim.

Specifically, for ordinal regression a GPLM model is built by considering two thresh-

olds sp and ss (see Fig. 2). For each training document the relevance function of a primary

category should be above the threshold sp, while the relevance function for any other

category (either secondary or non-category) should be below sp. On the other hand, the

relevance function of any secondary category should be above the threshold ss, while for

any non-category it should be below ss. Summarizing, the preference graph for a given

training document is as in Fig. 2. As a simple example, consider the set of categories

C = {c1, c2, c3, c4, c5} and a training document d such that P(d) = {c1}, S(d) = {c2, c3},

and N(d) = {c4, c5}. The set of preferences we thus generate is

K ¼ fðc1Bd spÞ; ðspBd c2Þ; ðspBd c3Þ; ðc2Bd ssÞ; ðc3Bd ssÞ; ðssBd c4Þ; ðssBd c5Þg

The standard classification procedure of ordinal regression would select as primary cate-

gories the categories that reach a relevance score above sp, and select as secondary
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categories all the other categories that reach a relevance score above ss. However, a

classification performed in this way could not guarantee that the predictions are consistent

with the requirements of certain preferential tasks. For example, in WIPO-alpha, there is

one and only one primary category for each document, and the predictions of ordinal

regression as presented above do not necessarily have this property. To overcome this

problem in WIPO-alpha, we slightly modify the standard ordinal regression classification

procedure by selecting as primary category the category reaching the highest relevance

score, and by selecting as secondary categories all the other categories that reach a rele-

vance score above ss.

At this point we can discuss the OR-based preference model in more detail. In par-

ticular, in (multi-variate) ordinal regression it is assumed that, for each document, the rank

of a category is independent from the rank of other categories. This assumption would be

reasonable when discriminating between relevant categories (primary or secondary) and

non-categories, since this is not a ‘‘competitive’’ decision, but is far less reasonable when

one has to choose exactly one (the most relevant) among the relevant categories as the

primary category for a document, since in this case we actually have a ‘‘competitive’’

decision. Thus, in this latter case, the choice of the primary category is strongly dependent

on which are the relevant categories. This difference is reminiscent of the difference

between single-label classification (which is competitive) and multi-label classification

(which is not) in multi-class classification tasks. In other words, requiring the relevance

score for the primary category to be higher than a given threshold seems an unnecessary

constraint, which could eventually lead to deteriorate the overall performance.

3.2.2.2 GPLM: a mapping tailored to 3-layered classification In this section, a variant of

the ordinal regression scheme, which seems more suitable for the task of 3-layered

n1

s k
c

pc

s 1
c

τ p

τ s

... ...

... ... cnc
q

Fig. 2 GPLM mapping for ordinal-regression supervision
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classification, is presented. In this case, a GPLM model is built as follows. We interpret the

primary category as the most relevant among relevant categories. This constraint is

introduced by the insertion of a set of qualitative preferences between the primary and all

the secondary categories. Moreover, given the multi-label nature of the problem of dis-

cerning the secondary categories from the remaining one, a single threshold s on the

relevance scores has to be added between the secondary categories and the non-categories.

The categories reaching a relevance score above the threshold (apart from the one rec-

ognized as the primary category) will be predicted as secondary categories. See Fig. 3a for

a graphical representation of this kind of preference model. Note that whenever S(d) = [,

this means that the relevance values for categories in C n PðdÞ are all below the threshold.

To cope with this situation, the qualitative preferences can be collapsed into a direct

quantitative preference between the primary category and the threshold. See Fig. 3b for a

graphical description of this kind of preference. As a simple example, consider the set of

categories C = {c1, c2, c3, c4, c5} and a training document d such that P(d) = {c1},

S(d) = {c2, c3}, and N(d) = {c4, c5}. The set of preferences we generate is

K ¼ fðc1Bd c2Þ; ðc1Bd c3Þ; ðc2Bd sÞ; ðc3Bd sÞ; ðsBd c4Þ; ðsBd c5Þg

Similarly, if d is instead such that P(d) = {c1}, S(d) = [, N(d) = {c2, c3, c4, c5}, this will

generate the set of preferences

K ¼ fðc1Bd sÞ; ðsBd c2Þ; ðsBd c3Þ; ðsBd c4Þ; ðsBd c5Þg

3.2.3 GPLM by using an Adatron-like algorithm

A problem with the direct optimization of Eq. 8 is the huge number of preferences

involved. This implies that the naı̈ve solution (e.g., the one that involves training an SVM

directly) is impractical. This is especially due to the fact that the number of examples in the

extended training set is O(ne), where n is the number of documents in the original training

...

c
pc

cn1
cn1

s 1
c s k

c

cn q
cn q

τ

... ...

