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Abstract

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn ef-
fective classifiers for a “target” domain when the only available training data belongs to
a different “source” domain. In this paper we present the Distributional Correspondence
Indexing (DCI) method for domain adaptation in sentiment classification. DCI derives
term representations in a vector space common to both domains where each dimension
reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that
behaves similarly across domains. Term correspondence is quantified by means of a distri-
butional correspondence function (DCF). We propose a number of efficient DCFs that are
motivated by the distributional hypothesis, i.e., the hypothesis according to which terms
with similar meaning tend to have similar distributions in text. Experiments show that
DCI obtains better performance than current state-of-the-art techniques for cross-lingual
and cross-domain sentiment classification. DCI also brings about a significantly reduced
computational cost, and requires a smaller amount of human intervention. As a final con-
tribution, we discuss a more challenging formulation of the domain adaptation problem, in
which both the cross-domain and cross-lingual dimensions are tackled simultaneously.

1. Introduction

Automated text classification methods usually rely on a training set of labelled examples
in order to learn a classifier that will predict the classes of unlabelled documents. One
important bottleneck that supervised machine learning methods have to deal with has to
do with their dependence on high-quality annotated examples in order for the model to
be trained. Deploying a model for a domain where these examples are not available thus
entails a substantial human labelling effort.

Transfer learning (TL – see e.g., Pan & Yang, 2010; Pan, Zhong, & Yang, 2012) fo-
cuses on alleviating this problem by leveraging training examples from a different, although
related, source domain (a.k.a. out-domain, or auxiliary domain) for which the amount of
available labelled examples is higher. TL allows making use of these examples in order
to train an effective classifier for the target domain (a.k.a. in-domain), thus allowing to
diminish or completely do away with the cost involved in the manual generation of training
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documents for the target domain. As a consequence, when TL is applied one of the funda-
mental assumptions of “traditional” machine learning, i.e., that the training and the test
data are randomly drawn from the same distribution (the so-called “iid assumption”), no
longer holds.

One applicative scenario of particular interest for TL is sentiment classification, the task
of classifying opinion-laden documents as conveying a positive or a negative sentiment to-
wards a given entity (e.g., a product, a policy, a political candidate). Determining the users’
stance towards such an entity is of the utmost importance for market research, customer re-
lationship management, the social sciences, and political science among others, and several
automated methods have been proposed for this purpose (see e.g., Liu, 2012; Pang & Lee,
2008). However, when sentiment classification needs to deal with a completely new entity, it
is likely that the amount of available, pre-labelled opinion-laden documents is scarce or even
null. In such cases, promptly generating a sentiment classifier might become difficult, due
to the considerable cost and time involved in producing a representative corpus of training
documents.

In sentiment classification, TL finds a natural application in domain adaptation (DA),
i.e., the task of adapting a sentiment classifier to operate on a new domain. For exam-
ple, we might want to use a training set of book reviews written in English to classify
movie reviews written in English, or to classify book reviews written in German. The
former case is typically known as cross-domain adaptation, while the second one is in-
stead known as cross-lingual adaptation (Pan et al., 2012). In this article we will use the
notation LsCs → LtCt to indicate the domain adaptation setup, where Ls and Lt are the
source and target languages, and Cs and Ct are the source and target domains, respectively.
Therefore, the previously discussed examples will be written as EnglishBooks→EnglishDVDs
(or simply Books→DVDs for short), which is an example of cross-domain adaptation, and
EnglishBooks→GermanBooks, which is an example of cross-lingual adaptation.

A common practice in text classification is to represent a dataset as a term-document
matrix M according to the so-called bag-of-words model (BoW), where the value Mij is
a function of the frequency of term fi in document dj and in the dataset as a whole.
Accordingly, rows (resp., columns) can be regarded as vectorial representations of terms
(resp., documents) in a vector space generated by documents (resp., terms). Here, the
expectation is that distances between vectors in this vector space model (VSM) reflect the
semantic distance between terms or between documents. Since each term is a dimension
of the vector space where documents lie, terms are represented by orthogonal dimensions
even if they have similar meanings. For example, the term beautiful is viewed as being as
dissimilar to nice as it is to awful; the base of the vector space is therefore “unaware” of any
semantic nuance, which lies hidden in the joint term distributions. Statistical methods like
Latent Semantic Indexing (LSA – Deerwester, Dumais, Landauer, Furnas, & Harshman,
1990; Landauer & Dumais, 1997) and Latent Dirichlet Allocation (LDA – Blei, Ng, &
Jordan, 2003) attempt to discover these hidden correlations among terms. Discovering
such semantic correspondences becomes crucial when dealing with different domains; for
example, when “adapting” the target domain of book reviews from a source domain of film
reviews, identifying cross-domain semantic correspondences among important terms (e.g.,
book ≈ film, writer ≈ director, length ≈ duration) might be helpful for the task, as it is likely
that the decision boundaries for the model hinge upon these terms.
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With respect to this aspect, a general assumption in domain adaptation is that large
sets of unlabelled documents for both the source and the target domain are available. When
leveraging these unlabelled collections, various techniques can be applied in order to better
explore the term distributions in the two domains, in an attempt to map the similarities
between the terms in the two domains. This idea rests on the belief that the meaning of a
term is somehow determined by its distribution in text and by the terms it co-occurs with,
an idea that is generally referred to as the distributional hypothesis (Harris, 1954).

