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Abstract
Quantification is the task of estimating, given a set � of unlabelled items and a set of 
classes C = {c1,… , c|C|} , the prevalence (or “relative frequency”) in � of each class c

i
∈ C . 

While quantification may in principle be solved by classifying each item in � and counting 
how many such items have been labelled with c

i
 , it has long been shown that this “classify 

and count” method yields suboptimal quantification accuracy. As a result, quantification 
is no longer considered a mere byproduct of classification, and has evolved as a task of 
its own. While the scientific community has devoted a lot of attention to devising more 
accurate quantification methods, it has not devoted much to discussing what properties an 
evaluation measure for quantification (EMQ) should enjoy, and which EMQs should be 
adopted as a result. This paper lays down a number of interesting properties that an EMQ 
may or may not enjoy, discusses if (and when) each of these properties is desirable, surveys 
the EMQs that have been used so far, and discusses whether they enjoy or not the above 
properties. As a result of this investigation, some of the EMQs that have been used in the 
literature turn out to be severely unfit, while others emerge as closer to what the quantifica-
tion community actually needs. However, a significant result is that no existing EMQ satis-
fies all the properties identified as desirable, thus indicating that more research is needed in 
order to identify (or synthesize) a truly adequate EMQ.

Keywords  Quantification · Supervised prevalence estimation · Supervised learning · 
Evaluation measures

1  Introduction

Quantification [also known as “supervised prevalence estimation” (Barranquero et  al. 
2013), or “class prior estimation” (du Plessis et  al. 2017)] is the task of estimating, 
given a set � of unlabelled items and a set of classes C = {c1,… , c|C|} , the relative 
frequency (or “prevalence”) p(ci) of each class ci ∈ C , i.e., the fraction of items in � 
that belong to ci . When each item belongs to exactly one class, since 0 ≤ p(ci) ≤ 1 and 
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∑
ci∈C

p(ci) = 1 , p is a distribution of the items in � across the classes in C (the true 
distribution), and quantification thus amounts to estimating p (i.e., to computing a pre-
dicted distribution p̂).

Quantification is important in many disciplines (such as e.g., market research, politi-
cal science, the social sciences, and epidemiology) which usually deal with aggregate (as 
opposed to individual) data. In these contexts, classifying individual unlabelled instances 
is usually not a primary goal, while estimating the prevalence of the classes of interest in 
the data is. For instance, when classifying the tweets about a certain entity (e.g., a politi-
cal candidate) as displaying either a Positive or a Negative stance towards the entity, we 
are usually not much interested in the class of a specific tweet: instead, we usually want to 
know the fraction of these tweets that belong to the class (Gao and Sebastiani 2016).

Quantification may in principle be solved via classification, i.e., by classifying each item 
in � and counting, for all ci ∈ C , how many such items have been labelled with ci . However, 
it has been shown in a multitude of works (see e.g., Barranquero et al. 2015; Bella et al. 
2010; Esuli and Sebastiani 2015; Forman 2008; Gao and Sebastiani 2016; Hopkins and 
King 2010) that this “classify and count” (CC) method yields suboptimal quantification 
accuracy. Simply put, the reason of this suboptimality is that most classifiers are optimized 
for classification accuracy, and not for quantification accuracy. These two notions do not 
coincide, since the former is, by and large, inversely proportional to the sum (FPi + FNi) of 
the false positives and the false negatives for ci in the contingency table, while the latter is, 
by and large, inversely proportional to the absolute difference |FPi − FNi| of the two. As a 
result, quantification has come to be no longer considered a mere byproduct of classifica-
tion, and has evolved as a task of its own, devoted to designing methods and algorithms 
that deliver better prevalence estimates than CC (see González et al. 2017 for a survey of 
methods and results).

While the scientific community working on quantification has devoted a lot of atten-
tion to devising new and more accurate quantification methods, it has not devoted much to 
discussing how quantification accuracy should be measured, i.e., what properties an evalu-
ation measure for quantification (EMQ) should enjoy, and which EMQs should be adopted 
as a result. In experimental computer science, the properties of the evaluation measure 
that one uses are fundamental in order to ensure a correct comparison among systems, i.e., 
ensure that this comparison rewards the systems that deliver the most desirable results; 
these properties formalize what “desirable” actually means. In the quantification literature, 
sometimes new EMQs have been introduced without arguing why they are supposedly bet-
ter than existing ones. As a result, there is no consensus (and, what is worse: no debate) 
in the field as to which EMQ (if any) is the best. Different authors use different EMQs 
without properly justifying their choice, and the consequence is that different results, even 
when obtained on the same dataset, are not comparable. Even worse, it may be the case 
that an improvement, sanctioned by an “inappropriate” EMQ, obtained by a newly pro-
posed method with respect to a baseline, may correspond to no real improvement when 
measured according to an “appropriate” EMQ.

This paper attempts to shed some light on the issue of which evaluation measure(s) 
should be used for quantification. In order to do so, we (a) lie down a number of interesting 
properties that an EMQ may or may not enjoy, (b) discuss whether (or when) each of these 
properties is desirable, (c) survey the EMQs that have been used so far, and (d) discuss 
whether they enjoy or not the above properties. As a result of this investigation, some of 
the EMQs that have been used in the literature turn out to be severely unfit, while others 
emerge as closer to “what the quantification community actually needs”. However, a sig-
nificant result is that no existing measure satisfies all the properties identified as desirable, 



257Information Retrieval Journal (2020) 23:255–288	

1 3

thus indicating that more research is needed in order to identify (or synthesize) a truly 
adequate EMQ.

This paper follows in the tradition of the so-called “axiomatic” approach to “evaluating 
evaluation” in information retrieval (see e.g., Amigó et al. 2011; Busin and Mizzaro 2013; 
Ferrante et al. 2015, 2018; Moffat 2013; Sebastiani 2015), which is based on describing 
(and often: arguing in favour of) a number of properties (that most of this literature calls—
perhaps improperly—“axioms”) that an evaluation measure for the task being considered 
should intuitively satisfy. The benefit of this approach is that it shifts the discussion from 
the evaluation measures to their properties, which amounts to shifting the discussion from 
a complex construction to its building blocks: once the scientific community has agreed on 
a set of properties (the building blocks), it then follows whether a given measure (the con-
struction) is satisfactory or not.

The paper is structured as follows. In Sect. 2 we set the stage and define the scope of 
our investigation. In Sect. 3 we formally discuss properties that may or may not character-
ize an EMQ, and argue if and when it is desirable that an EMQ enjoys them. In Sect. 4 we 
turn to examining the actual measures that have been proposed or used in the quantification 
literature, and discuss whether they comply or not with the properties introduced in Sect. 3. 
Section 5 critically reexamines the results of Sect. 4, while Sect. 6 concludes, discussing 
aspects that the present work still leaves open and avenues for further research.

2 � Evaluating single‑label quantification

Let us fix some notation. Symbols � , �′ , �′′ , ...will each denote a sample, i.e., a nonempty 
set of unlabelled items, while symbols C , C′ , C′′ , ...will each denote a nonempty set of 
classes (or codeframe) across which the unlabelled items in a sample are distributed. Sym-
bols c, c1 , c2 , ...will each denote an individual class. Given a class ci , we will denote by �i 
the set of items in � that belong to ci ; we will also denote by |�| , |�′| , |�′′| , ...the number of 
items contained in samples � , �′ , �′′ , .... Symbols p, p′ , p′′ ..., will each denote a true distri-
bution of the unlabelled items (either on the same sample � or on different samples) across 
a codeframe C , while symbols p̂ , p̂′ , p̂′′ , ...will each denote a predicted distribution (or esti-
mator), i.e., the result of estimating a true distribution;1 symbol P will denote the (infinite) 
set of all distributions on C.2 Finally, symbols D, D′ , D′′ , ...will each denote an EMQ, while 
symbols � , �′ , �′′ , ...will denote properties that an EMQ may enjoy or not.

Similarly to classification, there are different quantification problems of applicative 
interest, based (a) on how many classes codeframe C contains, and (b) how many of the 
classes in C can be legitimately attributed to the same item. We characterize quantification 
problems as follows:

1.	 Single-label quantification (SLQ) is defined as quantification when each item belongs 
to exactly one of the classes in C = {c1,… , c|C|}.

1  Consistently with most mathematical literature, we use the caret symbol ( ̂  ) to indicate estimation.
2  In order to keep things simple we avoid overspecifying the notation, thus leaving some aspects of it 
implicit; e.g., in order to indicate a true distribution p of the unlabelled items in a sample � across a code-
frame C we will simply write p instead of the more cumbersome pC

�
 , thus letting � and C be inferred from 

context.
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2.	 Multi-label quantification (MLQ) is defined as quantification when the same item may 
belong to any number of classes (zero, one, or several) in C = {c1,… , c|C|}.

3.	 Binary quantification (BQ) may alternatively be defined

(a)	 as SLQ with |C| = 2 (in this case C = {c1, c2} and each item must belong to either 
c1 or c2 ), or

(b)	 as MLQ with |C| = 1 (in this case C = {c} and each item either belongs or does 
not belong to c).

Since BQ is a special case of SLQ (see bullet 3a above), any evaluation measure for SLQ 
is also an evaluation measure for BQ. Likewise, any evaluation measure for BQ is also an 
evaluation measure for MLQ, since evaluating a multi-label quantifier (i.e., a software arti-
fact that estimates class prevalences) can be done by evaluating |C| binary quantifiers, one 
for each ci ∈ C . As a consequence, in this paper we focus on the evaluation of SLQ, know-
ing that all the solutions we discuss for SLQ also apply to BQ and MLQ.3

As already discussed, given a sample � of items (single-)labelled according to 
C = {c1,… , c|C|} , quantification has to do with determining, for each ci ∈ C , the fraction 
|�i|∕|�| of items in � that are labelled by ci . These |C| fractions actually form a distribution 
p of the items in � across the classes in C ; quantification may thus be seen as generating a 
predicted distribution p̂(c) over C that approximates a true distribution p(c) over C . Evaluat-
ing quantification thus means measuring how well p̂(c) fits p(c). We will thus be concerned 
with discussing the properties that a function that attempts to measure this goodness-of-fit 
should enjoy; we hereafter use the notation D(p, p̂) to indicate such a function.4

In this paper we assume that the EMQs we are concerned with are measures of quanti-
fication error, and not of quantification accuracy. The reason for this is that most, if not all, 
the EMQs that have been used so far are indeed measures of error, so it would be slightly 
unnatural to discuss our properties with reference to quantification accuracy. Since any 
measure of accuracy can be turned into a measure of error (typically: by taking its nega-
tion), this is an inessential factor anyway.

