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Abstract. Research on multimedia information retrieval (MIR) has recently witnessed a booming
interest. A prominent feature of this research trend is its simultaneous but independent materialization
within several fields of computer science. The resulting richness of paradigms, methods and systems
may, on the long run, result in a fragmentation of efforts and slow down progress. The primary goal of
this study is to promote an integration of methods and techniques for MIR by contributing a conceptual
model that encompasses in a unified and coherent perspective the many efforts that are being produced
under the label of MIR. The model offers a retrieval capability that spans two media, text and images,
but also several dimensions: form, content and structure. In this way, it reconciles similarity-based
methods with semantics-based ones, providing the guidelines for the design of systems that are able
to provide a generalized multimedia retrieval service, in which the existing forms of retrieval not only
coexist, but can be combined in any desired manner. The model is formulated in terms of a fuzzy
description logic, which plays a twofold role: (1) it directly models semantics-based retrieval, and
(2) it offers an ideal framework for the integration of the multimedia and multidimensional aspects
of retrieval mentioned above. The model also accounts for relevance feedback in both text and image
retrieval, integrating known techniques for taking into account user judgments. The implementation of
the model is addressed by presenting a decomposition technique that reduces query evaluation to the
processing of simpler requests, each of which can be solved by means of widely known methods for
text and image retrieval, and semantic processing. A prototype for multidimensional image retrieval
is presented that shows this decomposition technique at work in a significant case.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Se-
arch and Retrieval—query formulation;relevance feedback;retrieval models; I.2.4 [Artificial In-
telligence]: Knowledge Representation Formalisms and Methods—representation languages; I.4.10
[Image Processing and Computer Vision]: Image Representation—multidimensional

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Description logics, fuzzy logics, multimedia information retrieval

1. Introduction

The central concern of multimedia information retrieval (MIR) is easily stated:
given a collection of multimedia documents (i.e., a complex information object,
with components of different kinds, such as text, images, video and sound, all
in digital form), find those that are relevant to information need of the user. An

Partial support from the European Union was kindly provided under the MIRO Working Group
(n. 6175) and the FERMI Action (n. 8134), both part of the ESPRIT Basic Research Programme. We
thank our teammates in these two actions for the many stimulating discussions.
Authors’ address: Istituto di Elaborazione dell’Informazione, Consiglo Nazionale delle Ricershe, Via
Siuseppe Moruzzi; 1 – 56124 Pisa, Italy, e-mail:{meghini, fabrizio, straccia}@iei.pi.cnr.it.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2001 ACM 0004-5411/01/0900-0909 $5.00

Journal of the ACM, Vol. 48, No. 5, September 2001, pp. 909–970.



910 C. MEGHINI ET AL.

ever-growing amount of people are accessing collections of such documents every
day in order to satisfy the most disparate information needs. Indeed, the number
and types of multimedia information providers are steadily increasing: Currently,
it includes publishing houses; cultural, scientific and academic institutions; cinema
and TV studios; as well as commercial enterprises offering their catalogs on-line.
The potential users of the provided information range from highly skilled special-
ists to laymen. All these users share the same expectation: to be able to retrieve the
documents that are relevant to their information needs. While commercial prod-
ucts offering generalized MIR are still to come, research on MIR has witnessed a
booming interest during the last years. The most striking feature of this research
is its simultaneous but independent materialization within several fields of com-
puter science. To mention only the main streams, there has been work on MIR
carried out within the multimedia, the information retrieval, the digital signal pro-
cessing, and the database communities, while significant signs of interests may be
observed in other sectors, notably artificial intelligence. This also reveals that there
are many different aspects involved in MIR, each requiring a specific background
and methodology to be successfully tackled, and also that there may be complemen-
tary approaches to the same problems, not only within the same discipline (such
as different index structures for multimedia data), but also across different disci-
plines (such as similarity- versus semantic-based image retrieval). Such a richness
of paradigms, methods and systems is somewhat inherent in the early stages of
development of a new discipline, when empirical studies are needed to understand
the nature of a phenomenon and try out different ways of capturing it. However, on
the long run, this very same richness may ultimately result in a fragmentation of
efforts that may slow down progress.

We believe that MIR has reached the stage in which unification of the existing
approaches is called for, given that the basic concepts underlying the discipline
are understood sufficiently well. The primary goal of this study is to promote such
unification by contributing a conceptual model of MIR, which encompasses in
a unified and coherent perspective the many efforts and results that are being pro-
duced under the label of MIR in the above-mentioned fields.

The basic feature of our model is that it captures the kinds of retrieval investigated
in the various areas of computer science mentioned above. These kinds of retrieval
can be broadly classified on the basis of the aspect of documents that each of them
addresses. Thus, we have retrieval based on syntactic similarity, on semantics, on
structure, and on profile. This categorization is indicative of the method that we
have followed in deriving our view of MIR. Rather than proceeding from the bottom
up by connecting together existing models, our approach has been a top-down one,
since it models the various forms of retrieval as the projections of a basic operation
on the different dimensions that make up the structure of the information space.

For better clarity, our conceptual model will be specified both at the informal and
at the formal level, by letting each introduced notion be followed by a corresponding
definition in a suitable formalism. The formalism we have chosen is mathemati-
cal logic. The rationale of this choice lies primarily in the fact that mathematical
logic has proven most successful in capturing the essential nature of information
systems, and a MIR system, as it is to be expected, is no exception. The partic-
ular logic we adopt is Description Logic (DL). DLs are a family of contractions
of the predicate calculus that, in the recent past, have been subject to thorough
investigations both from the logical and the computational viewpoint. In choosing
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a specific DL, we have been guided by the need, typical of information mod-
elling, of finding a formalism that represents a good compromise between expres-
sive power and the computational complexity of the reasoning problems involved
in MIR.

Besides the foundational goal pointed out above, the aim of the present study is
to bring concrete benefits to various players in the MIR arena. In particular:

—To the designers of MIR systems, the model provides guidelines for the design
of systems that are able to provide a generalized retrieval service, in which
the existing forms of retrieval not only co-exist, but can be combined in any
desired manner. This feature places our model beyond the current state of the art.
Following these guidelines, and using an appropriate tool that implements the
model, a designer can quickly build a prototype of the system to be developed,
and use such prototype to test its adequacy to the user’s functional requirements.
We have prototyped a significant portion of such a tool, as illustrated later in
this paper.

—To users of MIR systems, the model is a tool for an effective communication
with the application designers, enabling them to state precisely what they expect
from the system. To this end, the model provides a terminology that is at the
same time rigorous and shared with the system designers. Once a prototype
of the application has been realized, the dialogue between users and designers
moves to an operational level, where the prototype is evaluated and, if necessary,
refined.

—To researchers who offer various contributions to MIR, the model gives the
possibility to see these contributions as part of a larger endeavor. Hopefully, this
will increase awareness of the limitations of current approaches and will stimulate
improvement by integration of complementary approaches. As a further benefit
to researchers, the formal specification of the model, by viewing MIR as a special
form of implication, may be used as a basis for formal investigations on specific
aspects of MIR, including extensions to the present model.

The paper is structured as follows: The conceptual framework underlying our
model, and a corresponding terminology, is laid down in Section 2, and subsequently
used to review a significant part of related work, in Section 3. The rest of the
paper presents the technical development of the model, starting with Section 4,
which concisely introduces the description logic that will constitute our main tool
throughout the paper. Sections 5 to 7 deal with the aspects of documents that our
model addresses; for each of them, we first discuss issues related to modelling
and then switch to the semantics of the related query facilities. Section 8 presents
a unified, hierarchically structured query language which brings together all the
issues discussed in Sections 5 to 7. In Section 9, we deal with retrieval and show
how the degree of relevance of a document to a query may be seen in terms of the
fuzzy DL that underlies both the representation and query languages. Section 10
discusses the implementation of the model, and presents a general technique for
query evaluation. Relevance feedback is tackled in the following section, where it
is shown how this important stage of retrieval is incorporated into the previously
presented model. Section 12 briefly sketches the main traits of the tool that we have
implemented to support the development of prototypical MIR systems. Section 13
concludes this article.
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2. A View of Multimedia Information Retrieval

After settling for such ambitious goals, we limit the scope of our work to the treat-
ment of two media: text and images. These media are by far the most investigated
and therefore best understood ones, therefore they suit the foundational work we are
presenting here. Throughout the paper, it is argued that the principles that inspire
our approach can also be applied to other media, such as audio and video. However,
we have preferred to deal only with text and images in order to be able to discuss
the relevant issues with the necessary depth, while relieving the reader from the
burden of getting acquainted with a large formal lexicon.

2.1. INFORMATION RETRIEVAL. The notion of information retrieval (IR, for
short) has much evolved from the late 50’s, when it attracted significant scientific
interest in the context of textual document retrieval. Early characterizations of IR
simply relied on an “objective” notion of topic-relatedness (of a document to a
query). Later, the essentially subjective concept of relevance gained ground, and
eventually became the cornerstone of IR [Saracevic 1975]. Nowadays, everybody
in the IR community would agree that IR is synonymous with “determination of
relevance.” Unfortunately, relevance is itself a vaguely defined concept. In quite
a different context, philosophers of language [Anderson and Belnap 1975] and
cognitive scientists [Sperber and Wilson 1986] have proposed alternative charac-
terizations of this notion, all making the subject a controversial one. Not surprisingly
then, the debate on what “relevance” may mean in the context of IR is still open
(a recent account of such a debate can be found in Mizzaro [1997]).

In the meantime, the area of multimedia documents came into existence and
demanded an IR functionality that no classical method was able to answer, due
to themedium mismatch problem(in the image database field, this is often called
themedium clash problem). This problem refers to the fact that, when documents
and queries are expressed in different media, matching is difficult, as there is an
inherent intermediate mapping process that needs to reformulate the concepts ex-
pressed in the medium used for queries (e.g., text) in terms of the other medium
(e.g., images). In response to this demand, a wide range of methods for achiev-
ing IR on multimedia documents has been produced, often based on techniques
largely foreign to the IR field. Our basic motivation in conducting the research
presented here is thata reconciliation between these new developments and tradi-
tional IR is needed, in order to foster cross-fertilization and promote the develop-
ment of a more mature technology, able to enhance the respective approaches via
their integration.

As a first step towards this reconciliation, we now propose a general definition
of IR that preserves the meaning underlying the tradition, while being consistent
with new developments in multimedia. We regard information retrieval asthe task
of identifying documents in a collection on the basis of properties ascribed to the
documents by the user requesting the retrieval. That is, a documentd is to be
retrieved in response to a requestr issued by a certain user if (and only if) that user
would recognized as having the property expressed byr. The many different types
of retrieval that can be envisaged on a multimedia document can then be seen as
special cases of the operation just defined, via an appropriate categorization of the
properties that may be ascribed to a document. This categorization is outlined in
the next section.
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2.2. DIMENSIONS OFMULTIMEDIA DOCUMENTS. We call a documentsimple
if it cannot be further decomposed into other documents. In the present context,
images and pieces of text are (the only) simple documents. A simple document is
an arrangement of symbols that carry information via meaning, thus concurring in
forming what is called thecontentof the document. In the case of text, the symbols
are words (or their semantically significant fractions, such as stems, prefixes or
suffixes), whereas for images the symbols are colors and textures.

We thus characterize simple documents as having two parallel dimensions, that
of form (or syntax, or symbol) and that ofcontent(or semantics, or meaning). As
we have just remarked, the form of a simple document is dependent on the medium
that carries the document. On the contrary, we take the content dimension to be
medium-independent, as we assume an objective view of meaning: the meaning of
a simple document is the set of states of affairs (or “worlds”) in which it is true. For
instance, the meaning of a piece of text is the set of (spatio-temporally determined)
states of affairs in which the assertions made are true, and the meaning of an
image is the set of such states of affairs in which the scene portrayed in the image
indeed occurs.

Complex documents (or simply documents) are structured sets of simple doc-
uments. This leads to the identification ofstructureas the third dimension of our
characterization of documents. For the sake of simplicity, we assume the structure
of documents to be hierarchical, but this is no serious limitation, as extensions to
other structures are well known and can be included in this framework without any
major conceptual shift. Note that this notion of structure only applies to complex
documents and should not be confused with the notion of structure that is embodied
in the syntax of simple documents, such as the structure of an image as the particular
arrangement of color regions that the image exhibits.

Finally, documents, whether simple or complex, exist as independent entities
characterized by (meta-)attributes (often calledmetadatain the recent literature on
digital libraries), which describe the relevant properties of such entities. The set of
such attributes is usually called theprofileof a document, and constitutes the fourth
(and last) document dimension that our model considers.

Corresponding to the four dimensions of documents just introduced, there can
be four categories of retrieval, each one being a projection of the general notion
of retrieval defined in Section 2.1 onto a specific dimension. The usefulness of
retrieval based on document structure or profile mostly lies in the possibility of
using these categories of retrievalin conjunctionwith the other categories, which
are discussed in the following section.

2.3. FORM- AND CONTENT-BASED MULTIMEDIA INFORMATION RETRIEVAL.
The retrieval of information based on form addresses the syntactic properties of
documents. In particular, form-based retrieval methods automatically create the
document representations to be used in retrieval by extracting low-level features
from documents, such as the number of occurrences of a certain word in a text,
or the energy level in a certain region of an image. The resulting representations
are abstractions which retain that part of the information originally present in the
document that is considered sufficient to characterize the document for retrieval
purposes. User queries to form-based retrieval engines may be documents them-
selves (this is especially true in the nontextual case, as this allows to overcome the
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medium mismatch problem), from which the system builds abstractions analogous
to those of documents. Document and query abstractions are then compared by an
appropriate function, aiming at assessing their degree of relatedness. A document
ranking results from these comparisons, in which the documents with the highest
scores occur first.

In the case of text, form-based retrieval includes most of the traditional IR meth-
ods, ranging from simple string matching (as used in popular Web search engines)
to the classicaltf-idf term weighting method, to the most sophisticated algorithms
for similarity measurement. Some of these methods make use of information struc-
tures, such as thesauri, for increasing retrieval effectiveness [Schäuble and Knaus
1992]; however, what makes them form-based retrieval methods is their relying on
a fully automatic indexing. In the case of images, form-based retrieval includes all
similarity-based image retrieval methods, such as those employed by system like
QBIC [Faloutsos et al. 1994] or VIRAGE [Bach et al. 1996].

On the contrary, semantic-based retrieval methods rely on symbolic representa-
tions of the meaning of documents, that is descriptions formulated in some suitable
knowledge representation language, spelling out the truth conditions of the involved
document. Various languages have been employed to this end, ranging from net-
based to logical. Retrieval by reasoning on the spatial relationships between image
objects (see, e.g., Gudivada and Raghavan [1995a]) falls under this category. For
reasons of space, this kind of retrieval is not dealt with in this paper. However,
integration of spatial retrieval in the present framework can be accomplished as il-
lustrated in Aiello et al. [1999]. Typically, meaning representations are constructed
manually, perhaps with the assistance of some automatic tool; as a consequence,
their usage on text in not viable because of the remarkable size (up to millions of
documents) that collections of textual documents may reach.

While semantic-based methods explicitly apply when a connection in meaning
between documents and queries is sought, the status of form-based methods is,
in this sense, ambiguous. On one hand, these methods may be viewed as pattern
recognition tools that assist an information seeker by providing associative access
to a collection of signals. On the other hand, form-based methods may be viewed
as an alternative way to approach the same problem addressed by semantic-based
methods, that is deciding relevance, in the sense of connection in meaning, between
documents and queries. This latter, much more ambitious view, can be justified only
by relying on the assumption that there be a systematic correlation between “same-
ness” in low-level signal features and “sameness” in meaning. Establishing the
systematic correlation between the expressions of a language and their meaning is
precisely the goal of atheory of meaning(see, e.g., Davidson [1994]), a subject of
the philosophy of language that is still controversial, at least as far as the mean-
ing of natural languages is concerned. So, pushed to its extreme consequences,
the ambitious view of form-based retrieval leads to viewing a MIR systemas an
algorithmic simulation of a theory of meaning, in force of the fact that the sameness
assumption is relied upon in every circumstance, not just in the few, happy cases
in which everybody’s intuition would bet on its truth. At present, this assumption
seems more warranted in the case of text than in the case of nontextual media, as
the representations employed by form-based textual retrieval methods (i.e., vec-
tors of weighted words) come much closer to a semantic representation than the
feature vectors employed by similarity-based image retrieval methods. Anyway,
irrespectively of the tenability of the sameness assumption, the identification of the



A Model of Multimedia Information Retrieval 915

alleged syntactic-semantic correlation is at the moment a remote possibility, so we
subscribe to the weaker view of form-based retrieval and present a model where
this is just one of the possible ways to access multimedia information.

3. Related Work

A model of structured multimedia documents finalized to retrieval is proposed
in Ounis and Chevallet [1996] and subsequently used for building the PRIME in-
formation retrieval system [Berrut et al. 1998]. Although subscribing to the logical
view of information retrieval, this model is indeed expressed in terms of Sowa’s
[1984] conceptual graphs. This fact makes the comparison with our model hard,
due to the more algebraic/operational, as opposed to logical/declarative, nature of
conceptual graphs. From a pragmatic point of view, the two models can be con-
sidered to share some basic intuitions, notably a categorization of documents into
orthogonal dimensions. However, the fully formal status of our model enables us to
address fundamental questions such as the computational complexity of the retrieval
problem and the relation between form- and content-based retrieval.