The discovery of hidden correlations between highly predictive terms, with the goal
of improving document representations, was studied in the Structural Learning paradigm
(Ando & Zhang, 2005). These correlations are discovered by learning predictive structures
of the input data as auxiliary binary problems which consist of predicting term presence
using the surrounding terms in the unlabelled data and then applying LSA to the predic-
tors. This framework was then extended in Structural Correspondence Learning for domain
adaptation (SCL – Blitzer, McDonald, & Pereira, 2006). SCL unifies in a latent space the
correspondences among terms from different domains that derive from the auxiliary predic-
tion problems of pivot terms – highly predictive terms expected to behave in a similar way in
both domains (e.g., intriguing, annoying, or captivating in both film and book reviews). SCL
was first applied to cross-domain adaptation in sentiment classification (Blitzer, Dredze, &
Pereira, 2007). It was later applied to cross-lingual adaptation (Prettenhofer & Stein, 2010)
by enhancing each pivot term with one of its equivalent translations in the target language
(e.g., intriguing ≈ intrigante, annoying ≈ noioso, or captivating ≈ travolgente in EnglishBooks
→ ItalianBooks cross-lingual adaptation). Even though SCL was successfully validated in
the cross-domain and cross-lingual scenarios, it suffers from a considerable computational
cost, deriving from the intermediate optimizations of the auxiliary predictive problems and
from the use of LSA.

The method we present in this paper, which we dub Distributional Correspondence In-
dexing (DCI), is inspired by SCL but follows a different, simpler approach, with a more
direct application of the distributional hypothesis. We propose to mine the distributional
correspondences between each term and a small set of pivot terms. We hypothesize these
correspondences to be approximately invariant across both domains for terms that have
equivalent roles in the two domains. For example, we expect the distributional correspon-
dence between the source term fs = book and pivots p1

s = intriguing, p2
s = annoying,

p3
s = captivating, to be approximately similar to the distributional correspondence between

the target term ft = film and the same pivots p1
t , p2

t , p3
t (Books → DVDs cross-domain

adaptation). Analogously, we expect the distributional correspondence between the source
(English) term fs = book and pivots p1

s = intriguing, p2
s = annoying, p3

s = captivating, to
be approximately similar to the distributional correspondence between the target (Italian)
term ft = libro and the pivot translations p1

t = intrigante, p2
t = irritante and p3

t = accatti-
vante (EnglishBooks → ItalianBooks cross-lingual adaptation). Contrarily to SCL, we define
these distributional correspondences through a distributional correspondence function that
directly mines term vectors from unlabelled collections, and that can be computed efficiently.

The present work is an extension of work by Esuli and Moreo Fernández (2015), where
some preliminary intuitions underlying our method were applied to the cross-lingual case.
The present improved version of DCI compares favourably with respect to the state of
the art in extensive experimental comparisons we have carried out on two popular senti-
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ment classification datasets that cover both cross-domain and cross-lingual adaptation. The
same experiments also show that DCI has a substantially smaller computational cost with
respect to the competition. In the cross-lingual scenario, we show DCI to require a smaller
amount of human intervention in order to create the cross-lingual pivots. As a final contri-
bution, we explore a more general and more complex formulation of the domain adaptation
problem that combines the cross-domain setting with the cross-lingual setting; we present
experimental results where we compare our method with some state-of-the-art methods.

The rest of this article is structured as follows. Section 2 overviews related work in
domain adaptation. Section 3 formally states the problem and presents the notation we are
going to use. Section 4 formally defines the distributional correspondence functions, while
the method as a whole is described in Section 5. Section 6 presents the experiments and
our analysis of the results, while Section 7 concludes.