3  In this paper we do not discuss the evaluation of ordinal quantification (OQ), defined as SLQ with a 
codeframe C = {c1,… , c|C|} on which a total order c1 ≺ ⋯ ≺ c|C| is defined. Aside from reasons of space, 
the reasons for disregarding OQ is that there has been very little work on it [the only papers we know being 
(Da San Martino et al. 2016a, b; Esuli 2016)], and that only one measure for OQ (the Earth Mover’s Dis-
tance—see Esuli and Sebastiani 2010) has been proposed and used so far. For the same reasons we do not 
discuss regression quantification (RQ), the task that stands to metric regression as single-label quantifica-
tion stands to single-label classification. RQ has been studied even less than OQ, the only work appeared on 
this theme so far being, to the best of our knowledge (Bella et al. 2014), which as an evaluation measure has 
proposed the Cramér-von-Mises u-statistic (see Bella et al. 2014 for details).
4  Note that two distributions p(c) and p̂(c) over C are essentially two nonnegative-valued, length-normal-
ized vectors of dimensionality |C| . The literature on EMQs thus obviously intersects the literature on func-
tions for computing the similarity of two vectors.



259Information Retrieval Journal (2020) 23:255–288	

1 3

3 � Properties for SLQ error measures

3.1 � Seven desirable properties

In this section we examine a number of specific properties that, as we argue, an EMQ 
should enjoy. The spirit of our discussion will be essentially normative, i.e., we will argue 
whether an EMQ should or should not enjoy a given property, and whether this should hold 
regardless of the intended application. This is different, e.g., from the spirit of Amigó et al. 
(2011) (a work on the properties of evaluation measures for document filtering), which has 
a descriptive intent, i.e., describes a number of properties that such evaluation measures 
may or may not enjoy but does not necessarily argue that all measures should satisfy them.

The first four properties for EMQs that we discuss concern both mathematical “well-
formedness” and ease of interpretation.

Property 1  Identity of indiscernibles (IoI) For each codeframe C, true distribution p, and 
predicted distribution p̂, it holds that D(p, p̂) = 0 if and only if p̂ = p . 	�  ◻

Property 2  Non-negativity (NN) For each codeframe C , true distribution p, and pre-
dicted distribution p̂ , it holds that D(p, p̂) ≥ 0 . 	� ◻

Imposing that an EMQ enjoys IoI and NN is reasonable, since altogether they indicate 
a score for the perfect estimator (defined as the estimator p̂ such that p̂ = p ) and stipu-
late that any other (non-perfect) estimator must obtain a score strictly higher than it; both 
prescriptions fit our understanding of D as a measure or error. In mathematics, a function 
of two probability distributions that enjoys IoI and NN (two properties that, together, are 
often called Positive Definiteness) is called a divergence (a.k.a. “contrast function”).5

Property 3  Strict monotonicity (MON) For each codeframe C and true distribu-
tion p, if there are predicted distributions p̂′, p̂′′ and classes c1, c2 ∈ C such that p̂′ and 
p̂′′ only differ for the fact that p̂��(c1) < p̂�(c1) ≤ p(c1) and p̂��(c2) > p̂�(c2) ≥ p(c2) , with 
|p̂��(c1) − p̂�(c1)| = |p̂��(c2) − p̂�(c2)| , then it holds that D(p, p̂�) < D(p, p̂��) . 	�  ◻

If D satisfies MON, this means that, all other things being equal, a higher prediction 
error on a class c1 (obviously matched by a higher prediction error, of opposite sign, on 
another class c2 ) implies a higher quantification error as measured by D.

Property 4  Maximum (MAX) There is a real value 𝛽 > 0 such that, for each code-
frame C and for each true distribution p, (1) there is a predicted distribution p̂∗ such that 
D(p, p̂∗) = 𝛽 , and (2) for no predicted distribution p̂ it holds that D(p, p̂) > 𝛽 . 	�  ◻

5  A divergence is often indicated by the notation D(p||p̂) ); we will prefer the more neutral notation D(p, p̂) . 
Note also that a divergence can take as arguments any two distributions p and q defined on the same space 
of events, i.e., p and q need not be a true distribution and a predicted distribution. However, since we will 
consider divergences only as measures of fit between a true distribution and a predicted distribution, we will 
use the more specific notation D(p, p̂) rather than the more general D(p, q).
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An estimator p̂∗ that is the worst possible estimator of p for D (i.e., 
p̂∗ = argmaxp̂∈P D(p, p̂) ) will be called the perverse estimator of p for D. If D satisfies 
MAX and p̂∗ is the perverse estimator of p for D, then D(p, p̂∗) = 𝛽 . Without loss of gener-
ality, in the rest of this paper we will assume � = 1 ; this assumption is unproblematic since 
any interval [0, �] can be rescaled to the [0, 1] interval.

Altogether, these first four properties state (among other things) that the range of an 
EMQ that satisfies them is independent of the problem setting (i.e., of C , of its cardinality 
|C| , and of the true distribution p).6 This is important, since in order to be able to easily 
judge whether a given value of D means high or low quantification error, not only we need 
to know what values D ranges on, but we need to know that these values are always the 
same. In other words, should this range depend on C , or on its cardinality, or on the true 
distribution p, we would not be able to easily interpret the meaning of a given value of D.

An additional, possibly even more important reason for requiring this range to be inde-
pendent of the problem setting is that, in order to test a given quantification method, the 
EMQ usually needs to be evaluated on a set of n test samples �1,… , �n (each characterized 
by its own true distribution), and a measure of central tendency (typically: the average or 
the median) across the n resulting EMQ values then needs to be computed (see Sect. 5.3 
for more on this). If, for these n samples, the EMQ ranges on n different intervals, this 
measure of central tendency will return unreliable results, since the results obtained on 
the samples characterized by the wider such intervals will exert a higher influence on the 
resulting value.

The fifth property we discuss deals with the relative impact of underestimation and 
overestimation.

Property 5  Impartiality (IMP) For any codeframe C = {c1,… , c|C|} , true distribution p, 
predicted distributions p̂′ and p̂′′ , classes c1, c2 ∈ C , and constant a ≥ 0 such that p̂′ and 
p̂′′ only differ for the fact that p̂�(c1) = p(c1) + a , p̂�(c2) = p(c2) − a , p̂��(c1) = p(c1) − a , 
p̂��(c2) = p(c2) + a , it holds that D(p, p̂�) = D(p, p̂��) . 	�  ◻

In a nutshell, for an EMQ D that enjoys IMP, underestimating a true prevalence p(c) 
by an amount a or overestimating it by the same amount a are equally serious mistakes. 
For instance, assume that C = {c1, c2} , p(c1) = 0.10 , p(c2) = 0.90 , and let p̂′ and p̂′′ be 
two predicted distributions such that p̂�(c1) = 0.05 , p̂�(c2) = 0.95 , p̂��(c1) = 0.15 , and 
p̂��(c2) = 0.85 . If an EMQ D satisfies IMP then D(p, p̂�) = D(p, p̂��).

We contend that IMP is indeed a desirable property of any EMQ, since underestimation 
and overestimation should be equally penalized, unless there is a specific reason for not 
doing so.7 If, in a given application, we want to state that the two mistakes bring about dif-
ferent costs, we should be able to explicitly state these costs as parameters of the adopted 

7  One might argue that underestimating the prevalence of a class c1 always implies overestimating the 
prevalence of another class c2 . However, there are cases in which c1 and c2 are not equally important. For 
instance, if C = {c1, c2} , with c1 the class of patients that suffer from a certain rare disease (say, one such 
that p(c1) = .0001 ) and c2 the class of patients who do not, the class whose prevalence we really want to 
quantify is c1 , the prevalence of c2 being derivative. So, what we really care about is that underestimating 
p(c1) and overestimating p(c1) are equally penalized. The formulation of IMP, which involves underestima-
tion and overestimation in a perfectly symmetric way, is strong enough that IMP is not satisfied (as we will 
see in Sect. 4) by a number of important EMQs.

6  By the “range” of an EMQ here we actually mean its image (i.e., the set of values that the EMQ actually 
takes for its admissible input values), and not just its codomain.
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measure.8 However, in the absence of any such explicit statement, the two errors should be 
considered equally serious.

A further reason for insisting that an EMQ satisfies IMP is that the parameters of a 
quantifier trained via supervised learning, if optimized on a measure D that penalizes (say) 
the underestimation of p(c) less than it penalizes its overestimation, will be such that the 
quantifier will systematically tend to underestimate p(c). Depending on the type of parame-
ters, this may be the result of optimization carried out either implicitly (i.e., via supervised 
learners that use D as the loss to minimize—see e.g., Esuli and Sebastiani 2015) or explic-
itly (i.e., via k-fold cross validation).

So far we have discussed properties that, as we claim, should be enjoyed by any EMQ. 
This is not the case for the next (and last) two properties since they exclude each other (i.e., 
an EMQ may not enjoy them both). We will claim that in some application contexts the 
former is desirable while in other application contexts the latter is desirable.

Property 6  Relativity (REL) For any codeframe C , constant a > 0 , true distribu-
tions p′ and p′′ that only differ for the fact that, for classes c1 and c2 , p�(c1) < p��(c1) 
and p��(c2) < p�(c2) (with p��(c1) < p��(c2)), if a predicted distribution p̂′ that estimates 
p′ is such that p̂�(c1) = p�(c1)±a and a predicted distribution p̂′′ that estimates p′′ is 
such that p̂��(c1) = p��(c1)±a , and p̂�(c) = p̂��(c) for all c ∉ {c1, c2} , then it holds that 
D(p�, p̂�) > D(p��, p̂��) . 	�  ◻

In order to understand this fairly complex formulation9 let us see a concrete example.

Example 1  Assume that C = {c1, c2, c3, c4} , and that p′, p′′, p̂′, p̂′′ are described by the fol-
lowing table: 

c1 c2 c3 c4

p
′ 0.15 0.35 0.40 0.10

p̂
′ 0.10 0.55 0.30 0.05

p
′′ 0.20 0.30 0.40 0.10

p̂
′′ 0.15 0.50 0.30 0.05

This scenario is characterized by the fact that, of the only two classes ( c1 and c2 ) that 
have different prevalence in p′ and p′′ , the one with the smallest true prevalence ( c1 ) in 
both p′ and p′′ is underestimated by the same amount (0.05) by both p̂′ and p̂′′ . In this case 
D penalizes (if it satisfies REL) p̂′ more than it penalizes p̂′′ , since p�(c1) < p��(c1) . 	�  ◻

The rationale of REL is that an EMQ that satisfies it, sanctions that an error of abso-
lute magnitude a is more serious when the true class prevalence is smaller. REL may be 
a desirable property in some applications of quantification. Consider, as an example, the 

8  In this case we enter the realm of cost-sensitive quantification, which is outside the scope of this paper; 
see (Forman 2008, §4 and §5) and (González et al. 2017, §10) for more on the relationships between quan-
tification and cost.
9  The symbol ± stands for “plus or minus” while ∓ stands for “minus or plus”; when symbol ± evaluates to 
+ , symbol ∓ evaluates to −, and vice versa.
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case in which the prevalence p(c) of pathology c (say, Tubercolosis) as a cause of death 
in a population has to be estimated, for epidemiological purposes, from verbal descriptions 
of the symptoms that the deceased exhibited before dying (King and Ying 2008). In this 
case, REL should arguably be a property of the EMQ; in fact, predicting p̂�(c) = 0.0101 
when p�(c) = 0.0001 is a much more serious mistake than predicting p̂��(c) = 0.1100 when 
p��(c) = 0.1000 , since in the former case a very rare cause of death is overestimated by 
two orders of magnitude (e.g., the presence of an epidemic might mistakenly be inferred), 
while the same is not true in the latter case.