Logical models (in a more orthodox sense) of information retrieval, first pro-
posed in van Rijsbergen [1986], have been actively investigated in the last ten years
[Crestani et al. 1998; Sebastiani 1998, 1999]. Within this research trend, the work
closest in spirit to this is the work by Fuhr and colleagues on Probabilistic Datalog
(see, e.g., Rölleke and Fuhr [1998]), an extension of Stratified Datalog by prob-
abilistic features. It is similar in that a logic with a model-theoretic semantics is
used as a deductive tool in which to encode independently defined models of IR,
but it is different in most other respects. For instance, Fuhr and colleagues do not
define independently motivated “mereologies” for the various types of media (see
Sections 5.1 and 5.3), and do not cater for the integration, within their formalism, of
approaches to MIR originating from different fields (such as those based on digital
signal processing), as we instead do.

In the area of image processing, a considerable effort has been devoted to the
investigation of effective methods for form-based image retrieval.1 This effort has
led to the development of a number of systems (see, e.g., Gudivada and Raghavan
[1995b], Orphanoudakis et al. [1994], and Smith and Chang [1996]) which, in some
cases, have also been turned into commercial products [Bach et al. 1996; Faloutsos
et al. 1994]. These systems, and in general the methods found in the literature,
differ in the aspect of image form that is considered, in the features that are used to
capture each aspect, in the algorithms employed to compute features, in the function
adopted to match features for assessing similarity. While an exhaustive review is
outside the scope of this paper, a general account of form-based image retrieval is
given later, in Section 5.2, when we will consider the representation and retrieval
of image forms. A survey of current trends can be found in Gupta et al. [1997].
Given the context in which Gupta et al. [1997] originated, it is not surprising that

1 The kind of image retrieval that we call “form-based” to contrast it with the retrieval based on the
semantics of images, has been called “content-based retrieval” by the image processing community,
to contrast it with the retrieval based on externally attributed properties of images (“metadata”). This
terminological mismatch is a typical inconvenient of the integration between different worlds. We
have decided to live with it in order to preserve the connotation underlying our reference model, as
discussed in Section 2.2.
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its unifying trait is the lack of a proper representation and use of (whatwecall) the
content of images.

Indexing methods based on statistical [Salton and Buckley 1988] or probabilis-
tic [Fuhr and Buckley 1991] methods may be viewed as attempts to capture (perhaps
shallow) semantic properties of the document, as they abstract from supposedly
useless properties of a word (e.g., its contexts of occurrence in the document) to
concentrate on properties of it that are deemed more significant from a semantic
point of view (e.g., the number of times it occurs in a document).

More daring approaches to capturing more document semantics are those based
on natural language processing (NLP). So far, no real attempt has been made to
capture document semantics through NLP-basedunderstandingof the document.
This is unsurprising, given the substantial distance that still separates NLP from
achieving real text “understanding.” More surprisingly, also less ambitious NLP-
based efforts to capture document semantics have failed to yield improved retrieval
effectiveness. The paradigmatic case is the attempt to index documents by noun
phrases rather than by individual words; although intuitively capturing “more se-
mantics” than the latter, the former have been experimentally shown to be less
effective indexing units, perhaps because of their different statistical properties
(see, e.g., Lewis [1992]).

Methods based on either statistical or probabilistic indexing have been applied to
the retrieval of images via textual annotations (see, e.g., Liu and Sun [1997], Srihari
[1995], and Smeaton and Quigley [1996]), in some cases supported by the use of
thesauri to semantically connect the terms occurring in the text [Alp Aslandogan
et al. 1997; Guglielmo and Rowe 1996; Pentland et al. 1994]. The resulting meth-
ods have proved effective only in very narrow contexts, and do not fully exploit
the capabilities of human memory and the potentiality of the visual language in
supporting such capabilities.

Image retrieval methods based on both textual annotation and visual similarity
have also been investigated as a way of enhancing retrieval performance and system
usability [Smith and Chang 1997]. While very naive in the representation of image
semantics, the resulting systems “sell” form-based text retrieval for retrieval based
on image semantics. As a consequence, they face the problem of how to combine
the results of two sources of imprecision each addressing the same aspect, that is,
document form, in a different way.

Models and methods for MIR developed in the database community tend to focus
exclusively on the symbolic representation and usage of the content of images,
regarding form-based retrieval just as a challenging application area for fast access
methods to secondary storage [Faloutsos 1996]. In the classification of multimedia
systems outlined in Gudivada [1995], this would fall under the category of retrieval
termed as “based on logical data units,” where a logical data unit is a multimedia
data structure determined a priori. A paradigmatic case is the model presented
in Marcus and Subrahmanian [1996], where visual aspects of images are treated at
the symbolic level as semantic properties, and visual similarity is not provided by
the model’s query language. Incidentally, this view of MIR has been pursued also
by relying on a description logic as modelling tool [Goble et al. 1996].

As already argued, our view of MIR is that the requirements of applications do
not mirror the partition of the field that has been induced in practice by the different
backgrounds of researchers. The application areas that have been mentioned at the
beginning of this paper do require an information retrieval functionality able to
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address all the document dimensions and, most importantly, able to address each
dimensionin its own modality. In order to fulfill this goal, integration is the key
concept, and, indeed, the basis of our approach. In this sense, our model can be
seen as a generalization of current MIR methods. This does not mean that every
functionality found in any text or image retrieval model/system is also provided by
the model being presented. Rather, it means that our model provides the basis for
integrating retrieval methods pertaining to different media and document dimen-
sions. In so doing, it relies on a standard set of services for the various kinds of
retrieval considered. It will be shown in due course that these services can be made
significantly more sophisticated without altering the architecture of the model.

This model is the result of a research effort spanning almost a decade. The
requirements of a suitable MIR model were outlined in Meghini et al. [1991], also
based on the insights gained through the MULTOS Project [Thanos 1990]. A first
formulation of this model based on a description logic was given in Meghini et al.
[1993]. Starting from that formulation, two parallel streams of development have
been undertaken. On the one hand, we have worked on the tool, aiming at the
definition of a description logic more tightly coupled with the task of information
retrieval [Buongarzoni et al. 1995; Meghini et al. 1998; Meghini and Straccia 1996;
Sebastiani 1994; Straccia 1996, 1997a, 1997b, 1998, 2000]. On the other hand, we
have worked on the application of this tool to image retrieval [Meghini 1995;
Meghini et al. 1997a], and successively generalized the model to MIR [Meghini
et al. 1997b]. In order to simplify the presentation, the present paper does not
include the full-blown logical tool resulting from the former stream of research,
but rather focuses on the results of the latter stream. A preliminary version of this
model can be found in Meghini et al. [1997b].

4. A Fuzzy Description Logic

Description Logics (DLs, for short—see, e.g., Borgida [1995]) are contractions
of the predicate calculus that descend from the formalization of early seman-
tic network- or frame-based knowledge representation languages. DLs have an
“object-oriented” character that makes them especially suitable for reasoning about
hierarchies of structured objects.

DL systems have been used for building a variety of applications including
systems supporting configuration management [McGuinness and Wright 1998],
software management [Devanbu et al. 1991], browsing and querying of networked
information sources [Duschka and Levy 1997], data archaeology [Brachman et al.
1992], plan recognition [Weida and Litman 1992], natural language understand-
ing [Bollinger and Pletat 1991] and multimedia data description and classifica-
tion [Goble et al. 1996]. The grandfather of DL systems was KL-ONE [Brachman
and Schmolze 1985]. Nowadays, a whole family of DL-based knowledge represen-
tation systems has been built, like BACK [Peltason 1991], CLASSIC [Brachman
et al. 1991], KRIS [Baader and Hollunder 1991], and LOOM [MacGregor 1991].
For most of these systems, the computational complexity of the underlying rea-
soning problems is known. The systems mostly differ for the expressiveness of the
language and the completeness of the inferential algorithms.

The specific DL that we use to express our model isALC [Schmidt-Schauß
and Smolka 1991].ALC is universally considered a significant representative of
a family of expressive DLs and is therefore regarded as a convenient workbench
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FIG. 1. Grammar rules forALC concepts.

for carrying out any kind of logical work of an experimental nature. However, we
stress that our model is not tied in any way to this particular choice. Indeed, most
implemented systems rely on DLs that are less expressive thanALC. On the other
hand, IR models based on more expressive DLs have been also studied [Meghini
et al. 1993].

4.1. A QUICK LOOK ATALC. Concepts,rolesandindividual constantsare the
basic building blocks ofALC. Concepts describe sets of objects, such as “Italian
musician,” or, inALC notation,ItalianuMusician. Roles give binary properties,
such asFriend. Individual constants are simple names for individuals, such as
tim. From a data modelling point of view, concepts correspond to classes, roles to
attributes and individual constants to basic objects. From a logical point of view,
concepts can be seen as (possibly complex) unary predicate symbols obtained by
lambda-abstraction, roles as binary predicate symbols and individual constants as
constant symbols.

Formally, we assume three alphabets of symbols, calledprimitive con-
cepts, primitive rolesand individual constants.The conceptsof the language
ALC are formed out of primitive concepts according to the syntax rules given
in Figure 1. InALC, roles are always primitive. Other DLs have instead also role-
forming operators.

For example, the complex conceptMusicianu∀Plays.¬ElectricInstrument is
obtained by combining the primitive conceptsMusician andElectricInstrument
and the primitive rolePlays by the conjunction (u), universal quantification (∀)
and negation (¬) constructors. Under the intended interpretation and in a way that
will be formalized soon, such concept denotes the musicians who do not play any
electric instrument.

It is immediate to verify thatALC is a notational variant of a (conservative)
contraction of predicate calculus, determined by the very limited usage of quantifiers
and variables, the latter always implicit.2 Accordingly, the semantics of DLs is the
restriction of the Tarskian semantics for the predicate calculus corresponding to this
syntactical contraction. AninterpretationI is a pairI = (1I, ·I) consisting of a
nonempty set1I (called thedomain) and of aninterpretation function·I . Following
the intuitive meaning of constants, roles and concepts, given at the beginning of
this section,·I maps different individual constants into different elements of1I ,

2 A calculusC is acontractionof a calculusC′ when the languageL and the set of valid formulasV of
the former are, respectively, subsets of the languageL ′ and of the set of valid formulasV ′ of the latter.
The contraction isconservativewhen (V ′ − V) does not contain any formula which is expressible
solely by means ofL .
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primitive concepts into subsets of1I and primitive roles into subsets of1I ×1I .
The interpretation of complex concepts is defined by structural induction via the
following rules, whereC,C1,C2 stand for concepts andR for roles:

>I = 1I

⊥I = ∅
(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(¬C)I = 1I \ CI

(∀R.C)I = {d ∈ 1I | ∀d′ ∈ 1I .(d, d′) ∈ RI impliesd′ ∈ CI}
(∃R.C)I = {d ∈ 1I | ∃d′ ∈ 1I .(d, d′) ∈ RI andd′ ∈ CI}.

For instance, (∀R.C)I is the result of viewing∀R.C as the first order formula
∀y.R(x, y) → C(y). Similarly, (∃R.C)I(d) is the result of viewing∃R.C as the
formula∃y.R(x, y) ∧ C(y). As a consequence, it can be verified that for all inter-
pretationsI

(¬(C1 u C2))
I = (¬C1 t ¬C2)

I

(∃R.C)I = (¬(∀R.¬C))I .

ALC concepts and roles can be used for makingcrisp assertionsabout individual
constants (metavariablesa,a1,a2), that is, expressions belonging to one of the
following categories:

(1) C(a), asserting thata is an instance ofC; for example, (Musician u
Teacher)(tim) makes the individual constanttim aMusician and aTeacher;

(2) R(a1,a2), asserting thata1 is related to a2 by means of R (e.g.,
Friend(tim,tom));

(3) C1 v C2, asserting thatC1 is more specific thanC2 (for instance,Pianist v
(Artist u ∃Plays.Piano)).

Assertions of type 1 and 2 are calledsimple assertions, and have identical analogues
in the predicate calculus. An assertion of type 3 is called anaxiom, and its predicate
calculus analogue is the sentence∀x.C1(x)→ C2(x). By stating bothC1 v C2 and
C2 v C1, the primitive conceptC1 is defined to be equivalent toC2.

Semantically, the assertionC(a) (respectively,R(a, b) andC1 v C2) is satisfied
byI iff aI ∈ CI (respectively, (aI, bI) ∈ RI andC1

I ⊆ C2
I). A set6 of assertions

will be called aknowledge base(KB). An interpretationI satisfies(is a model of)
a KB 6 iff I satisfies each element in6. A KB 6 entailsan assertionα (written
6 |= α) iff every model of6 also satisfiesα. For instance, if6 is:

6 = {Italian v European, (Italian u Pianist)(tom),Friend(tim, tom)},
then

6 |= (∃Friend.(Pianist u European))(tim),

that is, tim has a friend who is a European pianist.

4.2. FUZZY ALC. In order to deal with the imprecision inherent in information
retrieval, we extendALC with fuzzy capabilities [Straccia 1998]. The exten-
sion of DLs to this end is not new. Yen [1991] was the first to introduce impreci-
sion into a simple DL; the resulting language has interesting features: it allows the
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definition of imprecise concepts by means of explicit membership functions over
a domain, and it introducesconcept modifiers, likeVery or Slightly, by means of
which concepts like “very low pressure” can be defined. This last idea has been
generalized toALC in Tresp and Molitor [1998], where a certain type of concept
modifiers are allowed. The result is a more expressive language than just fuzzy
ALC, with radically different computational properties, though.

From a syntactical point of view,fuzzyALC providesfuzzy assertions, that
is, expressions of type〈α, n〉, whereα is a crisp assertion andn ∈ [0,1]. We
use the termsfuzzy simple assertion, fuzzy axiom, andfuzzy KBwith the obvious
meaning. Then,〈∃About.Piano(i), .7〉 is a fuzzy simple assertion with intended
meaning (see below) “the membership degree of individual constanti to concept
∃About.Piano is at least.7,” or, in less technical terms, “i is likely to be about
a piano.”

According to Zadeh [1965], afuzzy set Xwith respect to a setS is characterized
by a membership functionµX: S → [0,1], assigning aX-membership degree,
µX(s), to each elements in S. This membership degree gives us an estimation of
how muchs belongs toX. Typically, if µX(s) = 1 thens definitely belongs toX,
while µX(x) = .7 means thats is “likely” (with degree of likelihood .7) to be an
element ofX. Membership functions have to satisfy the following three restrictions
(for all s ∈ Sand for all fuzzy setsX,Y with respect toS):

µX∩Y(s) = min{µX(s), µY(s)}
µX∪Y(s) = max{µX(s), µY(s)}
µX̄(s) = 1− µX(s).

whereX̄ is the complement ofX in S, that is, S\X. Other membership functions
have been proposed in the literature (the interested reader can consult, for example,
Dubois and Prade [1980] or Kundu and Chen [1994]).

In fuzzyALC, concepts and roles are interpreted as fuzzy sets, thus becoming
imprecise. Formally, afuzzy interpretationis a pairI = (1I, ·I), where1I is, as
for the crisp case, thedomain, whereas·I is aninterpretation functionmapping:

(1) different individual constants to different elements of1I , as for the crisp case:
(2) ALC concepts into a membership degree function1I → [0,1], and
(3) ALC roles into a membership degree function1I ×1I → [0,1].

Therefore, ifC is a concept thenCI will be interpreted as themembership degree
functionof the fuzzy set which is denoted byC with respect toI, that is, ifd is an
object of the domain1I thenCI(d) gives us the degree of membership ofd in the
denotation ofC under the interpretationI. Similarly for roles. In order to reflect
intuition, ·I has to satisfy the following equations (for alld ∈ 1I):

>I(d) = 1
⊥I(d) = 0
(C1 u C2)I(d) = min{C1

I(d),C2
I(d)}

(C1 t C2)I(d) = max{C1
I(d),C2

I(d)}
(¬C)I(d) = 1− CI(d)
(∀R.C)I(d) = mind′∈1I {max{1− RI(d, d′),CI(d′)}}
(∃R.C)I(d) = maxd′∈1I {min{RI(d, d′),CI(d′)}}
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Again, (∀R.C)I(d) is the result of viewing∀R.C as the formula∀y.R(x, y) →
C(y), whereF → G is¬F ∨ G and the universal quantifier∀ is viewed as a pos-
sibly infinite conjunction over the elements of the domain (in the literature, several
different definitions of the fuzzy implication connective→ have been proposed—
see, for example, Kundu and Chen [1994] for a discussion). The overall effect is,
informally:

(∀R.C)(d) ≡
∧

d′∈1I
¬R(d, d′) ∨ C(d′) ≡

∧
d′∈1I

∨
{¬R(d, d′),C(d′)}.

By applying (in this order) the rules for conjunction, disjunction and negation to
the last formula, the min-max expression above yields. Similarly, (∃R.C)I(d) is the
result of viewing∃R.C as∃y.R(x, y) ∧ C(y), where the existential quantifier∃ is
considered as a possibly infinite disjunction over the elements of the domain (see
also Lee [1972]).

Also in this case, it is verified that for all interpretationsI and indi-
vidual constantsd∈1I , (¬(C1 u C2))I(d)= (¬C1 t ¬C2)I(d) and (¬(∀R.C))I

(d)= (∃R.¬C)I(d). Moreover, every “crisp” interpretationI can be seen as a fuzzy
interpretation with membership degree in{0,1} rather than in [0,1].