2. Related Work

This section offers a brief overview of the main related methods in the literature of domain
adaptation for sentiment classification. Traditionally, two different types of approaches to
domain adaptation can be identified. A first group of instance transfer methods aim at
re-weighting the relative importance of each training document, in order to compensate the
disagreements between the source and the target marginal probability distributions (Dai,
Xue, Yang, & Yu, 2007; Gao, Fan, Jiang, & Han, 2008). Such methods can be applied
only to cross-domain (and not cross-lingual) adaptation problems, since they cannot solve
the problem posed by the fact that, in the cross-lingual setting, the term sets of the source
and target domains are disjoint. A second group of feature-representation transfer meth-
ods project documents from both domains into a common vector space in which standard
classification algorithms could be applied. The DCI method we propose belongs to the
feature-representation transfer class, and can thus be applied to both the cross-domain and
the cross-lingual settings. In the following we review the most relevant work on the cross-
domain setting (Section 2.1) and the cross-lingual setting (Section 2.2). The interested
reader can check (Pan & Yang, 2010; Pan et al., 2012) for surveys on transfer learning
methods.

2.1 Cross-Domain Adaptation

The Structural Correspondence Learning method (Blitzer et al., 2006), already discussed in
the introduction, extends the Structural Learning paradigm of Ando and Zhang (2005) by
introducing the concept of “pivot features”. SCL has been applied to cross-domain adapta-
tion (Blitzer et al., 2007) by leveraging the notion of “predictive power” of a pivot. A simi-
lar criterion has been adopted to discern between domain-specific and domain-independent
terms in Spectral Feature Alignment (SFA – Pan, Ni, Sun, Yang, & Chen, 2010), a method
for clustering domain-specific terms from source and target domains into a latent space by
mining their relationships with domain-independent terms.

Aside from sets of unlabelled documents for each domain, some methods take advantage
of external general-purpose knowledge resources in order to bridge the gap between domains.
For example, Wang, Domeniconi, and Hu (2008) extended the co-clustering approach to
propagate labels between the two domains by using Wikipedia to represent documents by
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means of concepts. More recently, the Bridging Information Gap method (Xiang, Cao, Hu,
& Yang, 2010) followed a similar motivation, exploiting Wikipedia or the Open Directory
Project as the general-purpose knowledge base. In sentiment classification, other related
methods use a sentiment lexicon as the external resource. The Joint Sentiment-Topic Model
(JSTM), proposed by He, Lin, and Alani (2011) as an extension of Latent Dirichlet Alloca-
tion, consists of augmenting terms with polarity-bearing topics using a sentiment lexicon as
a repository of prior word sentiment. The JSTM was found to perform better than SCL and
comparably to SFA. Denecke (2009) studied the viability of SentiWordNet, a well-known
sentiment lexicon, as a lexicon for cross-domain sentiment adaptation; the main drawback
of methods such as these is their dependence on the availability of suitable public resources
/ lexicons for the language which the application targets. Li, Pan, Jin, Yang, and Zhu
(2012a) alleviated such constraint by automatically co-extracting a topic lexicon and a sen-
timent lexicon for the target domain, exploiting the information from the source domain.
Similarly, Bollegala, Weir, and Carroll (2011) obtained a sentiment-sensitive thesaurus to
augment term vectors. The main peculiarity of this approach is that the lexicon is created
by mining multiple source domains. Similarly, but following a completely different approach
based on deep learning architectures, the Stacked Denoising Autoencoder (SDAsh) method
(Glorot, Bordes, & Bengio, 2011) exploits the unlabelled information contained in multiple
domains in order to improve the vector representations of terms in an unsupervised fashion.
Glorot et al. found the method (which we use as one of the baselines in our experiments)
to scale well on large multi-domain collections, outperforming SCL and SFA when using 22
different domains of unlabelled documents.