τ

(a) (b)

... ......

p

Fig. 3 GPLM mapping for supervision with a non-empty secondary category set and b empty secondary
category set
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set and e is the average number of preferences associated to each such documents. Note

that in our application e is O(|C|), and |C| can be as high as many hundreds. As a conse-

quence, keeping all the examples in memory may itself be an issue for a common SVM

optimization package.

To overcome this problem we propose using a version of the iterative Adatron algorithm

(Friess et al. 1998) tailored to our needs. The original Adatron algorithm is capable of

efficiently finding the solution of a hard-margin SVM, defined by

min
w

1

2
jjwjj2

subject to: w � wðkj
iÞ� 1; 8i 2 f1; . . .; ng; 8j : kj

i 2 Ki

ð9Þ

by optimizing the dual problem. More formally, let ki
j be the jth preference associated to

the ith document, and let ai
j be the associated dual variable; then the optimization problem,

as instantiated in our setting, is

max
a

X

i;j

aj
i �

1

2

X

i0;j0

X

i00;j00
aj0

i0a
j00

i00k�ðwðk
j0

i0 Þ;wðk
j00

i00 ÞÞ

subject to: aj
i� 0; 8i 2 1; . . .; nf g; 8j : kj

i 2 Ki

ð10Þ

where k� is defined by

k�ðvi; vjÞ ¼ vi � vj þ �dij

with dij the ‘‘Kronecker function’’, which has value 1 if i = j and 0 otherwise (Cristianini

and Shawe-Taylor 2000). It can be shown (Herbrich et al. 2001) that, for all � � 0;k� is

indeed a kernel, and the higher the value of �; the more likely the training set will be

linearly separable in feature space. Moreover, solving this formulation is equivalent to

solving the soft-margin SVM with quadratic hinge loss (Vapnik 1998).

The Adatron algorithm requires the update of one single dual variable ai
j at each iter-

ation of the algorithm. Specifically, the update is made in such a way as to maximize the

value of the objective function when all the other variables are fixed. At each iteration, the

value of the w vector can be computed as

w ¼
X

i;j

aj
iwðk

j
iÞ ð11Þ

Note that, since all the terms of the sum are linear, we may directly keep w in memory.

It can be shown that, given the jth preference of the ith example, i.e., ki
j, the update to

perform for the associated ai
j in order to maximize the objective function can be given in

closed form as

Daj
i ¼

1� w � wðkj
iÞ þ �a

j
i

jjwðkj
iÞjj

2 þ �

In order to keep the solution admissible for the quadratic problem, when ai
j ? Dai

j\ 0 the

new value of ai
j is simply put to 0. We can also note that, by construction of the preference

representations given in Sect. 3.2.1, ||w(ki
j)||2 = 2||di||

2 whenever ki
j is a qualitative pref-

erence and ||w(ki
j)||2 = ||di||

2 ? ||s||2 whenever ki
j is a quantitative preference.

The complete Adatron-like algorithm, instantiated to our setting is given in the fol-

lowing. Recall that, with the GPLM construction discussed earlier, all the preferences can

be seen as positive examples.
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1. Let Pr = {w(ki
j)}i,j be the set of training preferences. Set ai

j = 0 for all i,j, and set

w = 0. Set � to a positive value.

2. For all i [ {1,…,n} and for all ki
j [ Ki;

– Compute the ‘‘degree of satisfaction’’ of w(ki
j) by using the formula zi

j / w � w(ki
j)

? �ai
j;

– Compute the current update for the dual variable ai
j as Daj

i  
1�zj

i

jjwðkj
iÞjj

2þ�;
– If ai

j ? Dai
j \ 0, set Dai

j / -ai
j;

– Compute the new weight vector w / w ? Dai
jw(ki

j);

– Update the dual variable ai
j / ai

j ? Dai
j;

3. If the stopping criterion (see Sect. 4.1) in not satisfied, go back to Step 2;

Given that our Adatron-like algorithm is iterative, we can choose not to allow the training

to converge, and consider instead the number of iterations as a further parameter which can

be optimized by validating on a hold-out sample, similarly to what is done for the �
parameter. This seems reasonable because (i) the GPLM loss function that our Adatron-

like algorithm minimizes is different from F1
3, which means that minimizing the former is

anyway suboptimal for our needs, and (ii) given the enormous number of preferences, this

procedure can potentially bring about a huge speedup for training (in fact, as we will see

empirically, this ‘‘early-stopping’’ strategy leads to stopping the algorithm after very few

iterations).