An important operator of DLs concerns number restrictions on role fillers
[Buchheit et al. 1993]. The interested reader can find the fuzzy semantic rules
for number restriction operators in Yen [1991].

An interpretationI satisfies (is a model of) a fuzzy assertion〈C(a), n〉
(respectively, 〈R(a1,a2), n〉 and 〈C1 v C2, n〉) iff CI(a1

I)≥ n (respectively,
RI(a1

I,a2
I)≥ n and mind∈1I {max{1−C1

I(d),C2
I(d)}}≥n). Note that the sat-

isfiability condition mind∈1I {max{1−C1
I(d),C2

I(d)}}≥n for 〈C1 v C2, n〉 is a
consequence of viewingC1vC2 as the formula∀x.C1(x)→C2(x),or∀x.¬C1(x)∨
C2(x).

An interpretationI satisfies(is a model of) a fuzzy KB6 iff I satisfies each
element of6. A fuzzy KB 6 entails a fuzzy assertionγ (written 6 |= γ) iff
every model of6 also satisfiesγ. Given a fuzzy KB6 and a fuzzy assertionα, we
define themaximal degree of truthof α with respect to6 (writtenMaxdeg(6,α)) as
max{n> 0 |6 |= 〈α, n〉} (max∅ = 0). Note that6 |= 〈α, n〉 iff Maxdeg(6,α) ≥ n.

For example, suppose we have two imagesi1 andi2 indexed as follows:

6i1 = {〈About(i1, tim), .9〉, 〈Tall(tim), .8〉, 〈About(i1, tom), .6〉, 〈Tall(tom), .7〉}
6i2 = {〈About(i2, joe), .6〉, 〈Tall(joe), .9〉}
Moreover, let the background KB be

6B = {〈Image(i1),1〉, 〈Image(i2),1〉,
〈Musician(tim),1〉, 〈Musician(tom),1〉, 〈Musician(joe),1〉,
〈Tall v Adult, .9〉},

and let61 = 6i1 ∪6B and62 = 6i2 ∪6B. Our intention is to retrieve all images
in which there is an adult musician. This can be formalized by the query concept

C = Image u ∃About.(Adult uMusician).

It can be verified that Maxdeg(61,C(i1)) = .9, whereas Maxdeg(61,C(i2)) = .6.
Therefore, in retrieving both images we ranki1 beforei2.



922 C. MEGHINI ET AL.

The pivotal role that fuzzyALC has in the context of our model will become
clear in the next sections. The connection between logical reasoning in fuzzy
ALC and non-logical computation through medium-specific document process-
ing techniques will be realized by identifying a number ofspecialALC individual
constants and predicate symbolsand imposing that their semantics be not ageneric
subset of1I (or1I ×1I) but one that complies with the results of the document
processing analysis.

5. Form

We now proceed to discussing the “form” dimension of simple documents. We
present models forimage layoutsandtext layouts, which consist of the symbolic
representations of the form-related aspects of an image or text, respectively. Each
notion is endowed with amereology, that is, a theory of parts, based on notions such
asatomic region,regionandgrounded region. Each of these three notions will be
definedtwice, once for images and once for text. The context will tell which notion
is meant from time to time. Note also that the term “layout” is used elsewhere in
the literature in a different sense, namely to denote the rendering of a document
on a display device. In order to query image and text models, we introduce special
predicate symbols, which will be used in the unified query language discussed in
Section 8. The reader will note the evident parallelism, even down to many details,
in our treatment of image form and text form; given that form is the only medium-
specific aspect of documents, this shows the potential of this model for extension
to other media.

5.1. MODELLING IMAGE LAYOUTS. In order to make the paper self-contained,
some elementary notions from digital geometry are briefly recalled below (see also,
for example, Rosenfeld and Kak [1982, Chap. 11]).

Let IN be the set of natural numbers. Azoneis any subset of IN2, that is, a set of
points. A zoneS is alignedif

min{x | 〈x, y〉 ∈ S} = 0 and min{y | 〈x, y〉 ∈ S} = 0.

Theneighborsof a pointP = 〈x, y〉, when bothx andy are nonzero, are the points
〈x − 1, y〉, 〈x, y− 1〉, 〈x, y+ 1〉, and〈x + 1, y〉. If only one ofP’s coordinates is
0, thenP has only three neighbors;〈0,0〉 has only two neighbors. Two zones are
said to beneighborto each other if they are disjoint and a point in one of them is
a neighbor of a point in the other one. Apath of lengthn from point P to point
P′ is a sequence of pointsP = P0, P1, . . . , Pn = P′ such thatP0 = P, Pn = P′
and Pi is a neighbor ofPi−1, 1 ≤ i ≤ n. Let S be a zone andP and P′ points of
S: P is connectedto P′ in S if there is a path fromP to P′ consisting entirely of
points ofS. For anyP in S, the set of points that are connected toP in S is called
aconnected componentof S. If Shas only one connected component, it is called a
connectedzone.

We now formalize the notion of an image layout. Given a set ofcolors C, an
image layoutis a triplei = 〈Ai , π i , f i 〉, where:

—Ai , thedomain, is a finite, aligned, rectangular zone (“rectangular” zone being
defined in the obvious way);

—π i is a partition ofAi into nonempty connected zones{T1, . . . , Tn}, calledatomic
regions;
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FIG. 2. The atomic regions of a simple image.

— f i is a total function (thecolor function) fromπ i to C assigning a color to each
atomic region in such a way that no two neighbor atomic regions have the same
color.

Figure 2 shows the partitionπ underlying a simple image layout. From an image
processing point of view, an image layout is a segmentation, based on a color uni-
formity criterion. As a consequence, in our model “atomic region” is synonymous
to “color region.” The reason behind this choice is that the mereology induced by
this criterion permits us:

—to model a widely used class of queries on image form, namely those addressing
single color regions as well as shapes;

—to model regions corresponding to objects within images, as these regions can
be seen as aggregations of color regions.

This choice, on the other hand, has no impact on global image similarity, such
as color- or texture-based similarity, because these kinds of similarity are not
expressed nor computed in terms of single image regions. Also, it is impor-
tant to note that other image segmentation criteria, and the consequent mere-
ologies, can be accommodated into the model by generalizing the definition
of image layout in the following way:i =〈Ai , 〈π i

1, f i
1〉, 〈π i

2, f i
2〉, . . . , 〈π i

n, f i
n〉〉,

where each pair〈π i
j , f i

j 〉 captures a different segmentation criterion. To keep
the model simple, and the paper readable, we consider only one segmenta-
tion criterion.

The calculation of the partitionπ i from a pixel representation is notoriously
difficult and, in fact, still an open problem. For this reason, we next provide a more
general notion of image region, which is defined on top of the notion of atomic
region, but which could as well be assumed as primitive, thus reconciling the model
with the current status of image processing.

Theregionsof an image layouti = 〈Ai , π i , f i 〉 are defined to be the set:

π i
e =

{
S | ∃ T1, . . . , Tk ∈ π i , k ≥ 1, S=

k⋃
j=1

Tj , Sconnected

}
A region is a connected zone obtained by the union of one or more atomic regions.
The fact that we allowS to have holes enables the model to deal with partial
occlusion (e.g., the area of an image showing a goal-keeper partly covered by an
approaching ball counts as a region). Accordingly, theextended color functionof
an image layouti = 〈Ai , π i , f i 〉 is defined as the functionf i

e that assigns to each
region S the color distribution induced by the atomic regions that make upS.
Technically, ifS= ∪k

i=1Ti , f i
e(S) is a mapping fromC to [0,1] defined as follows
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(for all c ∈ C and letting|A| be the cardinality ofA):

f i
e(S)(c) =

∑
T∈Zc
|T |

|S| , whereZc = {T ∈ {T1, . . . , Tk} | f i (T) = c}.

SinceZc is the subset of the atomic regions making upSthat have colorc, f i
e(S)(c)

gives the percentage ofS that has colorc. In fact, it is immediately verified that:∑
c∈C

f i
e(S)(c) = 1, for all regionsS.

For any given regionS, letφ(S) stand for theshapeof the region, that is the closed
curve that delimitsS. We letS be the set of closed curves in IN2.

By definition, a region may occur in more than one image, since it is defined in a
purely extensional way. For instance, whenever an object shows up in two images
in exactly the same way, those two images will share at least one region, namely
the portion of the image domain containing the object. In general, the same region
will occur in all images having at least one atomic region in common. In order to
evaluate image queries, though, we need a more selective notion of region, bound
to the specific image where a region belong. To this end, we introduce the notion
of grounded image region, which we define as a pair〈i, S〉 wherei = 〈Ai , π i , f i 〉
is an image layout andS ∈ π i

e. For simplicity of notation, in what follows we
directly refer to the shape of a grounded image region〈i, S〉, actually meaning the
shape of its component regionS. Formally, we extend the functionφ by stipulating
thatφ(〈i, S〉)=φ(S). Analogously, we define the functionfe on grounded image
regions〈i, S〉 as follows:

fe(〈i, S〉)(c) = f i
e(S)(c).

Finally, we definethe image universeIU as the set of all possible image layouts
of any domain. The set of all grounded image regions, denoted asR, is defined on
top of the image universe as:

R = {〈i, S〉 ∈ (IU × 2IN2) ∣∣ S∈ π i
e

}
.

5.2. QUERYING IMAGE LAYOUTS. Queries referring to the form dimension of
images are calledvisualqueries, and can be partitioned as follows (for a taxonomy
of approaches to image retrieval, see, e.g., Gudivada and Raghavan [1997]):

(1) Concrete Visual Queries.These consist of full-fledged images that are sub-
mitted to the system as a way to indicate a request to retrieve “similar” im-
ages; the addressed aspect of similarity may concern color [Bach et al. 1996;
Faloutsos et al. 1994; Stricker and Orengo 1995; Swain and Ballard 1991],
texture [Liu and Picard 1996; Pentland et al. 1994; Smith and Chang 1994],
appearance [Ravela and Manmatha 1997]: combinations of these are gaining
ground [Rui et al. 1998; Ciocca and Schettini 1999];

(2) Abstract Visual Queries. These are artificially constructed image elements
(hence, “abstractions” of image layouts) that address specific aspects of image
similarity; they can be further categorized into:

(a) Color Queries. Specifications of color patches, used to indicate a request
to retrieve those images in which a similar color patch occurs [Del Bimbo
et al. 1997; Faloutsos et al. 1994];
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(b) Shape Queries. Specifications of one or more shapes (closed simple
curves in the 2D space), used to indicate a request to retrieve those
images in which the specified shapes occur as contours of significant
objects [Del Bimbo and Pala 1997; Hirata and Kato 1992; Petrakis and
Faloutsos 1997];

(c) combinations of the above [Jain and Vailaya 1996].

As mentioned in Section 2.3, visual queries are processed by matching a vector
of features extracted from the query image, with each of the homologous vectors
extracted from the images candidate for retrieval. For concrete visual queries, the
features are computed on the whole image, while for abstract visual queries only the
features indicated in the query (such as shape or color) are represented in the vectors
involved. For each of the above categories of visual queries, a number of different
techniques have been proposed for performing image matching, depending on the
features used to capture the aspect addressed by the category, or the method used
to compute such features, or the function used to assess similarity. For instance,
a color similarity criterion for concrete visual query is captured by the following
function [Stricker and Orengo 1995]:

s(i, i ′) =
∑
j∈HSB

w1 j

∣∣mi
1 j −mi ′

1 j

∣∣+ w2 j

∣∣mi
2 j −mi ′

2 j

∣∣+ w3 j

∣∣mi
3 j −mi ′

3 j

∣∣, (1)

where:
—H SB is the set of color channels,H SB= {H, S, B};
—mg

kj is thekth moment of the true color histogram of image layoutg, for the
channelj of the HBS color space, that is:

mg
1 j =

1

N

N∑
l=1

pg
j,l

mg
2 j =

√√√√ 1

N

N∑
l=1

(
pg

j,l −mg
1 j

)2
mg

3 j = 3

√√√√ 1

N

N∑
l=1

(
pg

j,l −mg
1 j

)3
wherepg

j,l is the value of the channelj in the pointl of the image layoutg;
—wi j ≥ 0, (1≤ j, i ≤ 3) are user specified weights.

As the last example shows, the inference carried out by a similarity retrieval en-
gine is heavily based on numerical techniques, hence the least apt to be captured by
logic. For this reason, the model does not provide the machinery for defining simi-
larity functions, and indeed assumes that similarity reasoning willnotbe performed
by means of logic.

However, against current practice,we argue that visual queries are expressions of
a formal language, and that logic is a most suitable tool for the specification of such
a language. Of course, the primitive elements of the language for querying image
forms we are about to introduce will be specifiable in a visual way, being visual
in nature. So, at the surface level, any system based on this model can be made to
look identical to the similarity retrieval engines in current practice nowadays. But
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the existence of the query language marks an important difference, since it permits,
among other things, the integration of form-based image retrieval with other kinds
of retrieval, on images as well as on documents pertaining to any other medium.

The categorization of visual queries pointed out above will be used as the guide-
line for the definition of the query language on image layouts. The building blocks of
the query language are, as anticipated at the end of Section 4.2,specialALC individ-
ual constants and predicate symbols(abbreviated in SICs and SPSs, respectively).
In particular, in order to express visual queries, two kinds of symbols are called for:

(1) symbols for denoting image layouts, their component regions, the properties of
regions (such as colors and shapes), and the appropriate relationships among
these entities; we call these symbolsmereologicalSICs and SPSs;

(2) symbols for denoting similarity between whole images (for concrete visual
queries) and image components (for abstract visual queries); we call these
symbolssimilarity SPSs.

As far as mereological SICs are concerned, the following disjoint countable alpha-
bets are introduced, each consisting of description logic individual constants:

—ÄI , the names of image layouts (metavariablei, optionally followed by a natural
number);

—ÄR, the names of grounded image regions (r);
—ÄC, the names of colors (c);
—ÄS, the names of shapes (s).

Even though, at first sight, these alphabets may seem to be an unnecessary compli-
cation imposed by the formalism in which this model is stated, it is worthwhile to
observe that they are in everyday use. For instance, one could think ofÄI as the set
of image URLs.ÄC can be thought of as naming the elements of one of the many
color spaces proposed in the literature; for instance, in the RGB space each such
name is a triple giving the level of energy of a pixel on the corresponding chan-
nel. Analogously,ÄS may be understood as any suitable notation for representing
contours, such as, for instance, the 8-contour notation, given by elements of the set
{0,1, . . . ,7}+. Finally, each element inÄR could consist of the composition of an
image name, a region shape and a point for locating the shape within the image
range, thereby uniquely identifying a region of the image. Formally, the intended
semantics of these SICs is given by conditions which constraint the generic fuzzy
interpretationI to use a specific function to interpret each of them. In particular,
we treat each of the above introduced individual constants as arigid designator
(i.e., interpretation-independent name, compliant with the given intuitive account
of the alphabets) for a corresponding semantic entity. These conditions require·I to
be a total bijective mapping fromÄI toIU , fromÄR toR, fromÄC toC, and from
ÄS to S. In this way, for instance, each image layout has a name in the language,
and each name in the language names a different layout.

Furthermore, the following mereological SPSs are assumed, each having the
syntactical status of a description logic role:

—HAIR(i,r) (standing for Has Atomic Image Region). Relates the image layout
i to one of its grounded atomic regionsr;
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—HIR(i,r) (Has Image Region). Relates the image layouti to one of its grounded
regionsr;

—HS(r,s) (Has Shape). Relates a grounded image regionr to its shapes;
—HC(r,c) (Has Color). Relates a grounded image regionr to its colorc.

The semantic conditions on mereological SPSs are as follows (for all image layouts
i, i ′, regionsS, shapess and colorsc):

HAIRI : IU × (IU × 2IN2)→ {0, 1},
such thatHAIRI(i, 〈i ′, S〉) =

{
1 if i = i ′ andS∈ π i

0 otherwise (2)

HIRI : IU × (IU × 2IN2)→ {0, 1},
such thatHIRI(i, 〈i ′, S〉) =

{
1 if i = i ′ andS∈ π i

e
0 otherwise (3)

HSI :
(
IU × 2IN2)× S → {0, 1},

such thatHSI(〈i, S〉, s) =
{

1 if S∈ π i
e ands= φ(S)

0 otherwise (4)

HCI :
(
IU × 2IN2)× C → [0,1],

such thatHCI(〈i, S〉, c) = f i
e(S) (c) (5)

HAIR andHIR give raise, as expected, only to crisp assertions, that are valuated
as true (i.e., 1) just in case the grounded image region given as second argument
belongs to the image layout given as first argument. The reason why we have
included both these SPSs in the language, despite the obvious subsumption relation
that links them (i.e.,HAIRvHIR), is that color and shape queries, while always
allowed on atomic image regions, will be allowed on extended regions only in
restricted cases. The rationale for this choice is of a computational nature and will
be discussed in detail later, in Section 8.2. AlsoHS is a crisp role, true only if
the given closed curve is the contour of the given grounded image region. Finally,
HC is a truly fuzzy role, assigning to each pair (grounded image region, color) the
percentage of the latter that occurs in the former. Note that, in order to compute
that percentage, the color function must be known, hence it is mandatory to have
grounded image regions, in this case. Clearly,HC behaves as a crisp role on atomic
regions, on which it is true just in case the given color is indeed the color of the
region, otherwiseHC is false, that is 0.