Other branches of research related to cross-domain methods for binary classification
exist that were not tested on sentiment classification but on topic classification, using the
popular datasets Reuters-21578, 20-Newsgroups, and SRAA. Some relevant examples in-
clude Spectral Domain Transfer Learning (Ling, Dai, Xue, Yang, & Yu, 2008), Matrix
Trifactorization (Zhuang, Luo, Xiong, He, Xiong, & Shi, 2011), Topic Correlation Analysis
(Li, Jin, & Long, 2012b), and Topic-Bridged Probabilistic LSA (Xue, Dai, Yang, & Yu,
2008). Aside from the fact that these methods were not explicitly designed to classify ac-
cording to sentiment, these approaches also faced a different problem setting, i.e., the test
set in the target domain is available – though with labels omitted – when modelling the
classification hypothesis, and there is no other collection of unlabelled documents available
for the source or target domain. These approaches thus fall in the domain of transductive
learning (see e.g., Joachims, 1999), and are thus not directly related to our approach, which
is completely inductive.

2.2 Cross-Lingual Adaptation

We review prior work on cross-lingual adaptation, covering three different types of ap-
proaches: (i) methods relying on automatic machine translation, (ii) methods exploiting
parallel corpora, and (iii) methods exploiting unlabelled topic-specific collections.

Rigutini, Maggini, and Liu (2005) proposed a method for cross-lingual adaptation that
first translates the source documents into the target language by means of an automatic ma-
chine translation service. Then, an Expectation Maximization method refines the translated
representations by mining the statistical properties of large sets of unlabelled documents in
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the target language. Along these lines, Wan, Pan, and Li (2011) proposed a bi-weighting
method to re-weight both terms and training instances in order to correct the word drift that
machine translation could have introduced during the translation process. Motivated by the
lack of labelled Chinese sentiment corpora, Wan (2009) proposed instead an English-Chinese
co-training approach based on automatic machine translation. The method translates the
labelled English (source) documents into Chinese (target), and the Chinese unlabelled doc-
uments into English. A classifier is then created for each of the languages, that is later
used to classify their respective set of unlabelled documents to improve the model. Finally,
each Chinese test document is attached to its translation equivalent in English and given
as input to the classifier.

Even though machine translation represents a promising solution to cross-lingual prob-
lems (a solution that will presumably become more and more viable as the field of machine
translation evolves), current machine translation services are not always free-to-use, nor
available for all language pairs either, and are computationally expensive. All other things
being equal, cross-lingual methods that do not rely on them are thus preferable.

Latent Semantic Analysis is a well-known technique which originated within monolingual
text analysis (Deerwester et al., 1990) but was later extended to deal with cross-lingual re-
trieval (Dumais, Letsche, Littman, & Landauer, 1997) and multilingual classification (Xiao
& Guo, 2013). LSA consists of mapping the original term-document matrix into a lower-
dimensional latent semantic space that captures the (linear) relations among the original
terms and the documents. In a cross-lingual context, this mapping is performed via a singu-
lar value decomposition of the original term-document matrix extracted from multilingual
documents. The main problem with the use of LSA for cross-lingual applications is its
dependence on a parallel corpus. In order to relax this constraint, Xiao and Guo (2014)
proposed a method that induces cross-lingual terms via matrix completion. The method
requires only a small set of parallel documents that is used to construct a dual-language
co-occurrence matrix; LSA is then applied to the completed dual-language matrix in order
to produce a low-dimensional interlingual representation. Cross-lingual Kernel Canonical
Correlation Analysis (KCCA – Vinokourov, Shawe-Taylor, & Cristianini, 2002) produces
instead a semantic cross-lingual representation by investigating correlations between aligned
bilingual fragments. KCCA takes advantage of kernel functions in order to map aligned texts
into a high-dimensional space in such a manner that the correlations between both mappings
are mutually maximized. Finally, Oriented Principal Component Analysis (OPCA – Platt,
Toutanova, & Yih, 2010) finds a discriminative projection that maximizes the document
variance across languages, at the same time minimizing the distance between comparable
documents, thus avoiding the use of artificially concatenated documents.

The techniques based on correlation analysis that we have discussed above are rather
expensive from a computational point of view, and their use requires the availability of a
parallel or comparable corpus. For this reason Moen and Marsi (2013) proposed the use
of Random Indexing (Sahlgren, 2005), a computationally lighter indexing approach that
approximates LSA (Kanerva, Kristofersson, & Holst, 2000), as an alternative for use in cross-
lingual information retrieval. Cross-lingual Random Indexing requires only a monolingual
corpus for each language, plus a bilingual dictionary.