However, in other applications of quantification REL may be undesirable. To see this, 
consider an example in which we want to predict the prevalence p(������) of the NoShow 
class among the passengers booked on a flight with actual capacity X (so that the airline 
can “overbook” additional p̂(������) ⋅ X seats). In this application, relativity should argu-
ably not be a property of the evaluation measure, since predicting p̂(������) = 0.05 when 
p(������) = 0.10 or predicting p̂(������) = 0.15 when p(������) = 0.20 brings about 
the same cost to the airline (i.e., that 0.05 ⋅ X seats will remain empty). Applications such 
as this demand that the EMQ satisfies instead the following property.

Property 7  Absoluteness (ABS) For any codeframe C , constant a > 0 , true distri-
butions p′ and p′′ that only differ for the fact that, for classes c1 and c2 , p�(c1) < p��(c1) 
and p��(c2) < p�(c2) (with p��(c1) < p��(c2)), if a predicted distribution p̂′ that estimates 
p′ is such that p̂�(c1) = p�(c1) ± a and a predicted distribution p̂′′ that estimates p′′ is 
such that p̂��(c1) = p��(c1) ± a , and p̂�(c) = p̂��(c) for all c ∉ {c1, c2} , then it holds that 
D(p�, p̂�) = D(p��, p̂��) . 	�  ◻

The formulation of ABS only differs from the formulation of REL for its conclusion: 
while REL stipulates that D(p�, p̂�) must be higher than D(p��, p̂��) , ABS states that the two 
must be equal. The rationale of ABS is to guarantee that an error of the same magnitude 
has the same impact on D regardless of the true prevalence of the class. ABS and REL are 
thus mutually exclusive.

Note that ABS and REL are not redundant, i.e., they do not cover the entire spectrum of 
possibilities (see Sect. 4.6 for an example EMQ that enjoys neither). For instance, an EMQ 
might consider an error more serious when the true class prevalence is larger, in which case 
it would satisfy neither REL nor ABS. As the two examples above show, there are applica-
tions that positively demand REL to hold and others that positively demand ABS. As a result, 
we will not claim that an EMQ must (or must not) enjoy REL or ABS; we simply think it is 
important to ascertain whether a given EMQ satisfies REL or ABS or neither, since depend-
ing on this the EMQ may or may not be adequate for the application one is tackling.

3.2 � Reformulating MON, IMP, REL, ABS

The formulations of four of the properties presented above (namely, MON, IMP, REL, ABS) 
might seem baroque, i.e., not as tight as they could be. In this section we will try to simplify 
them, but for this we need to discuss a further property. In this section we will define simpli-
fied versions of them, and show that if an EMQ satisfies the IND property, that we are going 
to define next, then each of MON, IMP, REL, ABS is equivalent to its simplified counter-
part. Since, as it turns out, all the measures that we discuss in this paper satisfy IND, this 
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will substantially simplify the task of checking whether our measures satisfy MON, IMP, 
REL, ABS.

Assume a codeframe C = {c1,… , cn} partitioned into C1 = {c1,… , ck} and 
C2 = {ck+1,… , cn} , and a true distribution p on C such that 

∑
c∈C1

p(c) = a for some con-
stant 0 < a ≤ 1 . We define the projection of p on C1 as the distribution pC1 on C1 such that 
pC1 (c) =

p(c)

a
 for all c ∈ C1.

Example 2  Assume that C = {c1, c2, c3, c4} , that C1 = {c1, c2, c3} , and that p is as in the 1st 
row of the following table. The projection of p on C1 is then described in the 2nd row of the 
same table. 

c1 c2 c3 c4

p 0.32 0.00 0.48 0.20
pC1

0.40 0.00 0.60 –

Essentially, the projection on C1 ⊂ C of a distribution p defined on C is a distribution 
defined on C1 such that the ratios between prevalences of classes that belong to C1 are the 
same in C and C1.

We are now ready to describe Property 8.

Property 8  Independence (IND) For any codeframes C = {c1 , ..., cn} , C1 = {c1,… , ck} 
and C2 = {ck+1,… , cn} , for any true distribution p on C and predicted distributions p̂′ and 
p̂′′ on C such that p̂�(c) = p̂��(c) for all c ∈ C2 , it holds that D(p, p̂�) ≤ D(p, p̂��) if and only if 
D(pC1 , p̂

�
C1
) ≤ D(pC1 , p̂

��
C1
) . 	�  ◻

If D satisfies property IND, this essentially means that when two predicted distributions 
estimate the prevalence of all classes {ck+1,… , cn} identically, according to D their relative 
merit is independent from these classes, and can thus be established by focusing only on 
the remaining classes {c1,… , ck}.

We can now attempt to simplify the formulation of the MON, IMP, REL, ABS proper-
ties. For this discussion we will take MON as an example, since similar considerations also 
apply to the other three properties.

What we would like from a monotonicity property is to stipulate that any even small 
increase in quantification error must generate an increase in the value of D(p, p̂) . How-
ever, the notion of an “increase in quantification error” is non-trivial. To see this, note 
that characterizing an increase in classification error is simple, since the units of clas-
sification (the unlabelled items) are independent of each other: in a single-label context, 
to generate an increase in classification error one just needs to switch the predicted label 
of a single test items from correct to incorrect, and the other items are not affected.10 
In a quantification context, instead, increasing the difference between p(ci) and p̂(ci) 
for some ci does not necessarily increase quantification error, since the estimation(s) of 
some other class(es) in C∕{ci} is/are affected too, in many possible ways; in some cases 
the quantification error across the entire codeframe C unequivocally increases, while in 

10  This is the basis of the “Strict Monotonicity” property discussed in Sebastiani (2015) for the evaluation 
of classification systems.
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some other cases it is not clear whether this happens or not, as the following example 
shows.

Example 3  Assume that C = {c1, c2, c3, c4} , and assume the following true distribution p 
and predicted distributions p̂′, p̂′′, p̂′′′ : 

c1 c2 c3 c4

p 0.20 0.30 0.25 0.25
p̂
′ 0.25 0.15 0.30 0.30

p̂
′′ 0.35 0.15 0.25 0.25

p̂
′′′ 0.35 0.05 0.30 0.30

In switching from p̂′ to p̂′′ the quantification error on c1 increases, but the quantification 
error on c3 and c4 decreases, so that it is not clear whether we should consider the quantifi-
cation error on C to increase or decrease. Conversely, in switching from p̂′ to p̂′′′ the quan-
tification errors on c1 and on the rest of the codeframe as a whole both increase. 	�  ◻

Example 3 shows that the increase in the quantification error on a single class says 
nothing about how the quantification error on the entire codeframe varies. As a result, in 
MON we cannot stipulate (as we would have liked) that, in switching from one predicted 
distribution to another, D should increase with the increase in the estimation error on a 
single class c1 . The only thing we can do is to impose a monotonicity condition on how 
D behaves in a specific case, i.e., when the increase in the estimation error on a class c1 
is exactly matched by an estimation error (of identical magnitude but opposite sign) on 
another class c2 (which is what MON does) while the estimation errors on all the other 
classes do not change.

The two predicted distributions p̂′ and p̂′′ mentioned in MON are such that 
p̂�(c1) + p̂�(c2) = p̂��(c1) + p̂��(c2) = a for some constant 0 < a ≤ 1 , while both 
∑

c∈C∕{c1,c2}
p̂�(c) and 

∑
c∈C∕{c1,c2}

p̂��(c) are equal to (1 − a) . This means that, assuming 
that D satisfies IND, we can reformulate MON in a way that disregards classes other 
than {c1, c2} and considers instead the projection of p on {c1, c2} . In other words, if D 
satisfies IND we can reformulate MON in a way that tackles the problem in a binary 
quantification context (instead of the more general single-label quantification context). 
The fact that, in a binary context, p(c2) = (1 − p(c1)) for any (true or predicted) distribu-
tion p, means that MON can be reformulated by simply referring to just one of the two 
classes, i.e.,

Property 9  Binary strict monotonicity (B-MON) For any codeframe C = {c1, c2} and 
true distribution p, if predicted distributions p̂′, p̂′′are such that p̂��(c1) < p̂�(c1) ≤ p(c1) , 
then it holds that D(p, p̂�) < D(p, p̂��) . 	�  ◻

As a result of what we have said in this section, B-MON is, for any EMQ D that sat-
isfies IND, equivalent to MON. It is also much more compact since, among other things, 
it makes reference to a single class only. Considerations analogous to the ones above 
can be made for IMP, REL, ABS. We reformulate them too as below.
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Property 10  Binary impartiality (B-IMP) For any codeframe C = {c1, c2} , true distribu-
tion p, predicted distributions p̂′ and p̂′′ , and constant a ≥ 0 such that p̂�(c1) = p(c1) + a 
and p̂��(c1) = p(c1) − a , it holds that D(p, p̂�) = D(p, p̂��) . 	�  ◻

Property 11  Binary relativity (B-REL) For any codeframe C = {c1, c2} , constant a > 0 , 
true distributions p′ and p′′ such that p�(c1) < p��(c1) and p��(c1) < p��(c2) , if a pre-
dicted distribution p̂′ that estimates p′ is such that p̂�(c1) = p�(c1) ± a and a predicted 
distribution p̂′′ that estimates p′′ is such that p̂��(c1) = p��(c1) ± a , then it holds that 
D(p�, p̂�) > D(p��, p̂��) . 	�  ◻

Property 12  Binary absoluteness (B-ABS) For any codeframe C = {c1, c2} , con-
stant a > 0 , true distributions p′ and p′′ such that p�(c1) < p��(c1) and p��(c1) < p��(c2) , 
if a predicted distribution p̂′ that estimates p′ is such that p̂�(c1) = p�(c1) ± a and a pre-
dicted distribution p̂′′ that estimates p′′ is such that p̂��(c1) = p��(c1) ± a , then it holds that 
D(p�, p̂�) = D(p��, p̂��) . 	�  ◻

In the next sections, instead of trying to prove that an EMQ verifies Properties 3–7, we 
will equivalently (1) try to prove that it verifies IND, and if successful (2) try to prove that 
it verifies Properties 9–12; the reason is, of course, the much higher simplicity and com-
pactness of the formulations of Properties 9–12 with respect to Properties 3–7.

4 � Evaluation measures for single‑label quantification

In this section we turn to the functions that have been proposed and used for evaluating 
quantification, and discuss whether they comply or not with the properties that we have 
discussed in Sect. 3. In many cases these functions were originally proposed for evaluating 
the binary case; since the extension to SLQ is usually straightforward, for each EMQ we 
indicate its original proponent or user (on this see also Table 2) and disregard whether it 
was originally used just for BQ or for the full-blown SLQ.