As far as similarity SPSs, these are categorized into two groups, mirroring the
categorization of visual queries:

—global similarity SPSs. In general, there will be a family of such SPSs, each
capturing a specific similarity criterion. Since from the conceptual viewpoint
these SPSs form a uniform class, this model provides just one of them, to be
understood as a representative of the whole class. Any other symbol of the same
sort can be added without altering the structure and philosophy of the language.
So, for global similarity matching we use the role:
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—SI(i, i ′) (Similar Image). Denotes the similarity between the given image
layouts;

—local similarity SPSs. Assessing the similarity between individual features of
images. Similarly for what we have done for global similarity, we include in the
language one SPS for each type of abstract visual query. So we have:

—SC(c, c′) (Similar Color). Denotes the similarity between the given colors;
—SS(s, s′) (Similar Shape). Denotes the similarity between the given shapes.

The semantic clauses for both global and local similarity SPSs are defined on
the basis of corresponding functionsσi , σc andσs, that measure in the [0,1] interval
the degree of similarity of two image layouts, colors and shapes, respectively:

SII : IU × IU → [0,1], such thatSII(i, i ′) = σi (i, i
′) (6)

SCI : C × C → [0,1], such thatSCI(c, c′) = σc(c, c
′) (7)

SSI : S × S → [0,1], such thatSSI(s, s′) = σs(s, s
′). (8)

The prototype of the model introduced in Section 12 uses, as image similarity
function σi , a close relative of the function (1). This function can be calculated
from an image layout, once a channel structure on the color setC is imposed. We
remark that this particular choice forσi is not fundamental, as the present work
is not a study in similarity image retrieval. In selectingσi we have just picked
a function that is considered as a reasonable measure for image similarity by the
digital image processing experts. The weightsw1H , . . . , w3B will play an important
role in relevance feedback, hence we postpone the complete definition ofσi until
Section 11. The functionsσc andσs used for the prototype are given in Section 12.

The semantic clauses introduced in this section capture the desired behavior of
the special symbols that have been defined to query image layouts. In order to turn
the desired behavior into the actual behavior, we restrict the semantic universe of our
logic to only those interpretations that satisfy these conditions. A fuzzy interpreta-
tionI will thus be called animage interpretationif it satisfies conditions (2) to (8).

From the semantic point of view this modeling style is an application of the
so-calledmethod of concrete domains[Baader and Hanschke 1991], by which
certain symbols are treated as having a fixed, interpretation-independent meaning.
From the practical point of view, it results in interpreting every occurrence of
the SPSs in question not as the occurrence of an uninterpreted role, but as a call
to a routine that implements the corresponding image processing technique. In
knowledge representation, this would be called aprocedural attachment[Myers
1994]. Section 10 will show how procedural attachment works in our model.

5.3. MODELLING TEXT LAYOUTS. In order to strictly parallel conceptual uni-
formity with modelling uniformity, we now define the notion of text layout as a
semantic entity that conforms, as much as possible, to the notion of image layout.
To this end, we allow ourselves a moderate amount of overloading, and use some of
the names introduced for modelling image form also for the corresponding notions
pertaining to text form. Ambiguity will always be resolved by context.

In the single-dimensional space where text layouts belong, the notion of con-
nected zone corresponds to the notion of interval. We define an intervalS⊂ IN to
bealigned iff min{x | x ∈ S} = 0. Given the set ofwordson an alphabet3, we
define atext layoutto be a triplet = 〈At , π t , f t〉 where:
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—At (thedomain) is a finite aligned interval,
—π t is a partition ofAt into nonempty intervals{T1, ..., Tn} calledatomic regions,

and
— f t is a total function (theword function) assigning a word to each atomic region.

In paralleling monochromatic image regions with the words of text, we do not
intend to suggest any cognitive correspondence between these concepts. Rather, we
consider as convenient to assume them as elementary notions of the corresponding
layout model.

Theregionsof a text layoutt = 〈At , π t , f t〉 are defined as the set

π t
e =

{
S | ∃T1, ..., Tk ∈ π t , k ≥ 1, S=

k⋃
i=1

Ti , S is an interval

}
that is, a region is the interval obtained by the union of one or more pairwise-
adjacent atomic regions. Similarly to the case of images, a regionS is not bound to
a particular text layout, but is just a “window” that can be opened on many of them.
This binding is realized in the notion ofgrounded text region, which we define to
be a pair〈t, S〉, wheret = 〈At , π t , f t〉 is a text layout andS∈ π t

e.
Finally, we definethe text universeT U as the set of all possible text layouts of

any domain, and use the symbolE to denote the set of all grounded text regions.

5.4. QUERYING TEXT LAYOUTS. Similarly to what has been done for images,
we introduce the query language on the form of text by giving an elementary text
mereology. This consists of two more sets of SICs (one for text layouts and the
other for grounded text regions) and one SPS whose function is to allow queries
(see below) to be addressed to a portion of a text layout, rather than to the text
layout as a whole. These symbols are as follows:

—ÄT , the names of text layouts (metasymbolt, optionally followed by a natural
number);

—ÄE, the names of grounded text regions (r); and
—HTR(t,r) (Has Text Region): A role relating the text layoutt to one of its grounded

regionsr.

The semantic conditions for these symbols parallel those for their image analogs
and will not be spelled out for brevity. Note that no SPS is provided to address
atomic text regions, as the textual analogue to queries on color patches or shapes
(i.e., full-text queries, see below) will be handled in a different way.

We distinguish between two categories of queries addressing text layouts:

(1) full-text queries, each consisting of atext pattern, which denotes, in a deter-
ministic way, a set of texts; when used as a query, the text pattern is supposed
to retrieve any text layout belonging to its denotation;

(2) similarity queries, each consisting of a text, and aimed at retrieving those text
layouts which are similar to the given text.

In a full-text query, the text pattern can be specified in many different ways, for
example, by enumeration, via a regular expression, or via ad hoc operators specific
to text structure such as proximity, positional and inclusion operators (for instance,
in the style of the model for text structure presented in Navarro and Baeza-Yates
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[1995]). As in the case of images (Section 5.2), the choice as to what sublanguage
Lp for text patterns to adopt is not crucial for the rest of the model, so we will leave
this piece of the query language unspecified and limit ourselves to specifying how
to link it to the main body of the language.

The basic idea is to consider each well-formed expressionε ∈ Lp, as representa-
tive of a language in its own right. This language, which will be denotedχε, consists
of those text layouts that “match”ε. For instance, if we adopted the language of
regular expressions asLp, then the expression*Ãinfo* would be the name of a
language consisting of the text layouts in which at least one word with “info” as a
prefix occurs. Furthermore, in accordance with its syntactical status, eachε ∈ Lp
is assumed to be an SPS, that is anALC concept having as instances the individual
constants naming the text layouts inχε. In order to query text layouts, therefore,
countably many SPSs are introduced, as follows:

—ε is the generic member of the language for text patternLp.

The semantics of these symbols are the following:

εI : T U → {0, 1}, such thatεI(t) =
{

1 if t ∈ χε
0 otherwise.

(9)

Similarity queries involve a similarity matching between text layouts that parallels
image similarity matching. These queries are processed on the basis of automatically
constructed abstractions of documents and queries, typically sets of weighted terms
occurring in the text which, based on statistical properties of language and of
the particular collections in which documents belong, are deemed significant for
assessing similarity. To this end, these abstractions are compared by appropriate
similarity assessing functions, leading to a document ranking on the basis of a
best match criterion. For instance, a by now standard text similarity function is the
cosine function [Salton 1989], given by:

cos(Et, Et ′) =
∑m

k=1 vtk · vt ′k√∑m
k=1 v

2
tk ·
√∑m

k=1 v
2
t ′k

, (10)

where Ee is the index of text layout e, and is given by a vector of weights
(ve1, . . . , vem).vei is the weight of thei th term. The indexEecan be directly computed
from the layout〈Ae, πe, f e〉.

As for images, the model supports similarity of text layouts by endowing the
query language with a specific class of SPSs, each modelling textual similarity.
The generic representative of this class is theALC role ST, realizing the text
similarity functionσt . Syntax and semantics ofST are given below:

—ST(t, t ′) (standing for Similar Text). Denotes the degree of similarity between
the given text layouts.

Formally,

STI : T U × T U → [0,1], such thatST(t, t ′) = σt (t, t
′). (11)

A suitable choice could be:σt (t, t ′) = cos(Et, Et ′). An image interpretationI will be
called abasic document interpretationif it satisfies the semantic conditions for the
SPSs introduced in this section.
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6. Content

We take the content of a simple document (be it a text or an image) to be asitu-
ation, that is, the set of all worlds or states of affairs that are compatible with the
information carried by the document. For instance, the content of an image will be
the set of worlds where the facts depicted in the image hold, irrespective of every
other fact that is not visually evident, such as what the people represented in the
image are thinking of, or what is taking place outside the setting of the image.
Analogously, the content of a text will consist of all worlds in which the sentences
making up the text simultaneously hold.3 This view is inspired to a simple and by
now classical notion of semantics, taking an “objective” stance on the meaning of
natural language. Other views are possible, of course. For instance, one could more
subjectively understand the content of an image in terms of the impressions caused
on the image viewer. For obvious reasons of generality, we choose the objective
view.

The objectivity of the view, of course, does not imply the objectivity of the
descriptions used to represent document semantics. The reason is that access to
semantics is always throughinterpretation, a subjective endeavor by definition. In
addition, the identification of what counts as the content of a document, although
necessary, is not sufficient by itself to determine a model of document content.
The reason is that the amount of facts that ought to be represented to exhaustively
describe, for example, an image, is typically too large to be considered as a step of
an information retrieval methodology. This latter fact is even more evident from the
famous saying “A picture is worth a thousand words.” An inevitable prerequisite is
the selection of a suitable abstraction of the documents at hand, to be described via
the elements of a corresponding ontology. Such ontology would be a small subset
of the user’s “real” ontology, but central to the purpose of retrieval.

The selection of an appropriate ontology is neutral to that of the tool for rep-
resenting document contents, as far as the latter is powerful enough to allow the
description of any document candidate to retrieval. For the reasons pointed out in
Sections 1 and 4, we have adopted a fuzzy description logic as a content represen-
tation language. The rest of this section is devoted to illustrate how fuzzyALC is
to be used to represent, and to retrieve by content, multimedia information.

6.1. MODELLING CONTENT. Let l be a layout (either text or image) uniquely
identified by the individual constantl, that is,lI = l for any basic document inter-
pretationI. In this model,l may have an arbitrary number of associatedcontent
descriptions. Each such content descriptionδ is a set of fuzzy assertions, given by
the union of four component subsets:

(1) the layout identification, a singleton with a fuzzy assertion of the form
〈Self(l),1〉 whose role is to associate a content description with the layout
it refers to. The layout identification is the same for all content descriptions
of the same layout. In what follows, we letσ (l) denote the set of the content

3 Indeed, the semantics of a text may be a fairly articulated world structure, if, for instance, different
time instants are referenced in the text. We believe that these structures need not be considered for
retrieval purposes, due to the fact that the content representations involved in a retrieval system can
realistically be expected to be gross abstractions of the “full” text semantics. We have elaborated on
this theme more deeply elsewhere [Meghini et al. 1998].
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descriptions associated to the layoutl , that is,

δ ∈ σ (l) iff 〈Self(l),1〉 ∈ δ;
(2) theobject anchoring, a set of fuzzy assertions of the form〈Represents(r,o),n〉

wherer is an individual constant that uniquely identifies a grounded regionr of
l ando is an individual constant that uniquely identifies the object represented
in the regionr. The combined effect of components 1 and 2 could have been
achieved by eliminating theSelf concept and makingRepresents a ternary
predicate symbol, that is,Represents(l,r,o). While extended DLs capable of
dealing with predicate symbols of arity greater than 2 do exist, we prefer to use
Ockham’s razor and stick to the simpler, orthodox DLs of whichALC is the
standard representative;

(3) thesituation anchoring, a set of fuzzy assertions of the form〈About(l,o),n〉
wherel ando are as above. By using these assertions, it can be stated what the
situation described by the layout is “globally” about;

(4) thesituation description, a set of fuzzy simple assertions (where none of the
symbolsSelf,RepresentsorAboutoccur), describing important facts stated in
the layout about the individual constants identified by assertions of the previous
two kinds.

The task of components 1 to 3 is actually that of binding the form and content
dimensions of the same layout, thus allowing form- and content-based retrieval to
be simultaneously performed on the same text or image.

As an example, let us consider a photograph showing a singer, Kiri, performing
as Zerlina in Mozart’s “Don Giovanni”. Part of a plausible content description for
this image, namedi, could be (of course, the truth-values of the assertions reflect
the best of the image indexer’s knowledge):

{ 〈Self(i),1〉,
〈Represents(r,Kiri), .7〉,
〈About(i,o), .8〉,
〈DonGiovanni(o),1〉, 〈Plays(Kiri,Zerlina), .6〉}.

(12)

Since there may be more than one content description for the same layoutl ,
our model permits to consider a simple document under multiple viewpoints. In
Section 9, we see that, as a result of this, the “retrieval status values” of a lay-
out to a query resulting from different content descriptions do not add up. Any of
components 2 to 4 can be missing in a content description.

6.2. QUERYING CONTENT. Queries pertaining to content are calledcontent-
basedqueries, and involve conditions on the semantics of a text or image. Since
content description is, as remarked at the beginning of this section, ontology-neutral,
there are no SPSs specific to content-based queries.

Reasoning about content is performed directly (i.e., without procedural attach-
ments) by fuzzyALC on the content descriptions illustrated in the previous section.
The results of this logical reasoning activity will, if needed, be transparently merged
to the results of nonlogical computations (obtained through the procedural attach-
ments to the various SPSs) by fuzzyALC using the other components of content
descriptions.
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7. Structured Documents

As mentioned in the introduction, we take multimedia documents to be complex
objects consisting, in general, of a hierarchically structured set of simple documents,
which may in turn be either chunks of text or images. It is just natural, then, to allow
this model to deal not only with the features of simple documents, but also with
the way these are structured into a complex document. We hence define the notions
of documentanddocument structure, along with a set of SPSs for addressing both
within queries.

In order to reflect the “objective,” domain- and application-independent nature of
the notion of document, the latter is defined in the semantic universe of our model,
as it is the form dimension of documents. More precisely, the model considers doc-
uments to be just structurally organized layouts, and for this reasons the two notions
(document and structure) are defined together. In this way, the content dimension is
left out of the document definition, as something to be considered only in the con-
text of specific, hence subjective, domain- and application-dependent, document
bases. Indeed, the link between documents and their content representations will
be established precisely upon defining document bases.

7.1. MODELLING STRUCTUREDDOCUMENTS. The kind of structure that is of-
fered by the model is intentionally simple. It is designed having in mind documents
such as newspaper articles or books, including images, possibly captioned. The
operators for navigating these documents directly reflect their hierarchical struc-
ture, and so are the expected ones, with the additional expressive power permitted
by the logical structure of theALC language. More complex structures or more
complex navigation operators can be considered, of course (a review of research
work on richer document structures and associated query languages can be found
in Abiteboul et al. [1997]). However, in order to keep the complexity of this model
at a reasonable level, we have preferred to limit ourselves to hierarchical structures,
as a realistic case which gives us the opportunity of introducing a modelling style
that can be applied to more sophisticated structures.

The model views a document as a sequence of simple documents. A structure is
imposed on this sequence by grouping contiguous simple documents into aggregates
that are not allowed to partially overlap. Each aggregate determines a structural
element ofd.

Formally, adocumentis a 4-tupled = 〈n, B, w, R〉, where:

(1) n ∈ IN+ is theorder of the document, that is the number of basic components
in d;

(2) B ⊂ (IU ∪ T U) is any finite set of (image or text) layouts, constituting the
basic components of the document;

(3) w: [1, n] → B is the total and surjective function that gives, for eachi ∈ [1,n],
the i th basic component ofd;

(4) R = {ρ1, . . . , ρm} is a set of intervals, in fact subintervals of [1, n], each of
which is used to define, in a way to be seen soon, a structural element ofd; to
this end,R must satisfy the following conditions:
(a) for all 1≤ i ≤ m, ρi ⊆ [1,n];
(b) [1,n] ∈ R, that is, the “whole document” is a distinguished member of the

document structure;
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FIG. 3. A document.

FIG. 4. The representation of documentd.

(c) for all ρi , ρ j ∈ R, eitherρi ⊆ ρ j or ρ j ⊆ ρi or ρi ∩ ρ j = ∅.
This definition permits to model a simple document as a document. In particular,
any image or text layoutl is to be viewed as the document〈1,{l }, w1, R1〉 where
w1(1) = l and R1 = {[1,1]}. The structureof a documentd = 〈n, B, w, R〉 is
defined by the pairSd = 〈R, E〉, whereE is given by:

E = {(ρ1, ρ2) ∈ R2 | ρ2 ⊂ ρ1 and there is noρ3 ∈ R such thatρ2 ⊂ ρ3 ⊂ ρ1}.
As anticipated,Sd is completely determined byd. It can be verified thatSd is a tree
having R as nodes andE as edges. Needless to say, the root ofSd is [1,n]. Note
that in the case of a document consisting of one simple document,E is empty.

As for document form, also for document structure the notion of grounded re-
gion is introduced, to enable the reference to structural elements within queries. A
grounded regionof a documentd = 〈n, B, w, R〉 is defined as a pair〈d, ρ〉 such
thatρ ∈ R4. Theextentof a grounded region〈d, ρ〉 is defined as the set of image
or text layouts to which elements inρ are mapped byw, that is,{w(i ) | i ∈ ρ}.
Finally, we letD be the set of all documents andG that of all grounded regions.