Even though some of the approaches discussed above succeed in discovering hidden
correlations between terms belonging to different languages, they are still based on the
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availability of a suitable parallel corpus or a bilingual dictionary. As a response, Gliozzo
and Strapparava (2005, 2006) provided a means for automatically obtaining a Multilingual
Domain Model (MDM) by defining soft relations between words and domain topics. Making
up for the lack of a bilingual dictionary or a parallel corpus, a MDM can be automatically
obtained from comparable corpora by performing LSA. In a similar vein, Rapp (1999)
proposed a method for acquiring a bilingual dictionary based on the assumption that there
is a correlation between word co-occurrence patterns in different languages (Rapp, 1995).
The dimensions of the co-occurrence matrices are rearranged so as to make translation
equivalents of the same word correspond to identical positions in the vector, by using a
small bilingual dictionary. Word translation is then performed as vector similarity in the
two co-occurrence matrices, ignoring all dimensions that are not aligned. The dictionary
is iteratively expanded with the inclusion of newly translated terms. Koehn and Knight
(2002) proposed a method for automatically constructing a word-level translation lexicon
by taking a monolingual corpus for each language as input, neither requiring the corpora
to be parallel or even comparable, nor requiring the availability of an initial dictionary.
Roughly speaking, this was done by first taking words with identical spelling (“cognates”) or
similar spelling as the initial entries of the dictionary, and then by expanding the dictionary
by assuming the context, frequency, and word correlations to be approximately preserved
across languages. More recently, Peirsman and Padó (2010) proposed a method to induce
selectional preferences for resource-poor languages which also takes advantage of cognates.
A bilingual vector space is initially derived by taking cognates as the dimensions of the
vector space. This space, that is subsequently bootstrapped from large (unparsed) corpora
of both languages, allows direct word translations to be performed based on vector distances.

In a realistic cross-lingual setting we do not expect to have any sort of labelled corpus
available for the target domain, and machine translation tools, when available, are still
expensive. Therefore, Prettenhofer and Stein (2010, 2011) assume that a word translation
oracle is available but only for a limited budget of calls (450, in their experiments). The
resulting word translations allow Structural Correspondence Learning (SCL – see Section
2.1) to be applied to cross-lingual domain adaptation by pairing each source pivot with
its equivalent translation in the target language. Even though cross-lingual SCL succeeds
in relaxing the constraints discussed above thanks to the fact that it does not need any
linguistic resource, it still suffers from a considerable computational cost deriving from the
need to perform intermediate optimizations of structural problems, and from the need to
use LSA. Following a similar strategy relying on bilingual pivots, our DCI method requires
significantly fewer word translations, and avoids the use of any expensive statistical analysis
technique.

Our method bears some resemblance to Explicit Semantic Analysis (ESA), a method
that indexes any given text with respect to a set of explicitly given external categories
(Gabrilovich & Markovitch, 2007). In the work of Sorg and Cimiano (2008, 2012) different
language-specific views of Wikipedia articles were considered as the external categories on
which semantic term vectors were defined. Each dimension thus models the strength of
association between a given term and a given article in a cross-lingual information retrieval
setting (CL-ESA). Arguably, the main difference with our method is that CL-ESA relies on
high-dimensional spaces (about 10,000 dimensions) of interlingual and universal concepts,
while DCI instead projects each term into a low-dimensional space (about 100 dimensions) of
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highly predictive concepts, i.e., bilingual pivots. Additionally, our method does not require
any sort of external resource apart from a word translation oracle, and the strength of
association is rather defined in terms of distributional correspondence, computed efficiently
on unlabelled sets (Section 4).

3. Problem Statement

In this section we formally state our problem and set the notation we are going to use
throughout this paper.

Sentiment classification may be viewed as the task of approximating the unknown target
function Φ : X → Y, that indicates how documents ought to be classified, by means of
a function Φ̂ : X → Y, called the classifier, where X denotes the space of documents
and Y = {+1,−1} denotes the space of labels, indicating positive (+1) or negative (-1)
sentiment. In domain adaptation (see e.g., Pan & Yang, 2010) it is customary to define a
domain as a pair D = 〈F, P (X)〉, where P (X) is the marginal probability distribution that
governs the likelihood with which documents (represented in the term space F ) are drawn.
Given a source domain Ds = 〈Fs, Ps(X)〉 and a target domain Dt = 〈Ft, Pt(X)〉, domain
adaptation is a subtask of transfer learning that consists of improving the accuracy of the
classifier Φ̂ on Dt by using knowledge from Ds, a domain such that Ds 6= Dt.