We will discuss 9 measures proposed as EMQs in the literature, and for each of them 
we will be interested in whether they satisfy or not Properties 1 to 8. Giving 9 × 8 = 72 
proofs in detail would make the paper excessively long and boring: as a result, only some 
of these proofs will be given in detail, while for others we will only give hints at how they 
can be easily obtained via the same lines of reasoning used in other cases. In several cases, 
given a measure D and a property � , one can simply show that D does not enjoy � via a 
counterexample. Since the same scenario can serve as a counterexample for showing that � 
is not enjoyed by several measures, we formulate each such scenario in the form of a table 
that shows which measures the scenario rules out. In the "Appendix" we include a table 
each for properties MAX (“Appendix 2.1” section), IMP (“Appendix 2.2” section), REL 
(“Appendix 2.3” section), ABS (“Appendix 2.4” section); in this section, when discussing 
the property in the context of a specific measure that does not enjoy it, we will simply refer 
the reader to the appropriate table.

A 2D plot (for the case of binary quantification) of the 9 measures we will discuss is dis-
played in Fig. 1; Fig. 2 displays the same plots in 3D. These plots allow to graphically appre-
ciate if a measure enjoys a certain property or not. For instance, looking at the 2D plots, a 
measure that enjoys both IoI and NN (i.e., a divergence) is such that the y = x diagonal is the 
locus of the darkest points; a measure that enjoys MON is such that, when moving away in a 
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vertical direction (i.e., up or down) from the y = x diagonal, points get lighter; a measure that 
enjoys IMP is such that moving away in a vertical direction from the y = x diagonal, moving 
up or down by the same amount returns points of the same colour; a measure that enjoys ABS 
is such that moving away in a vertical direction from the y = x diagonal in a given sense (e.g., 
down), the difference in colour does not depend from which point of the diagonal we are mov-
ing away from; etc.

4.1 � Absolute error

The simplest EMQ is Absolute Error ( AE ), which corresponds to the average (across 
the classes in C ) absolute difference between the predicted class prevalence and the true 
class prevalence; i.e.,

Fig. 1   2D plots (for a binary quantification task) for the nine EMQs of Tables 1 and 2; p(c1) and p(c2) are 
represented as x and (1 − x) , respectively, while p̂(c1) and p̂(c2) are represented as y and (1 − y) . Darker 
areas represent values closer to 0 (i.e., smaller error) while lighter areas represent values more distant from 
0 (i.e., higher error)
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It is easy to prove that AE enjoys IoI, NN, MON, IMP, ABS, IND. While some of 
these proofs are trivial, we report them in detail (in “Appendix 1” section) in order to 
show how the same arguments can be used to prove the same for many of the EMQs to 
be discussed later in this section.

(1)AE (p, p̂) =
1

|C|

∑

c∈C

|p̂(c) − p(c)|

Fig. 2   3D plots (for a binary quantification task) for the nine EMQs of Tables 1 and 2; p(c1) and p(c2) are 
represented as x and (1 − x) , respectively, while p̂(c1) and p̂(c2) are represented as y and (1 − y) ; error is 
represented as z (higher values of z represent higher error)
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Instead, as shown in “Appendix 2.1” section, AE does not enjoy MAX, because its 
range depends on the true distribution p. More specifically, AE ranges between 0 (best) 
and

(worst), i.e., its range depends also on the cardinality of C . In fact, it is easy to verify that, 
given a true distribution p on C , the perverse estimator of p is the one such that (a) p̂(c∗) = 1 
for class c∗ = argminc∈C p(c) , and (b) p̂(c) = 0 for all c ∈ C∕{c∗} . In this case, the total 
error derives (1) from overestimating p(c∗) , which brings about an error of (1 − p(c∗)) , 
and (2) from underestimating p(c) for all c ∈ C∕{c∗} , which collectively brings about an 
additional error of (1 − p(c∗)) . AE is obtained by dividing this 2(1 − p(c∗)) quantity by |C|.

Concerning REL, just note that since AE satisfies ABS, it cannot (as observed in 
Sect. 3) satisfy REL. (That AE does not enjoy REL is also shown via a counterexample in 
“Appendix 2.3” section.)

The properties that AE enjoys (and those it does not enjoy) are conveniently summa-
rized in Table 1, along with the same for all the measures discussed in the rest of this paper.

In the literature, AE also goes by the name of Variational Distance (Csiszár and Shields 
2004, §4), (Lin 1991; Zhang and Zhou 2010), or Percentage Discrepancy (Esuli and Sebas-
tiani 2010; Baccianella et al. 2013). Also, if viewed as a generic function of dissimilarity 
between vectors (and not just probability distributions), AE is nothing else than the well-
known “city-block distance” normalized by the number of classes. Some recent papers 
(Beijbom et al. 2015; González et al. 2017) that tackle quantification in the context of eco-
logical modelling discuss or use, as an EMQ, Bray–Curtis dissimilarity (BCD), a measure 
popular in ecology for measuring the dissimilarity of two samples. However, when used to 
measure the dissimilarity of two probability distributions, BCD defaults to AE ; as a result 
we will not analyse BCD any further.

Note that AE often goes by the name of Mean Absolute Error; for simplicity, for this 
and the other measures we discuss in the rest of this paper we will omit the qualification 
“Mean”, since every measure mediates across the class-specific values in its own way.

As an EMQ, AE was used for the first time by Saerens et al. (2002), and in many other 
papers ever since. For AE and for all the other EMQs discussed in this paper, Table 2 lists the 
papers where the measure has been proposed and those which have subsequently used it for 
evaluation purposes.

(2)zAE =

2
(

1 −min
c∈C

p(c)
)

|C|

Table 1   Properties of the EMQs 
discussed in this paper

IoI NN MAX MON IMP REL ABS IND

AE Yes Yes No Yes Yes No Yes Yes
NAE Yes Yes Yes Yes Yes No No Yes
RAE Yes Yes No Yes Yes Yes No Yes
NRAE Yes Yes Yes Yes Yes No No Yes
SE Yes Yes No Yes Yes No Yes Yes
DR Yes Yes No Yes No Yes No Yes
KLD Yes Yes No Yes No No No Yes
NKLD Yes Yes Yes Yes No No No Yes
PD Yes Yes No Yes No No No Yes
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4.2 � Normalized absolute error

Following what we have said in Sect.  4.1, a normalized version of AE that always ranges 
between 0 (best) and 1 (worst) can be obtained as

Table 2   Research works about quantification where the EMQs discussed in this paper have been first pro-
posed ( ★ ) and later used ( ✓)

AE NAE RAE NRAE SE DR KLD NKLD PD

Saerens et al. (2002) ★

Forman (2005) ✓ ★

Forman (2006) ✓ ✓

Forman (2008) ✓ ✓

Tang et al. (2010) ✓ ✓

Bella et al. (2010) ✓ ★

González-Castro et al. (2010) ✓ ★

Zhang and Zhou (2010) ✓

Alaíz-Rodríguez et al. (2011) ✓ ✓

Milli et al. (2013) ✓

Barranquero et al. (2013) ✓

González-Castro et al. (2013) ✓ ✓

Esuli and Sebastiani (2014) ✓ ★ ✓ ★ ✓ ★

du Plessis and Sugiyama (2014) ✓

Esuli and Sebastiani (2015) ✓ ✓

Gao and Sebastiani (2015) ✓ ✓ ✓ ✓ ✓ ✓

Barranquero et al. (2015) ✓ ✓

Beijbom et al. (2015) ✓

Milli et al. (2015) ✓

Gao and Sebastiani (2016) ✓ ✓ ✓ ✓ ✓ ✓

Ceron et al. (2016) ✓ ★

Kar et al. (2016) ✓

Nakov et al. (2016) ✓

González et al. (2017) ✓

du Plessis et al. (2017) ✓

Levin and Roitman (2017) ★

Pérez-Gállego et al. (2017) ✓ ✓

Tasche (2017) ✓

Nakov et al. (2017) ✓ ✓ ✓

Maletzke et al. (2017) ✓ ✓ ✓

Maletzke et al. (2018) ✓

Esuli et al. (2018) ✓ ✓ ✓

Card and Smith (2018) ✓

Moreira dos Reis et al. (2018a) ✓

Moreira dos Reis et al. (2018b) ✓ ✓

Vaz et al. (2018) ✓

Sanya et al. (2018) ✓

Keith and O’Connor (2018) ✓

Pérez-Gállego et al. (2019) ✓ ✓
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where zAE is as in Eq. 2. It is easy to verify that NAE enjoys IoI, NN, MON, IMP, IND. 
NAE also enjoys (by construction) MAX.

Given that NAE is just a normalized version of AE , and given that AE enjoys ABS, one 
might expect that NAE enjoys ABS too. Surprisingly enough, this is not the case, as shown 
in the counterexample of “Appendix 2.4” section. The reason for this is that, for the two dis-
tributions p′ and p′′ (and their respective predicted distributions p̂′ and p̂′′ ) mentioned in the 
formulation of Property 7 (ABS), and exemplified in the counterexample of “Appendix 2.4” 
section, the numerator of Eq. 3 is the same but the denominator (i.e., the normalizing con-
stant) is different, which means that the value of NAE is also different. NAE does not enjoy 
REL either, as also shown in “Appendix 2.3” section).

NAE was discussed for the first time by Esuli and Sebastiani (2014). With a similar intent, 
in a binary quantification context Barranquero et  al. (2015) proposed Normalized Absolute 
Score ( NAS ). NAS is an accuracy (and not an error) measure; when viewed as an error meas-
ure, it is defined as

where c is any class in C = {c1, c2} . We will not discuss NAS in detail since (a) it is only 
defined for the binary case, and (b) it is easy to show that in this case it coincides with 
NAE.

4.3 � Relative absolute error

Relative Absolute Error ( RAE ) relativises the value |p̂(c) − p(c)| in Eq.  1 to the true class 
prevalence, i.e.,

RAE may be undefined in some cases, due to the presence of zero denominators. To solve 
this problem, in computing RAE we can smooth both p(c) and p̂(c) via additive smoothing, 
i.e., we take

where ps(c) denotes the smoothed version of p(c) and the denominator is just a normalizing 
factor (same for the p̂s(c)’s); the quantity � = 1

2|�|
 is often used (and will always be used in 

the rest of this paper) as a smoothing factor. The smoothed versions of p(c) and p̂(c) are 
then used in place of their original non-smoothed versions in Eq. 5; as a result, RAE is 
always defined.