Let us consider a document about the opera Don Giovanni, consisting of two parts:
one part shows, as an image of the opera, the image layouti introduced at the end
of Section 6.1, with an accompanying captiontl1; the other part is just a text layout
reporting a (positive) critical review of the opera. The document is schematically
represented in Figure 3, whereas its symbolic representation according to the just
introduced model is given in tabular form in Figure 4.

The document has five grounded regions〈dI, ρ〉, for eachρ ∈ R, corresponding
to the nodes of the tree shown in Figure 3. The extent of the grounded region
〈dI, [1,2]〉 is the set of layoutstl1

I
, iI}. The E component ofdI ’s structure has four

elements, corresponding to the edges of the tree in Figure 3.

4 So, a grounded region isnoteither a grounded image region or a grounded text region, as the standard
usage of natural language would maybe suggest. The reason for this somehow counterintuitive choice
is to keep the model’s lexicon as small as possible.



A Model of Multimedia Information Retrieval 935

7.2. QUERYING STRUCTUREDDOCUMENTS. In querying structured documents,
the following kinds of operations are typically performed:

—navigation along the structure of documents. SPSs for expressing this kind of
operation will be calledstructuralSPSs;

—access to the basic constituents of a grounded region, that is, the image and text
layouts that are in the extent of that region. SPSs for expressing these accesses
will be termedextensionalSPSs;

—query the image and text layouts. These queries (calledground queries) are to
be expressed by means of the SPSs introduced in Sections 5 and 6.

Structural symbols, in turn, can be categorized asgenericandpositionalsymbols.
The former allow one to denote documents, their grounded regions and the rela-
tionships between these. We have two sets of generic SICs:

—ÄD naming documents, and
—ÄG naming grounded regions.

As customary, the intended meaning of these alphabets is formally captured by
having·I as a total bijective mapping fromÄD toD and fromÄG toG.Furthermore,
we introduce one generic SPS, that is:

—HN (standing for Has Node), relating a document to one of its grounded regions.

The semantics ofHN is given by (for all documentsd and sets of natural numbersρ):

HNI : D × (D × 2IN)→ {0, 1}, such that

HNI(d, 〈d′, ρ〉) =
{

1 if d = d′ andρ ∈ R
0 otherwise. (13)

In conformance with the semantics of the structural symbols defined on layouts,
that ofHN assigns 1 only to the pairs〈document, grounded region〉 such that the
latter is a grounded region of the former.

Positional SPSs, on the other hand, allow one to navigate in the structure of the
document. Among the many primitives that might be envisaged in order to model
tree navigation, we propose the following SPSs:

—Root, the concept denoting roots of document structures;
—Leaf, the concept denoting leaf nodes of document structures;
—HCh (standing for Has Child), a role denoting the link between nodes and their

children nodes;
—HP (Has Parent), a role denoting the link between nodes and their parent node;
—HD (Has Descendent), the transitive closure ofHCh;
—HA (Has Ancestor), the transitive closure ofHP.

We just show the semantics of two positional symbols, leaving that of the others
to the reader. In what follows,d, d′ denote documents,ρ, ρ ′ denote sets of natural
numbers, the structure ofd is Sd=〈R, E〉 and, as customary,E+ indicates the
transitive closure ofE.
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Leaf I : D × 2IN → {0, 1}, such that

LeafI(〈d, ρ〉) =
{

1 if for no ρ ′, 〈ρ, ρ ′〉 ∈ E
0 otherwise, (14)

HDI : (D × 2IN)× (D × 2IN)→ {0, 1}, such that

HDI(〈d, ρ〉, 〈d′, ρ ′〉) =
{

1 if d = d′ and〈ρ, ρ ′〉 ∈ E+
0 otherwise. (15)

As for extensional SPSs, we include two of them in the language, relating a grounded
region of a document to the image and text layouts it contains. These SPSs are:
HasImage andHasText. The semantics of the former is:

HasImageI : (D × 2IN)× IU → {0, 1}, such that

HasImageI(〈d, ρ〉, l ) =
{

1 if ρ ∈ R and
w(k) = l for somek ∈ ρ

0 otherwise,
(16)

while that of the latter is perfectly analogous. A basic document interpretationI
will be called adocument interpretationif it satisfies the semantic conditions for
the SPSs (13) to (16) (as well as the conditions not explicitly stated for brevity).

8. A Unified Query Language

We are now in the position to define thequery languageof the model. This language
satisfies the two basic requirements necessary for complying with the philosophy
of this model, namely:

(1) It is the language of a description logic, so that matching queries against doc-
ument bases can be done in the logical framework defined in Section 4.

(2) Its syntax is a restriction of the general DL syntax that reflects the intended
meaning of the SPSs for addressing form, content and structure previously
introduced. More specifically, the syntax rules to be introduced shortly, rule
out those concepts that would be meaningless according to the conditions on
interpretations (2) to (16). As an example, let us consider the concept

Root u ∃HAIR.Leaf

denoting the basic objects that are, at the same time, root nodes of document
structures and images, the latter having an atomic region that is a leaf node.
No such basic object may exist, a fact that is captured by the semantics of
the involved SPSs. Even though, from a strictly logical viewpoint, concepts
like the above would cause no problems, when used as queries (since they are
satisfied by no interpretation, no documents would be returned by the system
in response to them), licensing them would go against intuition and ultimately
be misleading.

Before dwelling into the technical details, we would like to emphasize that the
language that is about to be introduced is a rigorous notation for expressing in-
formation needs as queries. How queries will be specified by users is an entirely
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FIG. 5. Grammar rules for document queries.

different matter, which will be addressed in Section 12 and should not be confused
with the question of what queries are.

The language will be presented in the remainder of this section, following a top-
down style, starting from concepts addressing documents and their structure, and
proceeding down to the queries addressing the basic components of documents,
that is, text and image layouts.

8.1. DOCUMENTQUERIES. The grammar given in Figure 5 defines thedocument
query language.The categories capturing text and image queries will be defined
later and are underlined for the reader’s convenience.

A document query is a combination, via the conjunction and disjunction con-
structors, of concepts of the form∃HN.C whereC is anode-concept. Technically,
the above concept reads as “the individual constants related through the roleHN to
an individual constant that is aC.” Given the semantics ofHN, this becomes “the
documents having a node that is aC.” From a pragmatic viewpoint, the prefix∃HN
introduces a concept that specifies the characteristics to be satisfied by a structural
component (i.e., a node) of the sought documents. By combining the above con-
cept, conditions on several, possibly different, nodes of the same document may
be stated. For instance, (∃HN.C1) t (∃HN.C2) expresses two conditions (C1 and
C2) on two nodes of a document which may stand in any structural relationship, or
even be the same node. On the contrary, if the nodes to be addressed are known to
be structurally related in a specific way, then the whole query is to be stated as a
node-concept, as it will be illustrated below (see concept (17)).

The reason why the negation constructor is not allowed here, as well as in other
parts of the query language, is twofold. From one hand, this operator would make
query evaluation an expensive operation. For instance, the simple query¬∃HN.C
when evaluated for a documentd, would imply to check, for each structural com-
ponentn of d, that n is a¬C. This is a consequence of the fact that, according
to the semantics of fuzzyALC, the above query is equivalent to∀HN.¬C Ulti-
mately, all components of all documents would have to be considered in answering
the query. On the other hand, it is difficult to grasp the intuitive meaning of the
negation applied to a similarity symbol. In other words, if the formal semantics of
fuzzyALC entitles one say that the maximal degree of truth of¬C(a) is .3 when
that ofC(a) is .7, intuition may find meaningless this attribution when applied to
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a complex notion such as similarity. For these reasons, negation is only allowed in
those parts of queries that are concerned with content. In such cases, its intuitive
interpretation poses no problem, at least to those who accept the philosophy of
fuzzy logic, as we do.

A node-conceptmay be comprised of several conditions, combined via theu ort
operators. In its basic form, the syntax of anode-conceptreflects two possibilities:
whether or not the condition has a structural clause.

If no structural clause is present, anode-concepttakes the form of anextent-
concept, which addresses directly the basic constituents of the document without
mentioning any condition on the document structure. Anextent-concept, in turn,
may take one of two forms, depending on the kind of basic component that it
addresses. If the addressed basic component is a text layout, then theHasText role
is used. For instance, the concept∃HN.∃HasText.Ct denotes the documents having
a node with a textual basic component that is aCt . If the basic component is an
image layout, theHasImage roles is used in a perfectly analogous way. Otherwise,
a node-conceptstates structural conditions, which are couched in terms of the
structural symbols introduced in Section 7.2. The simplest structural conditions
arepositional-concepts, which regard whether a node is aRoot or aLeaf. More
complex conditions involvepositional-rolesand recursively introduce othernode-
concepts. For instance, the concept:

∃HN.(Root u ∃HCh.(∃HasImage.Ci ))

denotes the documents whose root has a child with an image that is aCi , whereas:

∃HN.((Leaf u ∃HasText.Ct ) u (∃HA.∃HasImage.Ci )) (17)

denotes the documents having a node satisfying two conditions: (1) it is a leaf
containing a text that is aCt and (2) it has an ancestor with an image that is aCi .

Before closing the structure topic, we would like to stress again that this model
does not purport to be an advanced one in its treatment of structure. On the contrary,
it merely aims at showing what is the role of structure in the general framework
of document modeling, and how structure can be included in the query language.
Having done this, the way is open to the consideration of more sophisticated struc-
tural models, a good example of which is presented in Navarro and Baeza-Yates
[1997].

8.2. IMAGE QUERIES. The syntax of image queries is given in Figure 6. The first
thing to observe is the presence, in the clauses definingimage-, color-andshape-
concepts,of a new DL concept constructor of the form{a}wherea is an individual
constant, which may be alayout-, acolor- or a shape-name,respectively. In the
DL terminology, this constructor is calledsingleton, and represents, as expected, a
concept having only the individual constanta as instance. From a semantics point
of view, an interpretation has to satisfy the following condition: for alld ∈ 1I

{a}I(d) =
{

1 if d = aI

0 otherwise.

Image queries are thus concepts of the DLALCO, which extendsALC with the
singleton constructor. The additional expressive power ofALCO overALC has no
impact on the complexity of the image retrieval problem, as it will be argued later.
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FIG. 6. Grammar rules for image queries.

All names in the query language are defined as individual constants, whose syntax
is left unspecified as unnecessary.

An image query is a combination (throughu andt) of image-concepts, each of
which may have one of four forms, illustrated in the following in the same order as
they appear in Figure 6.

First, animage-conceptmay be a query on some content object, explicitly asserted
to be related to the sought images through anAbout role assertion (termed “situation
anchoring” in Section 6.1). In the query, the object in question is required to be an
instance ofcontent-concept, that is anALCO concept built with the symbols used
for situation descriptions. The grammar rule forcontent-conceptis thus that for
genericALC concepts (given in Figure 1, Section 4), with the addition of the rule
for the singleton operator presented above. For instance, under the obvious lexicon,
the images about an Italian musician are retrieved via the query

∃About.(Musician u ∃Born.Italy).

Second, animage-conceptmay be a concrete visual query, according to the ter-
minology defined in Section 5.2. In this case, a prototype image layoutl is to be
provided with the query; this is done by specifying the singleton with the layout
namel in the scope of the existential quantification on the SPSSI. By so doing, the
similarity with l is captured in the query.

Third, animage-conceptmay be a query on the color of an atomic region, that
is a color abstract visual query, expressed via an existential quantification on the
HC SPS, followed by acolor-concept; the latter is a singleton with the name of the
color, optionally preceded by a color similarity predicate.

Finally, an image-conceptmay be a query on an image region. This kind of
queries come in two forms:

(1) The first form is meant to address the content dimension, and just consists of
a Represents clause. In order to qualify for this kind of queries, an image must
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have an associated content description containing aRepresents role assertion
(object anchoring), relating a region of the image to an individual constant that is
an instance of thecontent-conceptthat follows.

(2) The second form extends the first with an additional condition (region-
concept) on the color or the shape (or both) of the involved region. A shape condition
is expressed via ashape-concept, which is strictly analogous tocolor-concept. The
reason why such conditions are allowed only in conjunction with aRepresents
clause is that, in this way, their evaluation only involves the regions that have been
the subject of an object anchoring. If this restriction is removed, then the evaluation
of this type of queries would require, in the worst case, as many checks as the
possible regions of an image, a number that is exponential in the number of atomic
regions. As a verification of this latter fact, consider again Figure 2, showing the
atomic regions of a simple image. This image has a region connected with region
T1 for each subset of the set{T2, T3, T4, T5}.

As an instance of an image query, let us consider the query asking for the images
showing a cylindric reddish hat. This query can be expressed by the following image
concept:

∃HIR.((∃Represents.Hat) u (∃HC.∃SC.{red}) u (∃HS.{cylinder})).
The above query presents an interesting case of mixed form- and content-based
image retrieval. In particular, theRepresents clause refers to the semantics of
the image, namely to what an object is. An image is retrieved only if it displays
something that has been explicitly asserted to be a hat. TheHC clause refers to
image form, and requires, in the retrieved images, the presence of a patch of color
similar tored. TheHS clause poses a condition on the contour of an atomic image
region. The conjunction of these three clauses constraints the condition that they
each of them expresses to be true of the same region, thus capturing the query spelled
out above. It is important to realize that herered is just a name (possibly given by
the system) to a visual entity, namely a color, specified by the user via a convenient
facility, such as the selection from a color palette. Analogously,cylinder is a system
name for a shape that the user has perhaps drawn on the screen or selected from a
palette of common shapes.

Let us reconsider the example introduced in Section 6. The images about the
opera Don Giovanni are retrieved by the query∃About.{DonGiovanni}. Those
showing the singer Kiri are described by∃HIR.∃Represents.{Kiri}. Turning to
visual queries, the request to retrieve the images similar to a given one, namedthis,
is expressed by∃SI.{this}, and can be combined with any conceptual query, for
example, yielding∃SI.{this} t ∃About.{DonGiovanni}, which would retrieve the
images that are either similar to the given one or are about Don Giovanni. As for
abstract visual queries, the images in which there is a blue region whose contour
has a shape similar to a given curves are retrieved by∃HAIR.(∃HC.{blue} u
∃HS.∃SS.{s}). Finally, the user interested in retrieving the images in which Kiri
plays Zerlina and wears a blue-ish dress, can use the query

∃HIR.∃Represents.({Kiri} u ∃Plays.{Zerlina}) u (∃HC.∃SC.{blue}). (18)

8.3. TEXT QUERIES. The syntax of text queries is given in Figure 7. A text query
is a combination, via the usualu andt constructors, of concepts, each of which may
have one of the following forms (following the order of presentation in Figure 7):
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FIG. 7. Grammar rules for text queries.

(1) It may be a semantic query on the whole text layout, which is required to be
About thecontent-conceptthat follows, or on a portion of it, which is introduced
by the quantification on the mereological SPSHTR and whichRepresents an
instance of thecontent-conceptthat follows.

(2) It may be an exact match query driven bytext-pattern.
(3) It may be a similarity match request, syntactically similar to the analogous

image query category.

As an example of the last category, the layouts that are about (in a traditional
text retrieval sense) “successful representations of Mozart’s operas” are retrieved
by the query:

∃ST.{tl}, (19)

wheretl is a text layout consisting of exactly the above-quoted words.

9. Document Bases and Document Retrieval

The behavior of our query language is specified by formally defining the notion of
a document base and of document retrieval. We model a document base as having
three main components:

(1) a collection of documents, that is, structured aggregates of layouts, which col-
lectively form the “objective” level of the document base;

(2) a collection of content descriptions associated to the layouts of the structured
documents; these descriptions collectively form the “subjective” level of the
document base;

(3) a knowledge base providing definitions of the concepts (in the form of fuzzy DL
axioms—see Section 4) employed in content representations, as well as general
knowledge (in the form of fuzzy DL assertions or axioms—see Section 4) on
the domain of discourse that applies to the whole document base; this latter
component may be thought of as representing the “conceptual context” in which
the document base lives.

More formally, adocument baseis a tripleDB= 〈D, 6C, 6D〉 where

—D is a set of documents (as defined in Section 7), that is,

D = {〈ni , Bi , wi , Ri 〉 | i = 1, . . . , N}.
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We let BDB stand for the set of layouts of the documents inDB, that is,

BDB =
N⋃

i=1

Bi

—6C is the set of content descriptions of the layouts in the document base, that is:

6C =
⋃

lI∈BDB

σ (l)

whereσ (l) is defined (in Section 6.1) as the set of content descriptions associated
to the layoutl .

—6D is a set of fuzzy assertions and axioms giving the document base context.