The Adatron-like algorithm as presented above eventually converges to the same

solution independently from the order of presentation of the preferences in Step 2. How-

ever, when the algorithm is stopped far before complete convergence, the produced models

may still be immature. This implies that runs of the algorithm performed with different

orders of presentation of the preferences can produce different models and, more impor-

tantly, they can generate different kinds of errors. In these cases, machine learning theory

tells us that an improvement can be obtained by taking these diverse ‘‘good’’ classifiers and

combining them into a single one, for example by averaging. Note that, since the classifiers

wk are linear, the computation of the average over K classifiers is obtained as

ŵ ¼ 1
K

P
k wk:

4 Experiments

4.1 Experimental setting

We have evaluated our algorithms on the WIPO-alpha dataset, a large (3GB) collection

published by the World Intellectual Property Organization (WIPO) in 2003. The dataset

consists of 75,250 patents classified according to version 8 of the International Patent

Classification scheme (IPC—see Footnote 1). Each document d has one primary category

(known as the main IPC symbol of d), and a variable (possibly null) number of secondary

categories (the secondary IPC symbols of d). The IPC scheme consists in a four-level

hierarchy comprising 8 ‘‘sections’’ (1st level—the root coincides with level 0), 120

‘‘classes’’ (2nd), 630 ‘‘subclasses’’ (3rd), and about 69,000 ‘‘groups’’ (4th). A typical

category might be ‘‘D05C 1/00’’, which is to be read as Section D (Textiles; Paper), Class

05 (‘‘Sewing; Embroidering; Tufting’’), Sub-class C (‘‘Embroidering; Tufting’’) and Group

1/00 (‘‘Apparatus, devices, or tools for hand embroidering’’). In order to avoid problems

due to excessive sparsity, and consistently with previous literature (Fall et al. 2003), we
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only consider categories at the subclass level; each of the 630 IPC subclasses is thus

viewed as containing the union of the documents contained in its subordinate groups.

Among the 614 IPC subclasses that are attached to at least one WIPO-alpha training

document, either as a primary or a secondary category, only 451 appear as primary cat-

egory for some training document; other 163 appear in the training set only in the role of

secondary category. This poses an interesting problem in evaluation: should we test the

system on the first 451 categories only, or should we also consider the latter 163? Our

parameters for predicting secondary categories have sometimes (e.g., in Baseline1) been

collectively optimized on all 614 categories, so using only the first 451 would penalize

these approaches. However, the classifier for primary categories in Baseline2 is a 1-of-451

classifier. If we evaluated on all the 614 categories, it would necessarily misclassify a test

document whose true primary category is one of the remaining 163 categories; and we

cannot ask a system to predict a concept for which we provide no training data. As a

consequence, we consider the first 451 categories the potential primary categories, and all

the 614 categories the potential secondary categories, consistently with what our training

set tells us. This means that, if a system predicts as primary category a category not in the

set of 451 potential primary categories (this can be the case for both Baseline1 and our

GPLM system), we simply treat this as a predicted secondary category, and at the same

time treat as a predicted primary category the top-scoring predicted secondary category

which is in the set of the 451 potential primary categories.

WIPO-alpha comes partitioned into a training set Tr of 46,324 documents and a test set

Te of 28,926 documents. Each category appears as primary category in at least 20 and at

most 2,000 training documents, and of at least 10 and at most 1,000 test documents; each

category appears as secondary category in at least 1 and at most 1,857 training documents,

and of at least 1 and at most 1,621 test documents. The percentage of documents which are

associated to at least one secondary category is 34% in the training set and 33% in the test

set; most documents have thus no secondary categories attached. Categories that are

attached as secondary categories to at least ten documents are 62% of the total set of

categories for the training set and 39,7% for the test set.

In our experiments we use the entire WIPO-alpha set of 75,250 documents. Each

document includes a title, a list of inventors, a list of applicant companies or individuals, an

abstract, a claims section, and a long description. Similarly to Fall et al. (2003) we have

only used the title, the abstract, and the first 300 words of the ‘‘long description.’’9 Pre-

processing has been obtained by performing stop word removal, punctuation removal,

down-casing, number removal, and Porter stemming. Vectorial representations have been

generated for each document by the well-known ‘‘ltc’’ variant of cosine-normalized tfidf
weighting.