Using arguments analogous to the ones used for AE in “Appendix 1” section, it is 
immediate to show that RAE enjoys IoI, NN, MON, IMP, IND. It also enjoys REL by 

(3)NAE (p, p̂) =
AE (p, p̂)

zAE
=

∑
c∈C �p̂(c) − p(c)�

2
�
1 −minc∈C p(c)

�

(4)NAS (p, p̂) =
|p(c) − p̂(c)|

max{p(c), (1 − p(c))}

(5)RAE (p, p̂) =
1

|C|

∑

c∈C

|p̂(c) − p(c)|

p(c)

(6)ps(c) =
� + p(c)

�|C| +
∑

c∈C
p(c)
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construction, which means that it does not enjoy ABS. Analogously to AE , the fact RAE 
does not enjoy MAX, as shown via the counterexample in “Appendix 2.1” section.

It is easy to show that RAE ranges between 0 (best) and

(worst), i.e., its range depends also on the cardinality of C . In fact, similarly to the case of 
AE , it is easy to verify that, given a true distribution p on C , the perverse estimator of p is 
obtained when (a) p̂(c) = 1 for the class c∗ = argminc∈C p(c) , and (b) p̂(c) = 0 for all 
c ∈ C∕{c∗} . In this case, the total relative absolute error derives (1) from overestimating 
p(c∗) , which brings about an error of 1−p(c

∗)

p(c∗)
 , and (2) from underestimating p(c) for all 

c ∈ C∕{c∗} , which brings about an additional error of 1 for each class in C∕{c∗} . The value 

of RAE is then obtained by dividing the resulting 
(

|C| − 1 +
1 − p(c∗)

p(c∗)

)

 by |C|.

As an EMQ, RAE was used for the first time by González-Castro et al. (2010), and by 
several other papers after it.

4.4 � Normalized relative absolute error

Following what we have said in Sect. 4.3, a normalized version of RAE that always ranges 
between 0 (best) and 1 (worst) can thus be obtained as

where zRAE is as in Eq. 7. Since the various denominators of Eq. 8 may be undefined, the 
smoothed values of Eq. 6 must be used in Eq. 8 too.

It is straightforward to verify that NRAE , which was first proposed by Esuli and Sebas-
tiani (2014), enjoys IoI, NN, MON, IMP, IND, and also enjoys (by construction) MAX.

Somehow similarly to what we said in Sect. 4.2 about NAE and ABS, given that NRAE 
is just a normalized version of RAE , and given that RAE enjoys REL, one might expect 
that NRAE enjoys REL too. Again, this is not the case, as shown in the counterexample of 
“Appendix 2.3” section. The reason for this is that, for the two distributions p′ and p′′ (and 
their respective predicted distributions p̂′ and p̂′′ ) mentioned in the formulation of Property 
6 (REL), and exemplified in the counterexample of “Appendix 2.3” section, while RAE (the 
numerator of Eq. 8) does enjoy REL, the normalizing constant (the denominator of Eq. 8) 
invalidates it, since it is different for p′ and p′′ . NAE does not enjoy ABS either, as also shown 
in “Appendix 2.4” section.

4.5 � Squared error

Another measure that has been used in the quantification literature is Squared Error ( SE ), 
defined as

(7)
zRAE =

|C| − 1 +
1 −minc∈C p(c)

minc∈C p(c)

|C|

(8)NRAE (p, p̂) =
RAE (p, p̂)

zRAE
=

∑

c∈C

|p̂(c) − p(c)|

p(c)

|C| − 1 +
1 −minc∈C p(c)

minc∈C p(c)
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When viewed as a generic function of dissimilarity between vectors (and not just probabil-
ity distributions), SE is the well-known L2-distance. As an EMQ, SE was used for the first 
time by Bella et al. (2010).

The mathematical form of SE is very similar to that of AE , and it can be trivially shown 
that SE enjoys all the properties that AE enjoys and does not enjoy all the properties that AE 
does not enjoy. In particular, SE does not enjoy MAX since SE ranges between 0 (best) and

(worst), where c∗ = argminc∈C p(c) ; i.e., the range of SE depends on p and |C| . In fact, simi-
larly to the case of AE , it is easy to verify that the perverse estimator of a true distribution 
p is the one such (a) p̂(c∗) = 1 and (b) p̂(c) = 0 for all c ∈ C∕{c∗} . In this case, the squared 
error derives (1) from overestimating p(c∗) , which brings about an error of (1−p(c

∗))2

|C|
 , and (2) 

from underestimating p(c) for all c ∈ C∕{c∗} , which brings about an additional error of p(c)
2

|C|
 

for each class in C∕{c∗} . We could thus define a normalized version of SE as

which would, quite obviously, enjoy and not enjoy exactly the same properties that NAE 
enjoys and does not enjoy.

SE is structurally similar to AE but (as can also be appreciated from Fig. 1) is less sensi-
tive than it, i.e., it is always the case that SE (p, p̂) ≤ AE (p, p̂) (since it is always the case that 
(p(c) − p̂(c))2 ≤ |p(c) − p̂(c)|).

In the binary quantification literature, other proxies of SE have been used; one example is 
Normalized Squared Score (Barranquero et  al. 2015), defined as 
NSS (p(c), p̂(c)) ≡ 1 − (

p(c)−p̂(c)

max{p(c),(1−p(c))}
)2 , where c is any class in C = {c1, c2} . Similarly to 

the NAS measure discussed at the end of Sect. 4.1, NSS is an accuracy (and not an error) 
measure; when viewed as an error measure, it would be defined as

where c is any class in C = {c1, c2} . We will not discuss NSS in detail since (a) it is only 
defined for the binary case, and (b) it is easy to show that in this case it coincides with NSE
.

4.6 � Discordance ratio

Levin and Roitman (2017) introduce an EMQ that they call Concordance Ratio (CR). CR 
is a measure of accuracy, and not a measure of error; for better consistency with the rest 

(9)SE (p, p̂) =
1

|C|

∑

c∈C

(p(c) − p̂(c))2

(10)zSE =
(1 − p(c∗))2 +

∑
c∈C∕{c∗} p(c)

2

�C�

(11)NSE (p, p̂) =
SE (p, p̂)

zSE
=

∑
c∈C(p(c) − p̂(c))2

(1 − p(c∗))2 +
∑

c∈C∕{c∗} p(c)
2

(12)NSS (p, p̂) =

(
p(c) − p̂(c)

max{p(c), (1 − p(c))}

)2
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of this paper, instead of CR we consider what might be called Discordance Ratio, i.e., its 
complement DR = (1 − CR ) , defined as

DR is undefined when, for a given class c, both p(c) and p̂(c) are zero; the smoothed values 
of Eq. 6 must thus be used within Eq. 13 in order to avoid this problem.

It is easy to verify, along the lines sketched in “Appendix 1” section, that DR enjoys IoI, 
NN, MON, IND. DR also enjoys REL; this can be seen by the fact that, for the same 
amount a of misprediction, 

∑
c∈C

min{(p(c),p̂(c)}

max{(p(c),p̂(c)}
 is smaller (hence DR (p, p̂) is larger) when the 

true prevalence of the class c1 mentioned in the formulation of Property 6 (REL) is smaller. 
Instead, DR enjoys neither MAX, nor IMP, nor ABS, as shown in “Appendices 2.1, 2.2 and 
2.4” section, respectively.

4.7 � Kullback–Leibler divergence

An EMQ that has become somehow standard in the evaluation of single-label (and, a forti-
ori, binary) quantification, is Kullback–Leibler Divergence ( KLD—also called Information 
Divergence, or Relative Entropy) (Csiszár and Shields 2004) and defined as11

As an EMQ, KLD was used for the first time (under the name Normalized Cross-Entropy) 
by Forman (2005). It should also be noted that KLD has been adopted as the official evalu-
ation measure of the only quantification-related shared task that has been organized so far, 
Subtask D “Tweet Quantification on a 2-point Scale” of SemEval-2016 and Semeval-2017 
“Task 4: Sentiment Analysis in Twitter” (Nakov et al. 2016, 2017).

KLD may be undefined in some cases. While the case in which p(c) = 0 is not problem-
atic (since continuity arguments indicate that 0 log 0

a
 should be taken to be 0 for any a ≥ 0 ), 

the case in which p̂(c) = 0 and p(c) > 0 is indeed problematic, since a log a

0
 is undefined 

for a > 0 . To solve this problem, we smooth values in the same way as already described in 
Sect. 4.3; as a result, KLD is always defined.

The fact that KLD enjoys IoI and NN (i.e., the fact that KLD is indeed a divergence) is 
not self-evident (since p(c) log p(c)

p̂(c)
 is negative whenever p(c) < p̂(c) ), and is known as 

Gibbs’ inequality. A formal proof of it can be found on several information theory text-
books (see e.g., MacKay 2003, p. 44).

(13)

DR (p, p̂) = 1 − CR

= 1 −
1

|C|

∑

c∈C

min{(p(c), p̂(c)}

max{(p(c), p̂(c)}

=
1

|C|

∑

c∈C

max{(p(c), p̂(c)} −min{(p(c), p̂(c)}

max{(p(c), p̂(c)}

=
1

|C|

∑

c∈C

|(p(c) − p̂(c)|

max{(p(c), p̂(c)}

(14)KLD (p, p̂) =
∑

c∈C

p(c) log
p(c)

p̂(c)

11  In Eq. 14 and in the rest of this paper the log operator denotes the natural logarithm.
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Indeed, KLD is a well-known member of the class of f-divergences (Ali and Silvey 
1966; Csiszár and Shields 2004,  §4), a class of functions that measure the difference 
between two probability distributions, and that all enjoy IoI and NN.

The fact that KLD enjoys MON is also not self-evident, essentially for the same reasons 
for which it is not self-evident that it enjoys IoI and NN. The proof that KLD enjoys MON 
is given in “Appendix 3” section, where we use the fact that KLD enjoys IND (something 
which can be easily shown via the arguments used in “Appendix 1” section) and thus limit 
ourselves to proving that it enjoys B-MON.

The fact that KLD enjoys neither MAX, nor IMP, nor REL, nor ABS is shown in 
“Appendices 2.1, 2.2, 2.3, 2.4” section, respectively. Concerning MAX we note that, in 
theory, the upper bound of KLD is not finite, since Eq. 14 has predicted probabilities, and 
not true probabilities, at the denominator. That is, by making a predicted probability p̂(c) 
infinitely small we can make KLD infinitely large. However, since we use smoothed val-
ues, the fact that both p and p̂ are lower-bounded by � , and not by 0, has the consequence 
that KLD has a finite upper bound. The perverse estimator for KLD is the one such (a) 
p̂(c∗) = 1 and (b) p̂(c) = 0 for all c ∈ C∕{c∗} . The value of this estimator is

which shows that the range of KLD depends on p, the cardinality of C , and even on the 
value of � . This is a further proof that KLD does not enjoy MAX.

4.8 � Normalized Kullback–Leibler divergence

Given what we have said in Sect. 4.7, one might define a normalized version of KLD (i.e., 
one that also enjoys MAX) as KLD (p,p̂)

zKLD (p,p̂)
 , where zKLD (p, p̂) is as in Eq. 15. Esuli and Sebas-

tiani (2014) follow instead a different route, and define a normalized version of KLD by 
applying to it a logistic function,12 i.e.,13

Like other previously discussed measures, also NKLD may be undefined in some cases; 
therefore, also in computing NKLD we need to use the smoothed values of Eq. 6 in place 
of the original p(c)’s and p̂(c)’s.