The precondition Ds 6= Dt leads to two different interpretations of the domain adap-
tation problem. On one side, cross-domain adaptation (e.g., DVDs → Books) is typically
characterized by Fs = Ft and Ps 6= Pt; that is, the term space is common – or is trivially
made common by joining the two term spaces – but the marginal probability distributions
differ. On the other side, cross-lingual adaptation (e.g., EnglishBooks → GermanBooks) is
typically characterized by Fs 6= Ft and Ps = Pt; that is, documents are drawn from similar
distributions but are described in different term spaces.

In this paper we also define and investigate a third case of domain adaptation, in
which both the term spaces and the probability distributions differ. This is the cross-
domain/cross-lingual adaptation problem, characterized by Fs 6= Ft and Ps 6= Pt. We
argue that this case is of particular interest, since it enables cross-lingual adaptation to be
performed even in the absence of an auxiliary dataset that acts as a “bridge” in a two-steps
adaptation (e.g., EnglishBooks→ GermanBooks→ GermanDVDs). For example, when a sen-
timent classifier for a resource-poor language needs to be deployed that analyses sentiment
about a new topic, a common scenario is one in which we want to leverage data from a
resource-rich language (e.g., English) on a different, already known topic. This scenario is
a realistic generalization of the domain adaptation problem; to the best of our knowledge,
nobody has tackled it before in published work.

As a final note regarding notation, we will use subscripts s and t to indicate whether
the data is drawn from the source or from the target domain, respectively. Accordingly,
Us denotes the unlabelled source dataset, while Ut refers to the unlabelled target dataset.
Similarly, Trs and Tet denote the training set and test set, respectively.
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4. Distributional Correspondence Functions

The goal of this section is to introduce Distributional Correspondence Functions (DCFs).
We first characterize the family of DCFs and then propose some specific ones.

4.1 Definition

DCFs are a family of real-valued functions that quantify the degree of correspondence
between two terms f i and f j by comparing their context distribution vectors f i and f j from
an unlabelled collection U . A context distribution vector is a unit-length n-dimensional
vector that models how a term relates to a set of contexts. A context is any text unit in
which a term could appear (e.g., a sentence, a fixed-size window, or an entire document);
f ic denotes the value of the vector for term f i in context c, with f ic = 0 if f i does not appear
in context c. The cases in which f ic > 0 are determined by the weighting function in use,
and might lead to different interpretations of the DCF, e.g., as a probability function in an
event space (Section 4.2), or as a kernel in a vector space (Section 4.3). We define pi as the
prevalence of f i, i.e., the portion of contexts for which f ic > 0, i.e.,

pi =
|{c|f ic > 0}|

n
(1)

where n is the dimensionality of the vector space, i.e., the number of different contexts. In
this work we take documents as contexts, so f ic = 0 means that term f i does not appear
in document c, and pi is the portion of documents of the unlabelled collection in which f i

appears.

A DCF is a function η : Rn×Rn → R, where the sign of η(f i, f j) indicates the polarity
of the correspondence, i.e., positive values indicate positive correlation and negative values
indicate negative correlation; η(f i, f j) = 0 indicates null correspondence. We will force
DCFs to be such that η(f i, f j) = 0 for the expected correspondence measured between
randomly chosen pairs of vectors once the prevalence pi and pj of terms f i and f j have
been set. The rationale of this choice is that high-prevalence terms have a higher probability
to have non-zero values in a number of common positions, and in this case some measures
(see Section 4.3) will record a level of correspondence due to the non-perfect orthogonality
of the vectors, which happens much more rarely for low-prevalence terms. We want to
factor out this bias, centering the DFC on the expected correspondence value.

4.2 Probability-Based DCF

In this section we discuss some probability-based DCFs derived from information theory.
The distribution P (f i) of a term f i across the contexts is modelled using a binomial event
space, thus considering only the presence or absence of the term in the context; P (f i)

thus denotes the probability that f i occurs in a random context, while P (f
i
) denotes the

probability that f i does not occur in it.

The first part of Table 1 shows the probability-based DCFs we investigate. We consider
Pointwise Mutual Information (PMI, the ratio between the joint distribution and the
product of the marginal distributions), and a simple probabilistic function (here called

Linear) that contrasts the probabilities of f i conditioned on f j and f
j
, respectively. We