In response to a queryQ addressed to a document baseDB= 〈D, 6C, 6D〉, each
document is attributed aretrieval status value(RSV), which is the numerical value
according to which the document is ranked against all others. The RSVmof a given
documentdI = 〈n, {l1I, . . . , lnI}, w, R〉 is determined in the following way. Let
0(d) be the Cartesian productσ (l1)×· · ·×σ (ln).Each tupleτ = 〈δ1, . . . , δn〉 ∈ 0(d)
represents a choice of a content description for each layout ind. Letnτ be the value:

nτ = Maxdeg

(
6D ∪

⋃
1≤ j≤n

δ j , Q(d)

)
,

whereMaxdeg is the same as the Maxdeg function discussed in Section 4 except
for the fact that it is calculated with respect to document interpretations only.nτ
can be interpreted as the RSV ofd to Q calculated on the specific choice of content
descriptions represented byτ. The RSV ofd is then simply obtained by taking the
maximum over all such choices, that is,

m= maxτ∈0(d){nτ }. (20)

As an example, let us consider the document baseDB = 〈D, 6C, 6D〉, where: (i)
D contains the documentd of Figure 3, that is,d ∈ D; (ii) 6C includes the image
i content description (12); and (iii)6D includes the following axioms

〈DonGiovanni v EuropeanOpera,1〉
〈WestSideStory v AmericanOpera,1〉
〈EuropeanOpera v Opera u (∃ConductedBy.European), .9〉
〈AmericanOpera v Opera u (∃ConductedBy.European), .8〉

Suppose we are interested in documents containing images about operas conducted
by a European director. To this end, we can use the query:

∃HN.∃HasImage.∃About.(Opera u ∃ConductedBy.European). (21)

The RSV attributed tod in response to this query, is.8, because: (i)d, with
truth-value 1, has the node [1, 3]; (ii) this node, with truth-value 1, has the im-
age i; (iii) image i, with truth-value .8, is abouto; (iv) o is an instance of
the conceptOpera u ∃ConductedBy.European, with truth-value.9. This lat-
ter fact is a consequence of the axioms〈DonGiovanni v EuropeanOpera,1〉,
〈EuropeanOpera v Operau (∃ConductedBy.European), .9〉 and of the as-
sertion〈DonGiovanni(o),1〉. Combining the evidence (i)–(iv) according to the
semantic rule for conjunction, we obtain.8= min{1,1, .8, .9}.
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10. Implementing the Model

As pointed out in the introduction, the model presented so far has a twofold role:
on one hand, it aims at presenting multimedia information retrieval as a unique
discipline, endowed with its own goals and techniques. On the other hand, the
model aims at guiding the design of systems supporting a wider class of multimedia
information retrieval applications than those supported by current models. The latter
role, though, can be legitimately advocated only if the model proves implementable
with state-of-the-art technology.

The rest of the paper elaborates on this aspect. First, in the present section, the
implementation of the retrieval capability of the model is addressed, to the end of
proving that such implementation can indeed be achieved with off-the-shelf tech-
niques borrowed from text and image retrieval, and knowledge representation. The
proof hinges on the query evaluation procedure, which is first informally presented
in Section 10.1, then fully specified in Section 10.2. Finally, in keeping with the
formal style adopted all along the paper, the soundness and completeness of the
procedure are stated in Section 10.3 and proved in the Appendix. It is important to
note that the query evaluation procedure is not a mere formal device, but an effective
technique that could (in fact, should) be adopted in concrete implementations of
the model, as we have done in our prototype (see below).

Once an implementation strategy is laid down, we are able to present, in Sec-
tion 11, a technique for performing relevance feedback, a crucial aspect of form-
based retrieval.

Finally, Section 12 presents the prototypical implementation of a substantial part
of the model, namely that dealing with form- and content-based image retrieval. The
aim of this implementation is not to demonstrate the feasibility of the model: for
this purpose, the query evaluation procedure is enough. The aim of this implemen-
tation is, first, to show an effective realization of the query evaluation procedure,
and, second, to make concrete the benefits of our work by presenting a retrieval
engine endowed with a semantic-content based capability that largely surpasses
the functionalities of analogous similar systems. For this latter goal, we have chosen
the medium most difficult to handle (i.e., images), leaving aside text and structure
that are easier because of their more consolidated status. Our prototypical system
has also a practical value, as it can be used for the rapid prototyping of specifications
built according to the model.

10.1. THE QUERY EVALUATION PROCEDURE: AN EXAMPLE. The query evalu-
ation procedure is schematically given in Figure 8 (boxes standing for data, ovals
for functions). For greater clarity, this procedure will be illustrated through an ex-
ample. The query employed to this end is “documents with a critical review on a
successful representation of a Mozart’s opera with an Italian conductor, and with
a picture showing Kiri in a blue-ish dress, playing Zerlina.” This query is in fact
the composition of queries that have been introduced in previous sections, namely
queries (19), (18), and (21), which are here recollected:

(A) ∃ST.{tl}
(B) ∃HIR.∃Represents.({Kiri} u ∃Plays.{Zerlina}) u (∃HC.∃SC.{blue})
(C) ∃About.(Opera u ∃ConductedBy.European)
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FIG. 8. The query evaluation procedure.

Using the abbreviations above, the sample query is expressed as:

∃HN.(∃HasText.A u ∃HasImage.(B u C)). (22)

Following Figure 8, this query is input, along with each document to be evaluated
doc, to the “Query Assertion Builder,” which produces the query assertionQ(doc).
For our example, we consider, asdoc, the documentd introduced in Figures 3 and 4,
so that the query assertion turns out to be:

∃HN.(∃HasText.A u ∃HasImage.(B u C))(d). (23)

This assertion is input to “Query Decomposition & Evaluation,” which is realized
by the function8. This is a central step of the procedure, which we now introduce
in an informal way, leaving the precise definition of8, as well as the proof of its
soundness and completeness, for the forthcoming sections. In essence,8 “scans”
the query assertion with the aim of generating knowledge, in the form of fuzzy
assertions, to be passed to the DL Theorem Prover (TP) for evaluating the query
assertion. The assertions generated by8 concern the SPSs of the model and can
therefore be considered as “domain knowledge,” where the domain in question is
MIR and a specific document base. Once these assertions are provided to the DL
TP, the latter can proceed to calculate the RSV of each considered documentjust
performing standard fuzzy logical reasoning.
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At each step8 is given an assertion: at step (1), that is the query assertion; at step
n, n≥ 2, that is one of the assertions generated in the previous step.8 analyzes the
outmost part of the given assertion and performs two tasks:

(1) thegenerativetask, in which it generates the fuzzy assertions that are necessary
to the DL TP to reason about the analyzed part, and,

(2) therecursivetask, in which it provides for the continuation of the procedure
by recursively applying itself to the remaining part of the assertion.

Let us now see this practically on the assertion (23). From a decomposition point
of view, this assertion can be analyzed as∃HN.C(d), saying thatd has a node that
is an instance of conceptC.Consequently, in its generative task,8 produces all the
assertions that will inform the DL TP about what ared’s nodes, namely:

〈HN(d, 〈d, [1,3]〉),1〉
〈HN(d, 〈d, [1,2]〉),1〉
〈HN(d, 〈d, [3,3]〉),1〉 (24)
〈HN(d, 〈d, [1,1]〉),1〉
〈HN(d, 〈d, [2,2]〉),1〉.

Needless to say, in order to calculate the above assertions8 must have access to a
database storing document structure; this aspect concernshow8 works, and will
be discussed in Section 12; for this section, we confine ourselves towhat8 does.
In its recursive task,8 applies itself to the following assertions:

∃HasText.A u ∃HasImage.(B u C)(〈d, [1,3]〉)
∃HasText.A u ∃HasImage.(B u C)(〈d, [1,2]〉)
∃HasText.A u ∃HasImage.(B u C)(〈d, [3,3]〉)
∃HasText.A u ∃HasImage.(B u C)(〈d, [1,1]〉)
∃HasText.A u ∃HasImage.(B u C)(〈d, [2,2]〉).

The combined affect of the generative and recursive tasks seen so far, can be
compactly described by letting8(∃HN.(∃HasText.Au ∃HasImage.(B uC))(d))
be defined as follows:

{〈HN(d, 〈d, [1,3]〉),1〉, . . . ,〈HN(d, 〈d, [2,2]〉),1〉}
∪ 8(∃HasText.A u ∃HasImage.(B u C)(〈d, [1,3]〉))
∪ · · · ∪
8(∃HasText.A u ∃HasImage.(B u C)(〈d, [2,2]〉)).

Intuitively, only the applications involving intervals [1,3] and [1,2] will generate
nonzero fuzzy assertions, as they address the only nodes ofd having both a text
and an image, that is, the root node and its left descendant. So, in the following,
we consider only the decomposition of these two assertions. Since each of them is
a conjunction, not surprisingly,8 will handle it by generating no assertions (as no
special knowledge is required by the TP to handle conjunction), while recursively
applying itself to the single conjuncts:

8(∃HasText.A u ∃HasImage.(B u C))(〈d, [1,3]〉)
= 8(∃HasText.A(〈d, [1,3]〉)) (25)
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∪ 8(∃HasImage.(B u C))(〈d, [1,3]〉)) (26)

and the same for interval [1,2]. Let us consider the first application (25). Fully
stated, it is as follows:

8(∃HasText.∃ST.{tl}(〈d, [1,3]〉)). (27)

Following the same approach as above,8 will let the DL TP know what are the
text layouts in the grounded region〈d, [1,3]〉 by generating the assertions:

〈HasText(〈d, [1,3]〉, tl1), 1〉 〈HasText(〈d, [1,3]〉, tl2), 1〉,
while proceeding on to compute8(∃ST.{tl}(tl1)) and8(∃ST.{tl}(tl2)). In order to
handle the text similarity addressed by these two last assertions,8 “calls” each
time the functionσt , in order to obtain the degree of similarity between the query
layout tl and each layouttli . The result of this call, denoted as usualσt (tl, tli ), is
then embodied into an apposite assertion for the DL TP. Therefore, the results of
the last two applications of8 are:

8(∃ST.{tl}(tl1)) = {〈ST(tl, tl1), σt (tl, tl1)〉}
8(∃ST.{tl}(tl2)) = {〈ST(tl, tl2), σt (tl, tl2)〉}.

This concludes application (27). In working out the analogous assertion on in-
terval [1,2], that is,∃HasText.∃ST.{tl}(〈d, [1,2]〉), 8 regenerates the assertions
concerning the text layouttl1, which is the only text layout contained in the re-
gion 〈d, [1,2]〉, giving no contribution to the overall process. Let us now consider
application (26). Following the same behavior seen so far on structure:

8(∃HasImage.(B u C))(〈d, [1,3]〉))
= {〈HasImage(〈d, [1,3]〉, i),1〉} ∪8((B u C)(i)). (28)

The application of8 to the analogous assertion on region〈d, [1,2]〉, is not going
to produce anything new, since both these regions have only imagei in their extent.
So we do not consider such application. Turning back to (28):

8((B u C)(i)) = 8(B(i)) ∪8(C(i))
= 8(∃HIR.∃Represents.({Kiri} u ∃Plays.{Zerlina})
u(∃HC.∃SC.{blue})(i))
∪8(∃About.(Opera u ∃ConductedBy.European)(i)). (29)

The last application is easily handled: since it is a semantic assertion,8 has no
job to do on it: the DL TP, using the axioms in6D as well as the content descriptions
associated toi, is perfectly able to evaluate it. Therefore:

8(∃About.(Opera u ∃ConductedBy.European)(i)) = ∅.
On the contrary, the processing of assertion (29) is much more elaborated. In han-
dling theHIR role,8must identify the grounded image regions ofi that have been
annotated with aRepresents assertion. Looking at the content description ofi (12
in Section (6.1)), only region〈i, r〉 is the case, thus, the assertion:

〈HIR(i, 〈i, r〉), 1〉 (30)

is generated, along with application:

8(∃Represents.({Kiri} u ∃Plays.{Zerlina}) u (∃HC.∃SC.{blue})(〈i, r〉)),
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which turns out to be:

8(∃Represents.({Kiri} u ∃Plays.{Zerlina})) ∪8(∃HC.∃SC.{blue})(〈i, r〉)).
The first term of this last union is a semantic application, and thus will produce the
empty set. What is left is then the second term, whose argument∃HC.∃SC.{blue}(〈i, r〉)
is logically equivalent to a disjunction, ranging on all colorsl , of the assertion:

HC(〈i, r〉,l ) u SC(l , blue). (31)

According to the rules of fuzzy semantics, the truth-value of the last assertion is
given by the minimum of its conjuncts’ truth-values, which are in turn established
by the semantic clauses for the SPSsHC and SC. Considering that each such
assertion is embedded in a global disjunction, we have the following:

8(∃HC.∃SC.{blue})(〈i, r〉)) = {〈∃HC.∃SC.{blue})(〈i, r〉), n〉}, (32)

where

n = maxl∈C{min{ fe(rI)(l ), σc(l , blueI)}}. (33)

And this concludes the decomposition and evaluation of the query assertion. For
convenience, all the assertions that are generated in this stage are classified (as
indicated in Figure 8) into the following categories:

—structural assertions, that is, the assertions involving structural SPSs;
—image global similarity assertions, that is,SI assertions;
—image local similarity assertions, that is, image structuralHAIR, HIR assertions,

andHC, HS assertions;
—text global similarity assertions, that is,ST assertions; and
—text local similarity assertions, that is, text structuralHTR assertions, andε

assertions.

As shown in Figure 8, all these assertions are input to the fuzzyALCO theorem
prover TP for the computation ofm, along with the context knowledge base6C and
all combinations ofd’s content descriptions. The graphical illustration of this latter
input in Figure 8 has been simplified by omitting the feeding loop. Clearly, if at most
one content description is provided for each layout ind, then0(d) is a singleton and
its consideration adds no complexity to the query evaluation process. Otherwise,
the size of0(d) is exponential in the number ofd’s layouts and its consideration
heavily impacts on the complexity of the query evaluation procedure. This is the
price to be paid for considering multiple content descriptions.

For space reasons, we cannot discuss the TP here. The interested reader is referred
to the papers quoted in Section 3 for detailed descriptions of the various aspects
involved in the design and evaluation of the TP. From a computational complexity
viewpoint, the implication problem for fuzzyALCO is proved to be PSPACE-
complete. This result, albeit negative, is expected to have no significant impact on
the tool being described for two basic reasons. First, it is a worst-case result; things
do not necessarily go as bad in practical cases. Second, the size of the prototypical
systems for which our tool is designed is expected to be limited. Experimental
results with an implementation of the TP show that the system is reactive with KBs
of the order of a few thousands assertions.
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FIG. 9. The decomposition function for structural queries.

10.2. QUERY DECOMPOSITION ANDEVALUATION . We now proceed to the for-
mal specification of the function8. For greater clarity, being a function defined
on the query language,8 will be introduced by following the query language
syntactical structure.

10.2.1. Decomposition and Evaluation of Document Queries.In the most gen-
eral case, a query begins by addressing document structure, so the definition of8
begins, in Figure 9, from document queries, whose syntax is given in Figure 5. In
illustrating8, we follow the order established by Figure 9 and the forthcoming
figures that make up8’s definition.

Composite queries, consisting of conjunctions and disjunctions of document
queries, are separately treated by8, each in fact being a query of its own. This way
of handling conjunctions and disjunctions will be applied whenever correctness is
preserved.

Upon operating on the simplest document queries, that is, assertions of the form
(∃HN.C)(d), 8 generates an assertion〈HN(d,n),1〉, for each grounded regionn
of d, and recursively applies itself to the assertionC(n). This is one of the few
basic principles that inspire the definition of8, and we believe that the informal
explanation given in the previous section is sufficient to make it clear. The treat-
ment of assertions of the form (∃HasImage.C)(n) is analogous. For each image
layouti j of n, the assertion〈HasImage(n, i j ), 1〉 is generated while continuing the
evaluation onC(i j ). The same,mutatis mutandis, is done for assertions involving
the other positional roles or concepts.

10.2.2. Decomposition and Evaluation of Image Subqueries.The decomposi-
tion and evaluation of image queries is presented in Figure 10. Concrete visual
queries, having the form (∃SI.{qi})(i) are evaluated by generating the fuzzy asser-
tion stating the similarity between the given image layouti and the query layout
qi, with degree of truth equal to the degree of similarity between these layouts, as
established by the global similarity functionσi . Note that, in case the latter value
is zero, no assertion is generated so as not to block the inference on the rest of the
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FIG. 10. The decomposition function for image queries.

query. The same behavior is adopted whenever a similarity function is involved and
is guided by the fulfillment of the query decomposition principle.

Queries on situation anchoring, formulated in terms of theAbout SPS, are, as
already remarked in the previous section, just ignored by8, as the knowledge for
their evaluation is already part of the document base, namely it is contained in the
content descriptions collected in6C and in the context knowledge base6D. The
same applies to queries on object anchoring, formulated in terms of theRepresents
SPS. These queries may stand alone (i.e., be of the form (∃Represents.C)(r)) or
be conjoined to aregion concept(i.e., ((∃Represents.C) u D)(r)); in both cases,
the content subquery gives no contribution to8(C(d)).

Abstract visual queries come in two sorts, depending on the kind of image region
addressed. The first and simplest sort address exclusively atomic regions. It consists
of color queries and aim at retrieving images having a patch of a specified color.
These queries have the form (∃HAIR.∃HC.{c})(i), wherec is the name of the color
that an atomic region of the image layout namedi must have. If this is indeed the case,
8 evaluates the query by generating the fuzzy assertion made by attaching to the
query assertion with degree of truth 1. If not, the empty set is generated. Optionally,
a similarity condition on the specified color may be stated, yielding queries of the
form (∃HAIR.∃HC.∃SC.{c})(i). The specification of the color similarity condition
radically changes the query evaluation, which yields, as degree of truth, the degree
of similarity between the given color and the color of the atomic regions ofi that
comes closest to it. Ifi has an atomic region of colorc, then the degree of truth is 1, at
least as long asσc(cI, cI) = 1,which would seem a quite reasonable assumption on
similarity functions, even though it has not been so stated for generality; otherwise,
the evaluation produces the “best match” amongi’s colors andc. As a desirable
consequence, the latter type of color queries generalizes the former.