For both baselines we have used ‘‘soft-margin’’ SVMs (in Thorsten Joachims’ SVM-

light implementation10) with a linear kernel; this has thus required us to optimize the c
parameter, which determines the tradeoff between the complexity of the generated model

and its training error.

In training the baseline classifiers, the ordinal regression classifier, and our GPLM-

based classifier, we have performed thorough parameter optimization. For Baseline1, the

9 Fall et al. (2003) choose this setting due to the fact that the long description of the patent is a very long
text that describes the invention at a level of detail largely irrelevant to the purposes of classification. Among
other things, using the entire long description would bring about a feature set with more than half a million
features.
10 http://www.svmlight.joachims.org/.
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validation process was performed by selecting a unique value of c for all the 614 binary

SVMs; this is due to the fact that the overall prediction calculated by Baseline1 depends

upon all the classifiers associated to the classes. It follows that, allowing for different

choices of c over individual SVMs, let say q different values, would have required an

exponential number, namely q614, of different classifiers to train.

For Baseline2, validation was performed independently on the single-label (hP) and on

the multi-label (hS) classifiers. For producing hP we have generated a DDAG with 1
2
ð451 �

ð451� 1ÞÞ ¼ 101; 475 binary classifiers, each from 1,027 positive training examples per

category on average. Since 101,475 is a very high number, we have chosen to optimize c
only once for all binary classifiers. In order to do this, we have divided the training set into

a validation set (Va) and a ‘‘true’’ training set (Tr - Va), obtained by attributing 70% of

the positive training examples of each category to Tr - Va and the remaining 30% to Va.

The classifiers generated from Tr - Va were organized into a DDAG-based single-label

classifier, which was then evaluated on Va in terms of accuracy (the percentage of

documents that have been correctly classified).11 As values of c we have tested 10i with

i [ {-4, -3, -2, -1, 0, 1, 2, 3, 4}; the best result we obtained on Va (48.62%) was for

i = 1.

For the multi-label classifier hS of Baseline2 the validation process was performed by

selecting a possibly different value of c for each of the 614 binary SVMs. We fixed the

threshold to 0, so that all the categories whose associated classifier attributes a score higher

than 0 to d are attached to d as secondary categories. For each category ci, 70% of the

training documents were used as ‘‘true’’ training examples and the other 30% as validation

examples. The values of c we tested are the same as those used for optimizing hP. The

classifiers generated from the Tr - Va were evaluated on Va in terms of F1.

Validation for the ordinal regression and the GPLM classifiers was instead aimed at

optimizing the � parameter, along with the number of iterations, in our Adatron-like

algorithm. The training set, which generates 28,859,852 preferences when using the

approach described in Sect. 3.2.2, was divided into a true training set Tr and a validation

set Va as for the hS classifier. Model selection was performed by testing all values of (i) the

parameter � in � [ {10-2, 10-1, 100, 101} and (ii) the number of iterations t in the range

{1,…,30}, and choosing the best-performing values.

The overall validation procedure for both the individual GPLM models and the aver-

aged model can be summarized as follows:

1. For t [ {1,…,30}, for � [ {10-2, 10-1, 100, 101}, and for k = 1,…,K do

(a) Fix an order ok of presentation of the preferences;

(b) Run t iterations of the Adatron algorithm with parameter � over the set Tr - Va,

apply the resulting classifiers on Va and compute the value of F1
3, denoting it by

Vkðt; �Þ);
2. For each pair (ðt; �Þcompute the average performance V̂ðt; �Þ ¼ 1

K

PK
k¼1 Vkðt; �Þ;

3. Return ðt̂; �̂Þ ¼ arg maxðt;�Þ V̂ðt; �Þ;
Once determined the ‘‘optimal’’ parameters ðt̂; �̂Þ as described above, K = 20 runs of t̂

iterations of the Adatron algorithm with parameter �̂ are executed over the whole training

set. As proposed in Sect. 3.2.3, the obtained models are also averaged to form a classifier

committee. In our case, we obtained t̂ ¼ 3 and �̂ ¼ 0:01:

11 For single-label classification it is well-known that micro-averaged precision, micro-averaged recall,
micro-averaged F1, and accuracy have the same value.
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Finally, note that we do not compare our results to the ones previously obtained by other

researchers on WIPO-alpha, since

– these authors work on tasks different from preferential classification, i.e., single-label

classification in Cai and Hofmann (2004), Fall et al. (2003), Hofmann et al. (2003),

Rousu et al. (2006), Tikk and Biró (2003), Tsochantaridis et al. (2004), Vishwanathan

et al. (2006) and multi-label classification in Cai and Hofmann (2007), Tikk et al.