NKLD enjoys some of our properties of interest for the simple reason that KLD enjoys 
them; it is easy to verify that this is the case of IoI and NN. NKLD also enjoys MON 
and IND; this descends from the fact that NKLD (d, d�) < NKLD (d, d��) if and only if 
KLD (d, d�) < KLD (d, d��) (this derives from the fact that the logistic function is a mono-
tonic transformation) and from the fact that KLD enjoys MON and IND, respectively. 

(15)zKLD (p, p̂) = ps(c
∗) log

ps(c
∗)

1 − (|C| − 1) ⋅ 𝜖
+

∑

c∈C∕{c∗}

ps(c) log
ps(c)

𝜖

(16)NKLD (p, p̂) = 2
eKLD (p,p̂)

eKLD (p,p̂) + 1
− 1

12  Since the standard logistic function e
x

ex+1
 ranges (for the domain [0,+∞) we are interested in) on [ 1

2
,1], a 

multiplication by 2 is applied in order for it to range on [1,2], and 1 is subtracted in order for it to range on 
[0,1], as desired.
13  Esuli and Sebastiani (2014) mistakenly defined NKLD (p, p̂) as e

KLD (p,p̂)−1

eKLD (p,p̂)
 ; this was later corrected into the 

formulation of Eq. 16 [which is equivalent to e
KLD (p,p̂)−1

eKLD (p,p̂)+1
 ] by Gao and Sebastiani (2016).
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Concerning MAX, NKLD enjoys it by construction, because when a predicted prevalence 
p̂(c) tends to 0 KLD tends to +∞ , and NKLD thus tends to 1.14

The fact that KLD enjoys neither IMP, nor REL, nor ABS, is shown in “Appendices 2.2, 
2.3 and 2.4” section, respectively.

4.9 � Pearson divergence

The last EMQ we discuss is the Pearson Divergence ( PD—see du Plessis and Sugiyama 
2012), also called the �2 Divergence (Liese and Vajda 2006), and defined as

As an EMQ, PD has been first used by Ceron et al. (2016). PD is undefined when, for a 
given class c, p̂(c) is zero; the smoothed values of Eq. 6 must thus be used within Equa-
tion 17 in order to avoid this problem.

The arguments already used for AE in “Appendix 1” section can be easily used to show 
that PD enjoys IoI, NN, and IND. That PD enjoys MON is instead not self-evident; the 
proof that it indeed does is reported in “Appendix 3” section.

That PD enjoys neither MAX, nor IMP, nor REL, nor ABS, is shown in “Appendices 
2.1, 2.2, 2.3, 2.4” section, respectively. The fact that PD does not enjoy MAX can also be 
shown with arguments used for showing the same for KLD ; that is, when a predicted prob-
ability p̂(c) is very small, PD becomes very large. Thanks to the fact that we use smoothed 
values, though, p̂ is lower-bounded by � , and PD has thus a finite upper bound. Like for 
other EMQs we have already discussed, the perverse estimator for PD is the one that attrib-
utes 1 to the probability of class c∗ = argminc∈C p(c) and 0 to the other classes, and its 
value is thus

which shows that the range of PD depends on p, the cardinality of C , and the value of � . 
This suffices to show that PD does not enjoy MAX.

5 � Discussion

The properties that the EMQs of Sect.  4 enjoy and do not enjoy are conveniently sum-
marized in Table 1. Table 2 lists instead the papers where the various EMQs have been 
proposed and the papers where they have subsequently been used for evaluation purposes.

(17)PD (p, p̂) =
1

|C|

∑

c∈C

(p(c) − p̂(c))2

p̂(c)

(18)zPD (p, p̂) =
1

|C|

(
1 − (|C| − 1) ⋅ 𝜖 − ps(c

∗)

1 − (|C| − 1) ⋅ 𝜖
+

∑

c∈C∕{c∗}

(p(c) − 𝜖)2

𝜖

)

14  This is true only at a first approximation, though. In more precise terms, the maximum value that NKLD 
can have is strictly smaller than 1 because the maximum value that KLD can have is finite (see Eq. 15) and, 
as discussed at the end of Sect. 4.7, dependent on p, on the cardinality of C , and even on the value of � ; as 
a result, the maximum value that NKLD can have is also dependent on these three variables (although it is 
always very close to 1—see the example in “Appendix 2.1” section).
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5.1 � Are all our properties equally important?

An examination of Table  1 allows us to make a number of general considerations. The 
first one is that some of our properties (namely: IoI, NN, MON, IND) are unproblematic, 
since all the EMQs proposed so far satisfy them, while other properties (namely: MAX, 
IMP, REL, ABS) are failed by several EMQs, including ones (e.g., AE , KLD ) that are 
almost standard in the quantification literature. The second, related observation is that, if 
we agree on the fact that the eight properties we have discussed are desirable, a number 
of EMQs that have been proposed in the quantification literature emerge as severely inad-
equate, since they fail several among these properties; this is true even if we discount the 
fact that, as we have already observed, REL and ABS are mutually exclusive. The case of 
KLD (which fails on counts of MAX, IMP, REL, ABS) is of special significance, since 
KLD has almost become a standard in the evaluation of single-label (and binary) quantifi-
cation (from Table 2 KLD emerges as the 2nd most frequently used EMQ, after AE).

However, an even more compelling fact that emerges from Table  1 is that no EMQ 
among those proposed so far satisfies (even discounting the mutual exclusivity of REL and 
ABS) all the proposed properties. This suggests that more research is needed in order to 
identify, or synthesize, an EMQ more satisfactory than all the existing ones.

At the same time, in the absence of a truly satisfactory EMQ, we think that it is impor-
tant to analyse whether all of our properties are equally important, or if some of them is 
less important than others and can thus be “sacrificed”. Judging from Table  1, the key 
stumbling block seems to be the MAX property, since all the EMQs that satisfy MAX 
(namely: NAE , NRAE , NKLD ) satisfy neither REL nor ABS. This is undesirable since, as 
argued at the end of Sect. 3.1, some applications of quantification do require REL, while 
some other applications do require ABS (and we can think of no application that requires 
neither). Among the EMQs that satisfy ABS (and not REL), AE and SE satisfy all other 
properties but MAX, while among the ones that satisfy REL (and not ABS), also RAE sat-
isfies all other properties but MAX.

In other words, if we stick to available EMQs, if we want ABS or REL we need to 
renounce to MAX, while if we want MAX we need to renounce to both ABS and REL. 
How relatively desirable are these three properties? We recall from Sect. 3.1 that

1.	 the argument in favour of REL is that it reflects the needs of applications in which an 
estimation error of a given absolute magnitude should be considered more serious if it 
affects a rarer class;

2.	 the argument in favour of ABS is that it reflects the needs of applications in which an 
estimation error of a given absolute magnitude should be considered to have the same 
impact independently from the true prevalence of the affected class;

3.	 the main (although not the only) argument in favour of MAX is that, if an EMQ does not 
satisfy it, the n samples on which we may want to compare our quantification algorithms 
will each have a different weight on the final result.

The relative importance of these three arguments is probably a matter of opinion. However, 
it is our impression that Arguments 1 and 2 are more compelling than Argument 3, since 1 
and 2 are really about how an evaluation measure reflects the needs of the application for 
which one performs a given task (quantification, in our case); if the corresponding proper-
ties are not satisfied, one may argue that the quantification accuracy (or error) being meas-
ured is only loosely related to what the user really wants.



277Information Retrieval Journal (2020) 23:255–288	

1 3

Argument 3, while important, “only” implies that, if MAX is not satisfied, (1) results 
obtained on codeframes of different cardinality will not be comparable, and (2) results 
obtained on samples characterized by different true distributions will not be comparable15; 
while undesirable, this does not affect the experimental comparison among different quan-
tification systems, since each of them is affected by these disparities in the same way.16

So, if we accept the idea of “sacrificing” MAX in order to retain REL or ABS, Table 1 
indicates that our measures of choice should be

•	 AE (or SE , which is structurally similar), for those applications in which an estimation 
error of a given absolute magnitude should be considered more serious when the true 
prevalence of the affected class is lower; and

•	 RAE , for those applications in which an estimation error of a given absolute magnitude 
has the same impact independently from the true prevalence of the affected class.

5.2 � Properties that escape formalization

While all the above discussion on the properties of EMQs has been unashamedly formal, 
we should also remember that choosing an evaluation measure instead of another should 
also be guided by practical considerations, i.e., by properties of the measure that are not 
necessarily amenable to formalization. One such property is understandability, i.e., how 
simple and intuitive is the mathematical form of an evaluation measure. While such sim-
plicity might not be a primary concern for the researcher, or the mathematician, it might be 
for the practitioner. For instance, a company that wants to sell a text analytics product to a 
customer might need to run experiments on the customer’s own data and explain the results 
to the customer; since customers might not be mathematically savvy, the fact that the meas-
ure chosen is easily understandable to people with a minimal mathematical background is 
important. On this account, measures such as AE and RAE certainly win over other meas-
ures such as KLD and NKLD , which the average customer would find hardly intelligible.17

Another property that is difficult to formalize is robustness to outliers. Many EMQs 
often take the form of an average D(p, p̂) = 1

�C�

∑
c∈C f (p(c), p̂(c)) across the classes in the 

codeframe. If D(p, p̂) is not “robust to outliers”, it means that an extreme value 
f (p(c�), p̂(c�)) that may occur for some c� ∈ C dominates on all the other values f (p(c), p̂(c)) 
for c ∈ C∕{c�} , giving rise to a high value of D(p, p̂) that is essentially due to c′ only. As the 
name implies, “robustness to outliers” is usually considered a desirable property; however, 
in some contexts it might also viewed as undesirable (e.g., we might want to avoid quantifi-
cation methods that generate blatant mistakes, so we might want a measure that penalizes 
the presence of even one of them). Aside from the fact that its desirability is questionable, 
it should also be mentioned that “robustness to outliers” comes in degrees. E.g., absolute 
error is more robust to outliers than squared error, but squared error is more robust to outli-
ers than “cubic error”, etc.; and all of them are vastly more robust to outliers than KLD and 
NKLD . Which among these enforces the “right” level of robustness to outliers? This shows 

17  It is this author’s experience that even measures such as F1 can be considered by customers “esoteric”.

15  It has to be remarked that, in some cases, differences of the latter type may be moderate, especially when 
|C| is high. For instance, when |C| = 2 the value of z

AE
 ranges on [0.5,1.0], but when |C| = 10 it ranges on 

[0.18, 0.20].
16  A similar situation occurs when evaluating multi-label classification via “microaveraged F1 ”, a measure 
in which the classes with higher prevalence weigh more on the final result.
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that robustness to outliers, independently from its desirability, cannot be framed as a binary 
property (i.e., one that a measure either enjoys or not), and thus escapes the type of analy-
sis that we have carried out in this paper.