139



Moreo, Esuli, & Sebastiani

also consider Mutual Information (MI, the reduction in entropy of a distribution due to
the observation of another distribution) in an asymmetric version. The rationale of this
asymmetry is that MI per se is symmetric with respect to positive and negative correlation;
that is, the two cases in which (a) f i occurs in all and only the contexts in which f j also
occurs, and (b) f i occurs in all and only the contexts in which f j does not occur, obtain the
same MI score. In our scenario these two kinds of correlation must be kept distinct, because
a high positive correlation indicates semantic similarity, while a high negative correlation
indicates a lack of semantic similarity. For this reason we invert the sign of the DCF in
the negative correlation case, by defining a ρ function that detects the negative correlation
by using the true positive rate (tpr = P (f i, f j)/P (f j)) and the true negative rate (tnr =

P (f
i
, f

j
)/P (f

j
)), i.e.,

ρ(f i, f j) =

{
+1 if (tpr + tnr > 1)
−1 otherwise

(2)

and by multiplying ρ(f i, f j) by MI, to yield Asymmetric Mutual Information (AMI, see
Table 1).

4.3 Kernel-Based DCFs

In this section we consider different kernel functions as DCFs. Kernel functions are similarity
functions, typically used e.g., within support vector machines to operate in high- (and
potentially infinite-) dimensional spaces. In this case the values in the context vector can
be numeric, thus indicating the relative importance of a term in a given context, and are
usually computed as a function of the frequency of the term in the context and in the corpus,
e.g., tfidf . We consider normalized context vectors, i.e., after weighting the document-by-
term matrix we normalize the term vectors to unit length.

The most popular vector similarity measure is probably cosine similarity, which measures
the cosine of the angle between them, and is defined as

cos(f i, f j) =
〈f i, f j〉
‖f i‖‖f j‖

(3)

We also consider as DCFs other popular kernels: the polynomial kernel and the Radial
Basis Function (RBF – a.k.a. Gaussian) kernel, i.e.,

polynomiala,b(f
i, f j) = (a+ 〈f i, f j〉)b (4)

RBFγ(f i, f j) = exp{−γ‖f i − f j‖2} (5)

where ‖f i − f j‖ =
√∑n

c=1(f ic − f jc )2 is the Euclidean distance between f i and f j .

Since non-zero values in a frequency vector are always positive, it turns out that the
expected value of both the dot product and the Euclidean distance between two random
distributional vectors is greater than zero. In order to satisfy the necessary condition
imposed to DCFs the kernels should be “centred” to zero by factoring out this bias. Let
ri and rj be two unit-length vectors with prevalences pi and pj , whose non-zero values are
independently distributed at random; the expected value of non-zero positions is

√
pin
−1

and
√
pjn
−1, respectively. The expected value of the dot product and of the Euclidean
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distance between ri and rj are, respectively,

E[〈ri, rj〉] = pipjn
1
√
pin

1
√
pjn

=
√
pipj (6)

E[‖ri − rj‖] = npipj

(
1
√
pin
− 1
√
pjn

)2

+ n(pi − pipj)
1

pin
+ n(pj − pipj)

1

pjn
(7)

= 2(1−√pipj)

The resulting DCFs, obtained by factoring out these expected values from the corresponding
kernels, are reported in the second part of Table 1.

Table 1: Mathematical forms of DCFs discussed in this work.

Probability-based DCFs Mathematical form

Linear P (f i|f j)− P (f i|f j)

Pointwise Mutual Information log2

P (f i, f j)

P (f i)P (f j)

Asymmetric Mutual Information ρ(f i, f j)
∑

x∈{f i,f i}

∑
y∈{fj ,fj}

P (x, y) log2

P (x, y)

P (x)P (y)

Kernel-based DCFs Mathematical form

Cosine
〈f i, f j〉
‖f i‖‖f j‖

− √pipj

Polynomial (a+ 〈f i, f j〉)b − (a+
√
pipj)

b

RBF exp{−γ‖f i − f j‖2} − exp
{
−4γ

(
1−√pipj

)2}

5. Distributional Correspondence Indexing

In this section we explain our Distributional Correspondence Indexing (DCI) method in
detail, by paying special attention to each step of the workflow.

The DCI method works by first identifying a small set of pivot terms (or “pivots”,
for short – Section 5.1), and then projects each term into a new vector space where each
dimension measures the correspondence of the term to a pivot (Section 5.2). Each term
will thus be assigned to a new vectorial representation that will be here referred to as term
profile, or simply profile. The term space is then post-processed by first normalizing each
dimension (Section 5.3) and then unifying the source and target term profiles for certain
terms that we expect to behave similarly in both domains, such as pivots (Section 5.4).
Documents are then projected by cumulating (i.e., summing) the profiles of the terms that
occur in them (Section 5.5), after which a classifier can be trained as usual. In order to
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clarify the explanation we will use a running example throughout the different steps. To
that aim we will be tracking the case Books→ Electronics, i.e., the domain adaptation from
the Books domain to the Electronics one (more details about the datasets will be given in
Section 6.1).