The second sort of abstract visual queries address both atomic and nonatomic
regions and takes the general form (∃HIR.C)(i). As for the other mereological
symbols,8 treats these queries by generating an assertion of the form〈HIR(i, r), 1〉
for each regionr of i that is the subject of an object anchoring assertion, while
recursively applying itself to the assertionC(r). The reason for this is that, for
the computational reasons that have been illustrated in Section 8.2,C is bound to
include aRepresents clause, which, of course, restricts the candidate regions
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FIG. 11. The decomposition function for text queries.

to all and only those referenced by object anchoring. As discussed above,C
may optionally contain aregion concept, which may be a color query, a shape
query or a conjunction of the two. The last case is handled, as customary, by sepa-
rately evaluating the conjuncts, and is not reported in Figure 10 for brevity. Let us
quickly review the first two cases; they may assume the following forms:

—(∃HC.{c})(r). This case is evaluated by generating the corresponding fuzzy as-
sertion, having as degree of truth the percentage of colorc in the regionr.

—(∃HC.∃SC.{c})(r). This case has been already discussed in the previous section;
it is easy to verify that this is a generalization over the previous case.

—(∃HS.{s})(r). If the shape ofr equalss, the evaluation of this query yields the
corresponding assertion with degree 1; otherwise, no assertion is generated.

—(∃HS.∃SS.{s})(r). Same as before, except that in this case the similarity between
r’s shape ands is assigned as degree of truth to the corresponding assertion.

The decomposition and evaluation of text queries (described in Figure 11) is
performed in an analogous way, and is not further discussed.

10.3. FOUNDATIONS. Last but not least, we provide formal foundation to what
has been so far justified on a purely intuitive basis. The intuitive justification for
8, given in Section 10.1, is that8 generates all the knowledge needed to reduce
document retrieval to standard fuzzy logical reasoning. Here, the word “standard”
means “treating the SPSs (respectively, SICs) as standard DL roles (individuals),”
or to put it another way, “ignoring the special semantics of the special symbols of
the query language.” In technical terms, this amounts to saying that the assertions
generated by8 permit it to perform the computation of the Retrieval Status Value
on standard interpretations rather than on document interpretations. Formally, this
is stated as follows:

THEOREM 10.1. For all document bases, the RSV of the documentd to the query
Q is given by the maximal degree of truth of Q(d) with respect to the knowledge
base consisting of: the decomposition of query Q, 8(Q(d)), the context knowledge
base6D and the set ofd’s content descriptions. That is:

Maxdeg

(
6D ∪

⋃
1≤ j≤n

δ j , Q(d)

)
=Maxdeg

(
6D ∪8(Q(d)) ∪

⋃
1≤ j≤n

δ j , Q(d)

)
.

This theorem, whose proof is given in the Appendix, captures both soundness
and completeness of the query evaluation procedure (QEP). From the soundness
point of view, it says that the RSV computed by the QEP is indeed correct. From
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the completeness point of view, it says that, ifm is the RSV of a documentd with
respect to queryQ, then the QEP computes the RSV precisely.

11. Relevance Feedback

Traditional (i.e., text) information retrieval systems are interactive. A most interest-
ing aspect of this interactivity concerns the possibility for the user to give the system
indications about the relevance (or irrelevance) of certain documents, and have the
system take into account these indications to improve retrieval performance. This
is the basis ofrelevance feedback(RF).

Techniques for performing RF in text retrieval date back to the SMART sys-
tem [Rocchio 1971], but this is still an active research field, as witnessed by more
recent work [Dunlop 1997; Lundquist et al. 1997; Wood et al. 1998]. RF has at-
tracted also the interest of researchers in image retrieval. However, this interest
dates to the very recent past, hence the results obtained so far are less numerous
and consolidated [Bouet and Djeraba 1998; Ciocca and Schettini 1999; Rui et al.
1998; Santini et al. 1999; Wood et al. 1998].

In the following, we enrich the model presented so far with a RF capability
that applies to global similarity retrieval, either on text or image layouts. We first
present, in Section 11.1, our approach to the problem in general terms, discussing
how a feedback mechanism can be embedded in the model. Then, we move on to
illustrate, in Sections 11.2 and 11.3, specific RF techniques for each of the two
consideredmedia.These techniques, analogously to all the other specific text or
image techniques used by the model, are not new; rather, they are borrowed from
the corresponding field and imported into the model in order to concretely show
how integration amongst the various fields involved in MIR can be achieved. In this
sense, the main contribution of this section is Section 11.1, which illustrates how
RF works in our model independently of any medium-dependen technique.

11.1. THE APPROACH. RF typically pertains to the form dimension of MIR, as
it addresses the imprecision inherent in the usage of a layout (whether text or image)
as a query. The application of RF to semantics-based retrieval is not appropriate,
since this kind of retrieval hinges on logical reasoning, which is quite at odds with
the “best match” inference on which form-based retrieval relies. This does not mean
that imprecision is not present in semantic retrieval, but only that it is to be handled
at the logical level, by appropriately defining the logical implication relation of the
model. We have carried out work in this sense, and refer the interested reader to
Meghini et al. [1998]. For the same reason, we do not consider RF on the structure
dimension of retrieval, which is in fact a kind of exact retrieval, hence outside the
scope of techniques such as RF.

Whether text or images are considered, RF consists of a few, basic steps, which
are here outlined:

(1) The user submits a query to the system;
(2) The system returns the topk documents,D1, . . . , Dk, ordered according their

RSVs. If the user is satisfied, then the retrieval session is over. Otherwise
(3) On the topk documents the user performs a relevance assessment, by indicating

for each document whether it is relevant or irrelevant, and possibly to what
extent. The user may also express no judgment on a document;

(4) The system takes into account the user judgments by changing its internal status;
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FIG. 12. Thenth relevance feedback iteration (n≥ 1).

(5) Step (2) is repeated in order to determine the topk documents according to
the new system status.

The difference between text and images emerges in the way the system status is mod-
ified. For the moment, however, we leave this aside so as to focus on a general RF
procedure for our model. Global, form-based retrieval is captured in the query lan-
guage via concrete visual queries or text similarity queries, respectively, given by:

∃SI.{qi} and ∃ST.{qt}.
In the query evaluation procedure, these queries generate, through the function8
detailed in the last section, global similarity assertions, that is, assertions of the form:

—〈SI(i, qi), σi (iI, qiI)〉, whereqi is the query image, andi is an image of the
document being evaluated that the decomposition of the query assertion has
identified as a candidate image; or

—〈ST(t, qt), σt (tI, qtI)〉, whereqt andt are analogous toqi andi.

It follows then that, in the context of our model, relevance judgments impact on
global similarity assertions, which, as argued, are the only assertions that reflect
the kinds of queries suitable to RF.

Based on this consideration, Figure 12 shows the basic functioning of a relevance
feedback mechanism for the model presented in the previous parts of this paper,
relatively to a documentdoc. This figure outlines thenth RF pass, and follows the
same conventions as Figure 8, to which it directly relates.
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RF begins with the user performing an assessment of relevance on a ranked list
of documents (of course, this assessment is performed only once for each pass, and
not repeated for each documentdoc). In the first RF pass, that is,n= 1, the ranked
list considered by the user is the one produced by the initial pass; forn> 1, the
ranked list on which relevance is assessed is the result of the previous RF pass.

As Figure 12 shows, the assessment of relevance produces two different judgment
sets, those on text and those on images. In case the retrieved documents are simple,
that is, texts or images, then, clearly, one of these two sets is empty. But our model
permits the retrieval of structured documents incorporating texts and images; thus,
in the general case, the user is able to express judgment on both images and texts.
The case may arise in which the query contains more than one global similarity
condition. There is no reason to rule out RF in this case: it suffices to assume that
each similarity condition in the query is associated with the relevance judgments
that pertain to it.

In illustrating the rest of the RF pass following Figure 12, we only refer to one
medium,say images; it is understood that what we say applies to text as well. The
central task of an RF pass is carried out by the Image RF Module. This module takes
as input: (a) the relevance judgments on images, and (b) the current, (i.e.,nth)doc’s
image global similarity assertions〈SI(i, qi), σ (n)

i (iI, qiI)〉 (for n= 1, these latter are
the image global similarity assertions deriving from8(Q(doc)); otherwise, they
result from the previous RF pass). As output, the Image RF Module produces the
(n+ 1)th doc’s image global similarity assertions〈SI(i, qi), σ (n+1)

i (iI, qiI)〉. Each
RF pass leaves therefore unchanged the logical part of each similarity assertion,
that is,SI(i, qi), which guides the DL TP to resolve the query assertion, while the
truth-value, that is,σ (n)

i (iI, qiI), is updated in order to reflect the user’s relevance
judgments. Sections 11.2 and 11.3 will present methods to compute the new truth-
values for text and images, respectively.

After computing the new global similarity assertions, the procedure is in the
same conditions as the query evaluation procedure after the query decomposition
and evaluation stage. Hence, the newly calculated assertions are input to the DL
TP, along with structural and local similarity assertions, which are untouched by
RF. Clearly, it is possible that RF be centered around some local image similarity
criterion, such as shape similarity; in this case, the RF pass will produce, through
an appropriate module, new local (shape) similarity assertions.

As the last step, the DL TP re-evaluates the query to produce the (n + 1)th
document ranking.

11.2. RELEVANCE FEEDBACK FOR TEXTS. The aim of this section is to come
up with a suitable value forσ (n+1)

t (tI, qtI), to be computed by the Text RF Module
during thenth RF pass.

Typically, in text RF relevance judgments are ternary, that is, for each of the top
k documents, a user may:

(1) indicate relevance. In this case, the document ends up into a setRTn of docu-
ments judged relevant at thenth RF pass;

(2) indicate irrelevance. In this case, the document ends up into a setN Tn of
documents judged not relevant at thenth RF pass;

(3) give no indication. In this case, the document is ignored by RF.
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These judgments are taken into account by the system by reweighting the query
terms based on the user relevance judgment. We must then specify how the weights
of the query layout index are recomputed on the basis of the setsRTn andNTn.
The three best options that exist on this aspect have been shown to offer similar
performance improvements: among them, we pick Rocchio’s, [1971] formula.

Consequently, the functionσt that computes the degree of similarity between
two text layouts as a result of thenth RF pass, where the 0th RF pass is considered
to be the initial pass, can be stated as follows:

σ
(n+1)
t (tI, qtI) = cos

(EtI, Eqt
I
(n+1)

)
.

The dynamic component ofσt is the query layout, whose index, as said above,
is recomputed at each RF pass on the basis of the user judgments. Initially,
for the initial pass, the query layout index is determined via one of the many
indexing methods for text, such as thetf − idf method mentioned earlier, that is,
Eqt
I
(1) = Eqt

I
. The query layout index computed during the (n+1)th RF pass (n ≥ 1),

according to the Rocchio formula, is given by:

Eqt
I
(n+1) = α · Eqt

I
(n) + β ·

1

|RTn| ·
∑

tl∈RTn

EtlI − γ · 1

|N Tn| ·
∑

tl∈N Tn

EtlI (34)

for all terms i, 1 ≤ i ≤ m, whereα, β andγ are suitable constants such that
α + β − γ ≤ 1. In words, (34) says that thei th term weight of the (n+ 1)th query
index is a linear combination of thei th term weight of the previous query index, the
averagei th term weight of the layouts judged relevant, and the averagei th weight
of the layouts judged irrelevant. This very intuitive reweighting scheme directly
stems from the best query vector that can be used for retrieval in the ideal situation
in which all relevant documents are known. Typically,α is set to 1, whileβ is
chosen greater thanγ as the information contained in judged relevant documents
is usually more important than that given by documents judged not relevant.

11.3. RELEVANCE FEEDBACK FORIMAGES. RF techniques for image retrieval
differ substantially from those for text due to the fact that both image indexes
and image similarity functions are much more elaborate than the text ones. While
decades of study and experimentation have established term weights-based repre-
sentations and the cosine function as very reasonable, if not optimal, choices for
text similarity, analogously solid choices for image similarity are still to be found.
In fact, both the intuitive fact that images have a much richer perceptual content
than text as well as the experimental evidence gathered so far seem to indicate that
a representation of images that is, at the same time, as simple and as effective for
retrieval as that of text is unlikely to exist.

For these reasons, image indexes, in the most general case, are collections of
features (e.g., color, texture, shape); each feature possibly being itself multiply
represented (e.g., histogram and moments for color); each representation being a
multidimensional object, such as a vector, of its own. As a consequence, image sim-
ilarity functions are typically linear combinations of distance measures relative to
the single features. Under these circumstances, RF can be used to calculate what
emphasis should be given to each feature, to each representation of the same fea-
ture, and to each component with each feature representation [Rui et al. 1998].
Other usages of the user judgments are possible, such as for altering the query
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index [Ciocca and Schettini 1999]; however, given the composite nature of such
indexes, emphasizing and deemphasizing their components according to the user
preferences would seem more appropriate than numerically manipulating them.

In order to illustrate RF on images concretely, in the rest of this section we intro-
duce the image similarity function used by the prototype ARIANNA (fully described
in Section 12), and show how the RF technique presented in Rui et al. [1998] can be
applied to this function. Although the function only considers one feature (color),
singularly represented via moments, what follows will suffice to demonstrate how
an image RF technique can be integrated in our model.

As for text, the functionσi for computing global image similarity is the same,
whether the calculation is performed in the initial pass or in the course of a RF
pass, the former being considered, as usual, the 0th RF pass. Then, the similarity
between two image layoutsi andi ′ resulting from thenth RF pass, is given by:

σi (i, i
′)(n+1) =

∑
j∈H SB

w
(n+1)
1 j · ∣∣µi

1 j − µi ′
1 j

∣∣+ w(n+1)
2 j · ∣∣µi

2 j − µi ′
2 j

∣∣
+w(n+1)

3 j · ∣∣µi
3 j − µi ′

3 j

∣∣, (35)

whereµk j is the normalization ofmkj , performed in order to assign equal emphasis
on each color moment, andw(n+1)

i j are the (n+ 1)th weights. The dynamic compo-
nents ofσi (i, i ′)(n+1) are, as announced, its weightsw(n+1)

i j , which are affected by
RF. Initially, for the initial pass, the weights are fixed according to an “objective”
criterion, assigning equal emphasis to each color moment. Hence:

w
(1)
i j =

1

9
for 1≤ i, j ≤ 3.

The resultingσ (1)
i is the truth-value associated with each image global similarity

assertion generated during query evaluation. Let us now see howw
(n+1)
i j is computed,

for n ≥ 1.
In thenth relevance assessment, the user is presented the topk images, on which

relevance judgment is expressed, resulting in the setRIn, analogous to the setRTn
obtained for text.5 The idea is to consider the vectorV (n)

i j containing the values of
the color momentµi j for all the images inRIn. If all such images have similar values
for µi j , thenµi j can be considered as a good indicator of the user’s information
need; instead, if theV (n)

i j values differ significantly,µi j does not look like as a good
indicator. Lettingτ (n)

i j stand for the standard deviation ofV (n)
i j , we then set:

w
(n+1)
i j = 1

τ
(n)
i j ·W

,

whereW is a normalization factor given by the sum of all weightsw(n+1)
i j .

Experimental results reported in Rui et al. [1998] show that this RF technique
offers a significant improvement in retrieval performance. These improvements

5 In Rui et al. [1998], a richer model is presented, able to cope with multi-featured and multi-
representations similarity functions, and allowing 5-ary relevance assessment. Since our similarity
model is much simpler, the extra judgment levels would not be used; hence, we have not considered
them.
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FIG. 13. Image acquisition in ARIANNA.

mostly emerge after one RF pass, while successive passes only produce marginal
benefits.

12. A Prototype Implementation

The prototype system that we have developed, named ARIANNA, implements the
form- and content-based retrieval of images, thus addressing one of the fundamental
traits of the model, namely the integration of several kinds of image retrieval into a
unique framework. ARIANNA consists of two main modules: theindexingmodule
(hereafterIM for short) supporting the acquisition of images and the creation of
the various representations needed for performing retrieval, and thequerymodule
(QM), performing query evaluation.

12.1. THE INDEXING MODULE. Figure 13 illustrates the various operations
comprising image acquisition in what may be considered as the typical sequence
(in this figure, rectangular boxes represent data, while ovals represent modules).

12.1.1. Filtering and Size Reduction.Acquisition begins from anInput Image,
which, in our case, may be any image in GIF or JPEG format. As a first step,
the input image is reduced, if necessary, to the size handled by the system, which
is a parameter currently fixed to 128×128 pixels. The reduction is performed by
means of a resampling technique. After size reduction, the RGB color space is
abandoned in favor of the HSB space, and noise reduction is performed on the
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FIG. 14. A Sample Input Image and the corresponding Basic Image.

image, by applying a color median filter. As a result, theBasic Imageis pro-
duced. Figure 14 presents a sample input image (left) and the corresponding basic
image.

12.1.2. Segmentation.The task of the Segmentation Module is to derive the
Image Layout from the Basic Image. The Image Layout is used solely to support
the user in specifying the image regions that are to be annotated viaRepresents
assertions. This may be surprising to the uninitiated to form-based image retrieval:
given that the model supports retrieval by color patches, it is natural to expect
that this kind of retrieval be implemented on top of the Image Layout. Unfortu-
nately, the number of atomic regions in an image tends to be very large, often it is
of the same order of magnitude as the image size, as it is very well known in the im-
age retrieval context. In fact, image retrieval systems implement retrieval by color
patches by relying on various approximations, aiming at cutting down the size of
the computational space. ARIANNA is no exception.