Another property which is difficult to formalize has to do with the set of values which 
an EMQ ranges on when evaluating realistic quantification systems (i.e., systems that 
exhibit a quantification accuracy equal or superior to, say, that of a trivial “classify and 
count” approach using SVMs). For these systems, the actual values that an EMQ takes 
should occupy a fairly small subinterval of its entire range. The question is: how small? 
One particularly problematic EMQ, from this respect, is KLD . While its range is [0, zKLD ] , 
where zKLD is as in Eq. 15, realistic quantification systems generate very small KLD val-
ues, so small that they are sometimes difficult to make sense of. One result is that two 
genuine quantifiers that are being compared experimentally may easily obtain results sev-
eral orders of magnitude away. Such differences in performance are difficult to grasp.18 We 
should add that, if one wants to average KLD results across a set of samples (on this see 
also Sect. 5.3), the average is completely dominated by the value with the highest order 
of magnitude, and the others have little or no impact. Unfortunately, switching from KLD 
to NKLD does not help much in this respect since, for realistic quantification systems, 
NKLD (p, p̂) ≈

1

2
KLD (p, p̂) . The reason is that NKLD is obtained by applying a sigmoi-

dal function (namely, the logistic function) to KLD , and the tangent to this sigmoid for 
x = 0 is y = 1

2
x ; since the values of KLD for realistic quantifiers are (as we have observed 

above) very close to 0, for these values the NKLD (p, p̂) curve is well approximated by 
y =

1

2
KLD (p, p̂) . As an EMQ, NKLD thus de facto inherits most of the problems of KLD .

All of the above shows that choosing a good EMQ (and the same may well be true for 
tasks other than quantification) should also be based, aside from the formal properties that 
the EMQ enjoys, on criteria that either resist or completely escape formalization, such as 
understandability and ease of use.

5.3 � Evaluating quantification across multiple samples

On a different note, we also need to stress a key difference between measures of classifica-
tion accuracy and measures of quantification accuracy (or error). The objects of classifica-
tion are individual unlabelled items, and all measures of classification accuracy (e.g., F1 ) 
are defined with respect to a test set of such objects. The objects of quantification, instead, 
are samples, and all the measures of quantification accuracy we have discussed in this 
paper are defined on a single such sample (i.e., they measure how well the true distribution 
of the classes across this individual sample is approximated by the predicted distribution of 
the classes across the same sample). Since every evaluation is worthless if carried out on a 
single object, it is clear that quantification systems need to be evaluated on sets of samples. 
This means that every measure that we have discussed needs first to be evaluated on each 
sample, and then its global score across the test set (i.e., the set of samples on which testing 

18  As an example, assume a (very realistic) scenario in which |�| = 1000 , C = {c1, c2} , p(c1) = 0.01 , 
and in which three different quantifiers p̂′ , p̂′′ , p̂′′′ are such that p̂�(c1) = 0.0101 , p̂��(c1) = 0.0110 , 
p̂
���(c1) = 0.0200 . In this scenario KLD ranges on [0,  7.46], KLD (p, p̂�) = 4.78e–07, KLD (p, p̂��) = 4.53

e–05, KLD (p, p̂���) = 3.02e–03, i.e., the difference between KLD (p, p̂�) and KLD (p, p̂��) (and the one 
between KLD (p, p̂��) and KLD (p, p̂���) ) is 2 orders of magnitude, while the difference between KLD (p, p̂�) 
and KLD (p, p̂���) is no less than 4 orders of magnitude. The increase in error (as computed by KLD ) deriv-
ing from using p̂′′′ instead of p̂′ is + 632,599%.
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is carried out) needs to be computed. This global score may be computed via any measure 
of central tendency, e.g., via an average, or a median, or other (for instance, if NAE is used, 
we might in turn use Average NAE or Median NAE , where averages and medians are com-
puted across a set of samples). We do not take any specific stand for or against computing 
global scores via any specific measure of central tendency, since each of them may serve 
different but legitimate purposes. Note that a weighted average (in which the weight of a 
sample is inversely proportional to the score that the perverse estimator would obtain on 
the sample) might be appropriate for measures that do not satisfy MAX.

6 � Conclusions

We have presented a study that “evaluates evaluation”, in the tradition of the so-called “axi-
omatic” approach to the study of evaluation measures for information retrieval and related 
tasks. Our effort has targeted quantification, an important task at the crossroads of informa-
tion retrieval, data mining, and machine learning, and has consisted of analysing previously 
proposed evaluation measures for quantification using the toolbox of the above-mentioned 
“axiomatic” approach. The work closest in spirit to the present one is our past work on the 
analysis of evaluation measures for classification (Sebastiani 2015). However, quantifica-
tion poses more difficult problems than classification, since evaluation measures for quan-
tification are inherently nonlinear (i.e., quantification error cannot be expressed as a linear 
function of the labelling error made on individual items). This is unlike classification, for 
which linear measures (e.g., standard accuracy, or K—see Sebastiani 2015) are possible.

We have proposed eight properties that, as we have argued, are desirable for measures 
that attempt to evaluate quantification (two such properties are actually mutually exclusive, 
and are desirable each in a different class of applications of quantification). Our analysis 
has revealed that, unfortunately, no existing evaluation measure for quantification satisfies 
all the other six properties. While this points to the fact that more research is needed to 
identify, or synthesize, a truly adequate such measure, this also means that, for the moment 
being, we have to evaluate the relative desirability of the properties that the existing meas-
ures do not satisfy. We have argued that some such properties are more important than 
others, and that as a result two measures (“Absolute Error” and “Relative Absolute Error”) 
stand out as the most satisfactory ones (interestingly enough, they are also the most time-
honoured ones, and the mathematically simplest ones).

As we have argued, RAE is more adequate for application contexts (e.g., quantifying the 
Tubercolosis class, as discussed in Sect. 3.1) in which an estimation error of a given abso-
lute magnitude should be considered more serious if it affects a rare class, while AE is more 
adequate for those applications (e.g., quantifying the NoShow class, as discussed in Sect. 3.1) 
in which an estimation error of a given absolute magnitude has the same impact independently 
from the true prevalence of the affected class. Future work should also address the problem of 
how to best characterize these two classes of applications. The number and the percentage of 
items in a sample � that belong to class c, seem to be essentially one and the same thing, but 
some applications (e.g., the NoShow example) are inherently interested in numbers, while 
other applications (e.g., the Tubercolosis example) seem more interested in percentages. 
When is it that a certain application belongs to the former (or to the latter) class, and why?

Aside from the design and use of an appropriate evaluation measure, there are further 
aspects concerning the evaluation of quantification that this work does not tackle. One of them 
is how to devise an evaluation protocol that strikes a balance between the two contrasting goals 
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of (a) testing quantifiers on samples that exhibit naturally occurring class prevalences [this 
is the approach adopted in works such as Gao and Sebastiani (2016), Nakov et al. (2016)], 
and (b) testing quantifiers also on samples that exhibit class prevalences (very) different from 
the naturally occurring ones [this is the approach adopted in works such as Forman (2008), 
Esuli et al. (2018)]. The realistic nature of the samples is the primary concern of the former 
approach, while testing quantifiers for robustness to different amounts of “prior probability 
shift” (i.e., difference between the prevalences in the training set and in the unlabelled set) is 
the one of the latter. We are working on an attempt to combine the strengths of both worlds, 
and hope to report results in the near future.

Acknowledgements  This work has benefitted from many discussions that I have had over the years with 
Andrea Esuli, Wei Gao, Ercan Kuruoglu, and Alejandro Moreo.

Appendix 1: Properties of AE

We here prove that AE enjoys IoI, NN, IND, MON, IMP, ABS. While some of these proofs 
are trivial, these are reported in detail in order to show how the same arguments can be used to 
prove the same for many of the other EMQs discussed in Sect. 4.

AE enjoys IoI. In fact, AE (p, p̂) =
1

�C�

∑
c∈C �p̂(c) − p(c)� = 0 implies that 

∑
c∈C �p̂(c) − p(c)� = 0 ; given that 

∑
c∈C �p̂(c) − p(c)� is a sum of nonnegative factors, this 

implies that |p̂(c) − p(c)| = 0 for all c ∈ C , i.e., p̂(c) = p(c) for all c ∈ C . Conversely, if 
p̂ = p , then 1

�C�

∑
c∈C �p̂(c) − p(c)� = 0 . 	�  ◻

AE enjoys NN. Quite obviously, 1

|C|
≥ 0 and 

∑
c∈C �p̂(c) − p(c)� ≥ 0 , which implies that 

1

�C�

∑
c∈C �p̂(c) − p(c)� ≥ 0.� □

AE enjoys IND. Given codeframe C = {c1,… , ck, ck+1,… , cn} , for any true dis-
tribution p on C and predicted distributions p̂′ and p̂′′ on C such that p̂�(c) = p̂��(c) for all 
c ∈ {ck+1,… , cn} , the inequality

resolves to
AE (p, p̂�) ≤ AE (p, p̂��)

1

|C|

∑

c∈C

|p̂�(c) − p(c)| ≤
1

|C|

∑

c∈C

|p̂��(c) − p(c)|

∑

c∈C

|p̂�(c) − p(c)| ≤
∑

c∈C

|p̂��(c) − p(c)|

∑

c∈C1

|p̂�(c) − p(c)| +
∑

c∈C2

|p̂�(c) − p(c)| ≤
∑

c∈C1

|p̂��(c) − p(c)| +
∑

c∈C2

|p̂��(c) − p(c)|

∑

c∈C1

|p̂�(c) − p(c)| ≤
∑

c∈C1

|p̂��(c) − p(c)|

1

|C1|

∑

c∈C1

|p̂�(c) − p(c)| ≤
1

|C1|

∑

c∈C1

|p̂��(c) − p(c)|

AE (pC1 , p̂
�
C1
) ≤ AE (pC1 , p̂

��
C1
)
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◻ AE enjoys MON. This can be proven by showing that AE enjoys B-MON, since we have 
proven that it enjoys IND. Given codeframe C = {c1, c2} and true distribution p, if pre-
dicted distributions p̂′, p̂′′ are such that p̂��(c1) < p̂�(c1) ≤ p(c1) , then it holds that

	�  ◻

 AE enjoys IMP. This can be shown by showing that AE enjoys B-IMP, since we 
have proven that it enjoys IND. Given codeframe C = {c1, c2} , true distribution p, pre-
dicted distributions p̂′ and p̂′′ , and constant a ≥ 0 such that p̂�(c1) = p(c1) + a and 
p̂��(c1) = p(c1) − a , it holds that

	�  ◻

 AE enjoys ABS. This can be shown by showing that AE enjoys B-ABS, since we have 
proven that it enjoys IND. Given codeframe C = {c1, c2} , constant a > 0 , true distributions 
p′ and p′′ such that p�(c1) < p��(c1) and p��(c1) < p��(c2) , if a predicted distribution p̂′ that 
estimates p′ is such that p̂�(c1) = p�(c1) ± a and a predicted distribution p̂′′ that estimates 
p′′ is such that p̂��(c1) = p��(c1) ± a , then it holds that