(2004), and

– only few of them (Fall et al. 2003; Rousu et al. 2006; Tikk and Biró 2003) test their

systems on the full set of 75,250 WIPO-alpha documents. For instance, Altun et al.

(2007), Hofmann et al. (2003), Seeger (2007), Shahbaba (2007), Tikk et al. (2004),

Tsochantaridis et al. (2004), Vishwanathan et al. (2006) only use 1,710 documents,

while Cai and Hofmann (2004, 2007) only use 9,406.

4.2 Results

The results obtained for the different classifiers are summarized in Table 3.

The first three rows report the performance of the two baseline classifiers and the

modified version of the Baseline2 classifier as described in Sect. 3.1. It can be observed

that the fist two have almost identical F1
3. Both baselines are good in telling apart primary

from secondary categories. This is especially true for Baseline2, and it can be explained by

recalling that the single-label classifier that selects the primary category is trained in such a

way that both secondary and non-categories are considered as not relevant. Thus, since the

number of secondary categories is much smaller that the number of non-categories, it is

more likely to wrongly predict as primary a non-category instead of a secondary category.

As a consequence of this, there will only be few cases in which a secondary category is

deemed a primary category, thus improving F1
PS, while there it will be more frequently the

case that a non-category is predicted as a primary category, thus worsening F1
PN. Also

Baseline1 is not very good in telling apart secondary categories from non-categories (F1
SN).

The fourth row reports the performance of the ordinal regression classifier, which turns

out to have the best separation between primary categories and non-categories (F1
PN) but a

low performance on separating primary and secondary categories (F1
PS). These results seem

coherent with the analysis we have given in Sect. 3.2.2.1 as the separation between pri-

mary categories and non-categories is over-constrained by the ordinal regression model.

The overall performance (F1
3) is roughly equal to that of the baseline classifiers.

The fourth row reports the average performance of the GPLM Adatron over 20 different

runs (which differ for the order of presentation of the preferences). Standard deviation is

also reported to show that there is not a severe dependence of the performance on the order

of presentation of the preferences. With respect to the baselines and the ordinal regression

classifier, there is a clear improvement on F1
SN, while F1

PS decreases. Overall, however,

there is a significant improvement in F1
3. The remaining rows report the performances

obtained by committees using different number of members. The members are the clas-

sifiers obtained by the 20 runs described above. The committee with i members is

composed of the classifiers obtained by the first i runs. It can be noted that F1
3 increases

with the number of members in the committee, however adding more members to a

committee of ten does not give a significant improvement.
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5 Conclusions

We have addressed the problem of how to learn a classifier that distinguishes between the

primary and the secondary categories of a document, and argued that this task deserves to

be explicitly tackled by TC research.

The first problem in dealing with this novel task is how to evaluate the performance of a

classifier. We observed that already known evaluation measures defined either on standard

categorization tasks or on ranking tasks, have drawbacks. We have thus proposed an F1-

based evaluation measure in which different kinds of misclassifications involving either

primary or secondary categories have a different impact.

Then, by using state-of-the-art learning technology such as multiclass SVMs (for

detecting the unique primary category) and binary SVMs (for detecting the secondary

categories), we have established strong baseline results for this task on a patent classifi-

cation dataset in which the distinction between primary and secondary categories is

present. In addition, we have provided a slightly better solution based on an ordinal

regression model implemented by a recently proposed class of learning algorithms

explicitly geared to learning from training data expressed in preferential form, i.e., in the

form ‘‘for document di, category c0 is preferred to category c00’’.
Finally, we have shown that it is possible to improve on the baselines and on the ordinal

regression classifier, by defining a preferential model according to the true nature of the

problem, i.e., where the primary category is in competition with the secondary categories.

Thanks to this approach we have been able to give proper treatment to primary and

secondary categories not only in the testing phase but also in the learning phase. The

proposed learner is incremental, improves its performance rapidly with the learning iter-

ations, and generates a single model per class.

In the future we plan to investigate preferential text classification further by tailoring the

training loss function used in the GPLM to the specific measure eventually used for

evaluating the results of classification (F3
1, in our case). Note in fact (see Sect. 3.2.1) that

we have not made any attempt at selecting a training loss function that closely fits the

chosen evaluation measure, since in our case the former only measures the number of

unfulfilled preferences, without distinguishing which kind of preferences are unfulfilled.

Aiming at a better such fit might turn out to improve effectiveness since, as reflected in the

different values that the ai parameters of Equation 3 may typically be given, different types

of misclassification may have a different impact on the computed performance.
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