The derivation of the Image Layout implies two operations: segmentation and
color quantization. These operations are strictly related, and in fact they are both
performed by the Segmentation Module. As already pointed out in Section 5.1, the
segmentation of color images is still an open problem, for which no universally
valid algorithm is currently known. Successful techniques have been developed for
specific image types. However, given the generality of the tool being presented,
we have adopted a flexible solution which produces seven different segmentations,
each provided at several levels of quantization of the color space. The image indexer
can use the image partition of anyone of these segmentations, or of any combination
of them, in order to select the image regions to be annotated.

The channels on which the Basic Image is segmented are: color, saturation, color
and saturation, and brightness. For each channel, three levels of quantizations are
used, namely 3, 7, and 15 levels. In order to obtain these segmentations, textbook
techniques based on region growing have been employed; these techniques, as well
as the others used for image segmentation, are not presented as not new nor central
to the present context. The color, saturation, color and saturation, and brightness
segmentations of the sample image of Figure 14 are shown in Figure 15, in this
order, from the top down (in this figure, colors are used to highlight regions and do
not have direct correspondence with those in the image).

In addition, two segmentations based on edges are generated, each with three
levels of quantization: 2, 7, and 15 colors. Edge detection techniques have been
employed to obtain these segmentations (see Figure 16).

Finally, a segmentation on texture is derived, at two levels of quantization (see
Figure 17). The reason for having these segmentations and not others are, of course,
mostly empirical: we presume that the combination of these segmentations covers
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FIG. 15. Segmentation by color, saturation, color and saturation, and brightness at three levels of
quantization.
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FIG. 16. Segmentations by edge at three levels of quantization.

FIG. 17. Segmentations by texture at two levels of quantization.

a significant range of “difficult” images. Different presumptions would maybe lead
to a different choice, but this is not important for the model.

Figure 18 shows how the screen looks like after the segmentation operation has
been performed on the sample image. A 3×3 grid is used to display the various
images; in particular, the central image is the input image, and is surrounded by the
seven different segmentations introduced above. Only one level is shown for each
segmentation, and the user can move through the different levels by clicking on the
corresponding cell of the grid. The empty cell is reserved to region selection for
annotation, as we will see in a moment.

12.1.3. Naming. Prior to any indexing operation, the derived Image Layout
must be identified as an individual of fuzzyALCO, and this is the objective of
the Naming operation. When this operation is requested, the user is asked to give
a name for the image being acquired; the system validates the proposed name by
checking that it is not used as the name of another image. From that point on, the
name becomes the unique image identifier and two operations are possible:Global
Feature ExtractionandLogical Annotation.

12.1.4. Global Feature Extraction.This operation aims at deriving the repre-
sentation of the image needed to answer user queries. The so-obtained represen-
tation, namedGlobal Image Indexto stress its being relative to the whole image,
is stored into an archive which is part of theImage Database. According to the
definition of the8 function given in Figure 10, the following features are extracted
from the Basic Image namedi:

—The first three moments of the image (true) color histogram for each channel of
the HBS color space. These features are extracted in order to compute the image
similarity functionσi , given in Section 5.2.
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FIG. 18. The screen shown byIM after segmenting the sample image.

—The list of colors occurring in the image; this is used in order to process color
queries on atomic regions, that is, (∃HAIR.∃HC.{c})(i).

—In order to evaluate queries on color similarity (i.e., (∃HAIR.∃HC.∃SC.{c})(i)),
the vectorV is extracted, defined as follows.V has as many positions as the
elements of the color set from which the user draws in specifying similar color
queries on atomic regions (15× 3× 3= 135, in our case); theV position associ-
ated to the colorcI gives the degree of similarity betweencI and the color in the
image that best approximates it, that is,maxT∈π {σc( f (T), cI)}, as required by
8. The distance measure used as color similarity functionσc is the normalization
in the [0,1] interval of: ∑

c

3∑
k=1

∣∣∣miI
kc−mjI

kc

∣∣∣,
wherec ranges on the three channels of the color space.

12.1.5. Logical Annotation. This operation permits the specification of one or
moreContent Descriptionsfor named images. Upon requesting it,IM automatically
creates the layout identification assertion (i.e.,〈Self(i),1〉), and supports the creation
of the other kinds of assertions. In particular:

—Situation anchoring is supported by asking the user for the name of the object to
be linked to the present image via anAbout assertion.

—Object anchoring is supported analogously, with an additional help to the user in
selecting a region image. Region naming is done “on demand,” that is, whenever
a new Representsassertion is to be specified,IM automatically creates a name
for the involvedAnnotation Regionand proposes it to the indexer, who is free to
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FIG. 19. The screen shown by theIM during region selection.

use or change it. Figure 19 shows theIM screen during the selection of a region
to be annotated via aRepresents assertion. The region is constructed in the cell
that is at the right of the cell showing the input image. The user just clicks on
any region of any segmentation and, as a result, the region containing the click
point is displayed. In the lower part of the screen, the identification assertion,
automatically created by the system, is displayed in the format the TP expects.

The specification of situation description assertions closes the annotation of an
image. Each content description is then passed to the TP, which files it in theFuzzy
ALCO Knowledge Base.

12.1.6. Local Feature Extraction Module.In order to support abstract visual
queries, a feature extraction task is performed on annotation regions. The extracted
features make up aLocal Image Index, which is filed in an apposite archive of the
Image Database. The structure of the local image index, relatively to the annotation
regionr, is as follows (see Figure 10):

—The name of the regionr.
—The region color histogram, used to process color queries on the region (i.e.,

(∃HC.{c})(r)). Most of the entries in this histogram will be 0, sincer is the union
of a few atomic regions. Consequently, the histogram is not expected to be large.

—The vectorT, having as many positions as the vectorV above, and used to
evaluate similar color queries on annotation regions; theT position associated
to the colorcI, TcI , gives the maximum, for all colorsl , of the valuesv(cI, l ),
each of which is the minimum between the percentage ofl in the regionr and
the similarity betweenl andcI, that is,TcI = maxl∈C{min{ fe(rI)(l ), σc(l , cI)}},
as given in Figure 10.
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FIG. 20. TheQM displaying the result of a query.

—The shape of the region represented by the 8-contour and by seven invariant
moments [Mehtre et al. 1997]. The former representation is used to process
“precise” shape queries (i.e., (∃HS.{s})(r)) while the latter is used when the
optional similarity condition is given (i.e., (∃HS.∃SS.{s})(r)). In this latter case,
the similarity functionσs is the Euclidean distance between the seven moments,
normalized in the [0,1] interval.

12.2. THEQUERYMODULE. The query moduleQM provides two basic services:
query specification and query evaluation.

12.2.1. Query Specification.Query specification supports the construction of
image queries, according to the syntax given in Figure 6. The specification is per-
formed by the user via the interface shown in Figure 20. During query specification,
the system keeps track of the indications given by the user, so that, at the end of the
specification, it can automatically construct the query.

Following the syntax of the image query language (Figure 6, from the top down),
there are two buttons (labeled “AND” and “OR”) in the bottom left part of the query
panel, which the user must first select in case the query involves conjunctions or
disjunctions image concepts, which are the elementary queries. Image concepts are
specified in the middle left area of the panel, which is divided in three main parts
that strictly reflect the language syntax:

—a part labeled “GLOBAL,” which is to be used for specifying concepts involving
a whole image: these, in turn, can be of two types, corresponding to the two
buttons in this area of the panel:
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—“Content,” that is,∃About.C,whereC is a content concept, that is, a standard
ALCO concept on image contents. The specification of such concept is given
in the top part of the query panel by inputting the concept in textual form.

—“Form,” that is,∃SI.{qi}. The query imageqi is indicated by selection from
the display area (the widest area in the panel), where it can be loaded via the
“Load Image” button (bottom left corner).

—a part labelled “ATOMIC REGION,” which is to be used for specifying a query
of the form∃HAIR.(∃HC.D), whereD is a color concept. In fact, there is only
one button in this area, tagged “COLOR.” If this button is used with the “Use
similar color match” box not checked, then it is understood thatD is just a color
specification, that is,{c}. If, on the other hand, the “COLOR” button is clicked
with the “Use similar color match” box checked, then it is understood thatD is
of the form∃SC.{c}. In either case,c is specified by clicking on the “Pick color”
button and then selecting a color in the color space depicted next to this button.

—a part labeled “ANNOTATED REGION,” which is to be used for specifying
queries on image regions that have been previously annotated with aRepresents
assertions. The three buttons in this area, have the following usage:

—clicking on the “SEMANTIC” button, implies that an image concept of the
form
∃HIR.(∃Represents.C) is being specified, whereC is a content concept that
the user is asked to textually input in the topmost part of the query panel;

—clicking on the “COLOR” button, implies that an image concept of the form
∃HIR.(∃Represents.(C t ∃HC.D) is being specified, whereC is a content
concept andD is a color concept (the specification of these two kinds of
concepts has been illustrated above);

—clicking on the “SHAPE” button, implies that an image concept of the form
∃HIR.(∃Represents.(C t ∃HS.D) is being specified, whereC is a content
concept andD is a shape concept. Concepts of the latter kind are input to the
system in a perfectly analogous way to color concepts, except that the user is
asked to draw the shape.

12.2.2. Query Evaluation.Query evaluation is performed by the Image Query
Evaluation Procedure, which is in fact a restriction of the Query Evaluation Pro-
cedure previously illustrated (see Figure 8) to image queries. More specifically,
given an image queryQ, the Image Query Assertion Builder iteratively produces
a query assertionQ(i) for each acquired imagei. The image assertion is passed
on to the Image Query Decomposition & Evaluation (IQDE for short) function
which implements the evaluation by decomposition process described in detail in
Section 10.

Essentially, in deriving8(Q(i)), which in the present case only includes Image
Assertions, the IQDE accesses the Image Database in order to fetch the Global
Image Index ofi and the Local Image Index of each ofi’s annotation regions, both
built during i’s acquisition. The way these representations are used by the IQDE is
mostly straightforward, once one bears in mind the definition of8 for image queries
and the structure of the representations themselves. For instance, upon evaluating
the query assertion (∃HAIR.∃HC.{c})(i), the IQDE checks whetherc is in the list
of colors occurring ini, which is part of the global index; if the check is positive,
then the assertion〈(∃HAIR.∃HC.{c})(i),1〉 is generated. Analogously, in order to
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evaluate the query (∃HIR.C)(i), the IQDE generates an assertion〈HIR(i, r1), 1〉 for
each annotation regionr , then applies itself to the evaluation ofC(r). As a final
example, (∃HC.∃SC.{c})(r) is evaluated by generating a fuzzy assertion whose
degree of truth is the value found in theTcI vector position, part ofr’s local index.

The last step of the evaluation procedure is the invocation of the TP, to which
the query assertionQ(i) is sent with the purpose of computing itsm value against:
(a) the context knowledge base6D, (b) i’s content descriptions (both these are
part of the FuzzyALCO Knowledge Base maintained by the TP); and (c) the just
computed8(Q(i)).

13. Conclusions

We have presented a view of multimedia information retrieval that reconciles in a
unique, well-founded framework the many functionalities that are found under the
MIR label. The view has been introduced both at the informal and formal level, the
latter taking the shape of a logical model endowed with a syntax and a semantics.
Implementation of the model has been discussed, and a simple prototype of multi-
modal image retrieval has been presented.

At the technical level, the model makes two important contributions. First, at the
single-medium level, it makes full and proper use of semantics and knowledge in
dealing with the retrieval of images and text, while offering, at the same time, the
similarity-based kind of retrieval that is undoubtedly the most significant contri-
bution of the research carried out in these two areas during the last decade. More
importantly, all these forms of retrieval coexist in a well-founded framework, which
combines in a neat way the different techniques, notably digital signal processing
and semantic information processing, required to deal with the various aspects of
the model. Secondly, at the multimedia level, the model addresses the retrieval of
structural aggregates of images and texts, casting the single medium models in
a framework informed by the same few principles. At present, to the best of our
knowledge, no other model offering the same functionalities as the one presented
here exists.

Since the representations handled by the model have a clean semantics, further
extensions to the model are possible. For instance, image retrieval by spatial sim-
ilarity can be added: at the form level, effective spatial similarity algorithms (e.g.,
Gudivada and Raghavan [1995a]) can be embedded in the model via procedural
attachment, while significant spatial relationships can be included in content de-
scriptions by drawing from the many formalisms developed within the qualitative
spatial reasoning research community [Cohn 1996]. Analogously, the model can
be enhanced with the treatment of texture-based similarity image retrieval.

We believe that the presented model can open the way to a novel approach to
the modelling of multimedia information, leading to the development of retrieval
systems able to cope in a formally neat and practically adequate way with documents
including text and images. More research is needed to attack delay-sensitive media,
such as audio and video, but we think that the present model offers a suitable
framework for the development of conceptual models for these media.

Appendix

THEOREM A.1. For all document bases:
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Maxdeg

(
6D ∪

⋃
1≤ j≤n

δ j , Q(d)) = Maxdeg(6D ∪8(C(d)) ∪
⋃

1≤ j≤n

δ j , Q(d)

)
.

(36)

PROOF. Let α be a fuzzy assertion. With6 |=di α, we denote the case where
α is satisfied by all document interpretationsI satisfying6. We show that for all
n ∈ [0,1],

6D∪
⋃

1≤ j≤n

δ j |=di 〈Q(d),n〉 iff 6D∪8(C(d))∪
⋃

1≤ j≤n

δ j |= 〈Q(d), n〉. (37)

From (37), (36) quickly follows (just taken being the maximal degree). Hence, let
us prove (37).

First of all, we show that for allα ∈ 8(C(d)),

6D ∪
⋃

1≤ j≤n

δ j |=di α (38)

follows. The proof consists in a case analysis through the tables in Figures 9, 10
and 11. Due to space limitations, we consider some of these cases only.

Consider Figure 10 and consider a document interpretationI satisfying6D ∪⋃
1≤ j≤n δ j .

(1) Let x be (∃SI.{qi})(i) and letα ∈ 8(x) be 〈SI(i, qi), σi (iI, qiI)〉. By definition
of document interpretations,SII(iI, qiI) = σi (iI, qiI). Therefore,I satisfies
〈SI(i, qi), σi (iI, qiI)〉.

(2) Letx be (∃HIR.C)(i) and letα ∈ 8(x) be〈HIR(i, r j ), 1〉. By definition of8(x),
I satisfiesα.

(3) Let x be (∃HC.∃SC.{c})(r) and letα ∈ 8(x) be 〈x, n〉, where

n = maxc∈C{min{ fe(rI)(c), σc(c, cI)}}
By definition of document interpretations, for allc ∈ C,

HCI(rI, c) = fe(rI)(c)
SCI(c, cI) = σc(c, cI).

Therefore,

(∃HC.∃SC.{c})I(rI)
= maxc∈C{min{HCI(rI, c), (∃SC.{c})I(c)}}
= maxc∈C{min{ fe(rI)(c),maxc′∈C{min{SCI(c, c′), {c}I(c′)}}}}
= maxc∈C{min{ fe(rI)(c),SCI(c, cI)}}
= maxc∈C{min{ fe(rI)(c), σc(c, cI)}}

As a consequence,I satisfiesα.

All the other cases can be proved by similar arguments, thus obtaining the proof
of (38).

An immediate consequence of (38) is that all document interpretations satisfying
6D∪

⋃
1≤ j≤n δ j also satisfy6D∪8(C(d))∪⋃1≤ j≤n δ j , and vice-versa. Therefore,

for all n ∈ [0,1]
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6D ∪
⋃

1≤ j≤n

δ j |=di 〈Q(d),n〉 iff 6D ∪8(C(d)) ∪
⋃

1≤ j≤n

δ j |=di 〈Q(d),n〉.
(39)

Finally, we have to show that for alln ∈ [0,1]

6D ∪8(C(d)) ∪
⋃

1≤ j≤n

δ j |=di 〈Q(d),n〉

iff 6D ∪8(C(d)) ∪
⋃

1≤ j≤n

δ j |= 〈Q(d), n〉, (40)

which combined with (39) proves (37).
(only if ) Considern ∈ [0,1] and assume that6D ∪ 8(C(d)) ∪⋃1≤ j≤n δ j |=
〈Q(d), n〉. LetI be a document interpretation satisfying6D∪8(C(d))∪⋃1≤ j≤n δ j .
SinceI is an interpretation, by hypothesis it follows thatI satisfies〈Q(d),n〉.

(if ) Considern ∈ [0,1] and assume that6D ∪ 8(C(d)) ∪ ⋃1≤ j≤n δ j |=di

〈Q(d),n〉. LetI be an interpretation, not necessarily being a document interpreta-
tion, satisfying6D∪8(C(d))∪⋃1≤ j≤n δ j . We show thatI satisfies〈Q(d),n〉. Con-
sider the restriction ofI to all the symbols appearing in6D, 8(C(d)),

⋃
1≤ j≤n δ j

and Q(d). Since (i ) Q can not query any negative information about SPSs, that
is, the negation connective¬ may involvecontent concepts onlyand there is no
universal quantification on SPSs and (i i ) I satisfies8(Q(d)), it follows that the
interpretationI, with respect to the restricted symbols, is a document interpretation.
From hypothesis,I satisfies〈Q(d),n〉 follows, completing the proof.
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