	�  ◻

AE (p, p̂�) =
1

2
(|p̂�(c1) − p(c1)| + |p̂�(c2) − p(c2)|)

<

1

2
(|p̂��(c1) − p(c1)| + |p̂��(c2) − p(c2)|)

= AE (p, p̂��)

AE (p, p̂�) =
1

2
(|p̂�(c1) − p(c1)| + |p̂�(c2) − p(c2)|)

=
1

2
(|(p(c1) + a) − p(c1)| + |(p(c2) − a) − p(c2)|)

=
1

2
(|a| + | − a|)

=
1

2
(| − a| + |a|)

=
1

2
(|(p(c1) − a) − p(c1)| + |(p(c2) + a) − p(c2)|)

= AE (p, p̂��)

AE (p�, p̂�) =
1

2
(|p̂�(c1) − p�(c1)| + |p̂�(c2) − p�(c2)|)

=
1

2
(|(p�(c1) ± a) − p�(c1)| + |(p�(c2)∓a) − p�(c2)|)

=
1

2
(2a)

=
1

2
((p��(c1) ± a) − p��(c1)| + |(p��(c2)∓a) − p��(c2)|)

=
1

2
(|p̂��(c1) − p��(c1)| + |p̂��(c2) − p��(c2)|)

= AE (p��, p̂��)
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Appendix 2: Testing for MAX, IMP, ABS, REL

In this section we present simple tests aimed at establishing that a certain EMQ D does not 
enjoy a certain property � ∈ {MAX, IMP,ABS, REL} . The basic pattern of these tests is to 
show that � does not hold for D by providing a counterexample. More in particular, given 
a concrete scenario s characterized by (1) a codeframe C , (2) one or more true distributions 
p1 , p2 , ..., and (3) one or more predicted distributions p̂1 , p̂2 , ..., the test attempts to check 
whether the scenario satisfies the particular constraint that is required for property � to 
hold. Since for D to enjoy property � the constraint is required to hold for all scenarios, if � 
does not hold in s we can conclude than D does not enjoy � . Instead, if � does hold in s we 
can conclude nothing, and thus need to study the issue further.

Appendix 2.1: A counterexample for MAX

In the test for MAX we consider the scenario described in the following table 

p(c1) p(c2) p̂(c1) p̂(c2) AE NAE RAE NRAE   SE DR KLD NKLD PD

p
′ 0.01 0.99 1.00 0.00 0.9900 1.0000 49.9975 1.0000 0.9801 0.9950 14.3076 0.9999 980100.0004

p
′′ 0.49 0.51 1.00 0.00 0.5100 1.0000 1.0204 1.0000 0.2601 0.7550 6.7065 0.9975 260100.0001

 and characterized by two different true distributions (1st and 2nd row) across the same 
codeframe C = {c1, c2}.19 The test consists in checking whether their respective perverse 
estimators obtain from D the same score: if the values of measure D in the two rows are 
not the same (italic values), this implies that D does not satisfy MAX (if they are the same, 
this does not necessarily mean that D satisfies MAX). Concerning the values obtained by 
NKLD , see the discussion in Footnote 14.

The table shows that none of AE , RAE , SE , DR , KLD , PD satisfies MAX.

Appendix 2.2: A counterexample for IMP

In the test for IMP we consider the scenario described in the following table 

p(c1) p(c2) p̂(c1) p̂(c2) AE NAE RAE NRAE   SE DR KLD NKLD PD

p
′ 0.20 0.80 0.25 0.75 0.0500 0.0625 0.1562 0.0625 0.0025 0.1312 0.0070 0.0035 0.0117

p
′′ 0.20 0.80 0.15 0.85 0.0500 0.0625 0.1562 0.0625 0.0025 0.1544 0.0090 0.0045 0.0181

and characterized by a codeframe C = {c1, c2} , a true distribution p (Columns 2 and 
3), and two predicted distributions p̂′ and p̂′′ (Columns 4 and 5, Rows 2 and 3) which are 
such that (1) p̂′ overestimates and p̂′′ underestimates the prevalence of a class c1 by a cer-
tain amount a > 0 (here: 0.05), and, symmetrically, (2) p̂′ underestimates and p̂′′ overesti-
mates the prevalence of another class c2 by the same amount a. If the values of D(p, p̂�) and 
D(p, p̂��) are not the same (which in the table is indicated by italic values), this implies that 

19  We assume |D| = 1,000,000 . This assumption has no relevance on the qualitative conclusions we draw 
here, and only affects the magnitude of the values in the table (since the value of |D| affects the value of � , 
and thus of RAE , NRAE , DR , KLD , NKLD , PD—see Sect. 4.3) and following.
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D does not satisfy IMP (if they are the same, this does not necessarily mean that D satisfies 
IMP).

The table shows that none of DR , KLD , NKLD , PD satisfies IMP.

Appendix 2.3: A counterexample for REL

In the test for REL we consider the scenario described in the following table 

p(c1) p(c2) p̂(c1) p̂(c2) AE NAE RAE NRAE   SE DR KLD NKLD PD

p
′ 0.20 0.80 0.70 0.30 0.5000 0.6250 1.5625 0.6250 0.2500 0.6696 0.5341 0.2609 0.7738

p
′′ 0.25 0.75 0.75 0.25 0.5000 0.6667 1.3333 0.6667 0.2500 0.6667 0.5493 0.2679 0.8333

with a codeframe C = {c1, c2} , two true distributions p′ and p′′ (Rows 2 and 3, Columns 
2 to 4), and two corresponding predicted distributions p̂′ and p̂′′ (Rows 2 and 3, Columns 
5 to 7), such that in both cases the predicted distribution overestimates the prevalence of c1 
by the same amount a > 0 (here: 0.50), with p�(c1) < p��(c1) . Here, if it is not the case that 
D(p, p̂�) > D(p, p̂��) (which in the table is indicated by italic values), then D does not satisfy 
REL (if D(p, p̂�) ≠ D(p, p̂��) , this does not necessarily mean that D satisfies REL).

The table shows that none of AE , NAE , NRAE , SE , KLD , NKLD , PD satisfies REL.

Appendix 2.4: A counterexample for ABS

In the test for ABS we consider the same scenario as described in “Appendix 2.3” section, 
i.e., 

p(c1) p(c2) p̂(c1) p̂(c2) AE NAE RAE NRAE   SE DR KLD NKLD PD

p
′ 0.20 0.80 0.70 0.30 0.5000 0.6250 1.5625 0.6250 0.2500 0.6696 0.5341 0.2609 0.7738

p
′′ 0.25 0.75 0.75 0.25 0.5000 0.6667 1.3333 0.6667 0.2500 0.6667 0.5493 0.2679 0.8333

with a codeframe C = {c1, c2} , two true distributions p′ and p′′ (Rows 2 and 3, Columns 
2 to 4), and two corresponding predicted distributions p̂′ and p̂′′ (Rows 2 and 3, Columns 
5 to 7), such that in both cases the predicted distribution overestimates the prevalence of c1 
by the same amount a > 0 (here: 0.50), with p�(c1) < p��(c1) . Here, if the values of D(p, p̂�) 
and D(p, p̂��) are not equal (which in the table is indicated by italic values), this implies that 
D does not satisfy ABS (if D(p, p̂�) = D(p, p̂��) , this does not necessarily mean that D satis-
fies ABS).

The table shows that none of NAE , RAE , NRAE , DR , KLD , NKLD , PD satisfies ABS.

Appendix 3: Proving that MON holds

In this section we prove that MON holds for KLD and PD . For this it will be sufficient to 
prove that KLD and PD enjoy B-MON, since it is immediate to verify that KLD and PD 
enjoy IND.
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For ease of exposition, let us define the shorthands a ≡ p(c1) and x ≡ p̂(c1).20 In order to 
show that D satisfies B-MON it is sufficient to show that

1.	 if (a − x) > 0 , then 𝜕

𝜕(a − x)
D > 0 for a, x, (a − x) ∈ (0, 1)

2.	 if (x − a) > 0 , then 𝜕

𝜕(x − a)
D > 0 for a, x, (x − a) ∈ (0, 1)

because an increase in (a − x) = (p(c1) − p̂(c1)) implies an equivalent increase in 
(p(c2) − p̂(c2)) (same for (x − a)).

Theorem 1  KLD satisfies B-MON.

Proof  We first treat the case (a − x) > 0 ; let us define y ≡ (a − x) . In this case

Since we are in the case in which (x − a) < 0 , and since (x − 1) < 0 and x > 0 , then 
x − a

(x − 1)x
> 0 for all a, x, (a − x) ∈ (0, 1).

Let us now treat the case (x − a) > 0 , and let us define y ≡ (x − a) . In this case

Since in this case it holds that (a − x) < 0 , and since (x − 1) < 0 and x > 0 , then 
x − a

(x − 1)x
> 0 for all a, x, (x − a) ∈ (0, 1) . This concludes our proof. 	�  ◻

Theorem 2  PD satisfies B-MON.

�

�y
KLD =

�

�y

(

a log
a

x
+ (1 − a) log

1 − a

1 − x

)

=
�

�y

(

a log
a

a − y
+ (1 − a) log

1 − a

1 − a + y

)

=
− y

(a − y − 1)(a − y)

=
x − a

(x − 1)x

�

�y
KLD =

�

�y

(

a log
a

x
+ (1 − a) log

1 − a

1 − x

)

=
�

�y

(

a log
a

y − a
+ (1 − a) log

1 − a

1 − y + a

)

=
−y

(a + y − 1)(a + y)

=
a − x

(x − 1)x

20  For the EMQs that require smoothed probabilities to be used, these definitions obviously need to be 
replaced by a ≡ p

s
(c1) and x ≡ p̂

s
(c1).
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Proof  We first treat the case (a − x) > 0 ; let us define y ≡ (a − x) . In this case

Since in this case it holds that a > x , it is true that that 
(a − 2ax + x) > (x − 2ax + x) = 2x(1 − a) > 0 , since by hypothesis it holds that 
x, a ∈ (0, 1) . Therefore, 𝜕

𝜕y
PD =

(a − x)(a − 2ax + x)

x2(1 − x)2
> 0 , since the two factors at the 

numerator and the two factors at the denominator are all strictly > 0.
Let us now treat the case (x − a) > 0 , and let us define y ≡ (x − a) . In this case

Since in this case it holds that x > a , it is true that that 
(−2ax + x + a) > (−2ax + 2a) = 2a(1 − x) > 0 , since by hypothesis it holds that 
x, a ∈ (0, 1) . Therefore, 𝜕 PD

𝜕y
=

(x − a)(−2ax + x + a)

(2a − x + 1)2x2
> 0 , since the two factors at the 

numerator and the two factors at the denominator are all strictly > 0 . This concludes our 
proof. 	�  ◻
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