5.1 Pivot Selection

Pivots are terms that are shared across the source and target domains, and are meant to link
them, thus enabling the knowledge transfer process. Blitzer et al. (2006) defined pivots as
terms which occur frequently in the source and target domains and behave similarly in both
domains. Subsequent work (Blitzer et al., 2007; Prettenhofer & Stein, 2010; Pan et al., 2010)
extended the definition of pivots to take into account also the co-occurrence relation between
terms and class labels in the source domain, as it was shown that informative terms for the
prediction task are better pivots. This idea was later adapted to the cross-lingual setting by
Prettenhofer and Stein (2010), in which a fixed frequency threshold φ, called support, was
used to filter infrequent pivot candidates, then ranking the remaining candidates by their
mutual information with respect to labels in the source domain. Prettenhofer and Stein
also introduced the notion of word translation oracle (WTO), i.e., a translator that, given a
word in the source language, provides its translation in the target language. The method of
Prettenhofer and Stein assumes the possibility of issuing a limited number of calls to such
an oracle.

As pointed out by Pan et al. (2010), pivot selection using mutual information can help
identify predictive terms for the source domain, but there is no guarantee that those terms
act similarly in both domains. In this respect, we think that even though the support
threshold might serve to filter out some problematic candidates, this strategy is suboptimal.
For example, a candidate occurring 29 times and 31 times out of 50,000 in the source and
in the target domain, respectively, will be discarded if the support is set to φ = 30, while
a pivot occurring 5000 times and 31 times could be chosen, even if it is clear that in this
second case its role in the two domains is very different.

A good pivot should be highly task-dependent, and also present a similar degree of
domain-dependence in the two domains. We have formalized this intuition via the function

Ψ(f i) = Is(f
i)ζs−t(f

i) (8)

where Ψ(f i) is the term’s strength as a pivot, Is(f
i) quantifies the informativeness (to

be estimated on the training set Trs) of term f i for the classification task, and ζs−t(f
i)

measures the cross-consistency of term f i estimated on Us and Ut, that quantifies how
similarly the term behaves in the two domains.

Following previous research, we will instantiate Is(f
i) via mutual information. Ideally,

ζs−t : F → [0, 1] should be defined in such a way that ζs−t(f
i) ≈ 1 if the distribution of

f i is consistent across domains, and ζs−t(f
i) ≈ 0 if the importance of f i varies a lot from

one domain to another. Given the lack of labelling information in the target domain, we
adopt a simple heuristic that relates the prevalence on both domains, as we might expect
a comparable prevalence of use in text for terms that posses a similar degree of domain-
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dependence1. We thus define

ζs−t(f
i) =

min{psi , pti}
max{psi , pti}

(9)

where psf (resp., pti) is the prevalence of f i as measured on set Us (resp., Ut). The top-ranked
m terms according to their Ψ value that have a frequency greater than φ in both Us and Ut,
are selected as pivots; m is a user defined parameter indicating the number of pivots to select.
Table 2 exemplifies the pivot selection process in the Books → Electronics adaptation. For
instance, the cross-consistency weight succeeds in penalizing adjective boring, which might
be a good candidate for predicting the polarity of book reviews but is rather uninformative
for electronic devices, which is thus pushed out of the top-100 list (only 10 elements are
shown here due to space limitations).

Table 2: Top-10 terms ranked according to mutual information (Is(f
i)) (left), and mutual

information combined with cross-consistency (Ψ(f i) = Is(f
i)ζs−t(f

i)) (right).

# term Is score term Ψ score

1 waste 0.029 waste 0.028
2 boring 0.029 excellent 0.022
3 disappointing 0.029 bad 0.020
4 excellent 0.026 not 0.018
5 no 0.021 don’t 0.017
6 waste of 0.021 waste of 0.017
7 bad 0.021 highly recommend 0.014
8 don’t 0.019 disappointing 0.013
9 not 0.018 great 0.012

10 your money 0.018 your money 0.012

5.2 Term Profiles

We implement a rather direct application of the distributional hypothesis, following the
intuition that the semantics of a term can be captured by its distributional correspondence
with pivots. We thus build a term profile ~f for each source and target term f (including
pivot terms) as the m-dimensional vector

~f = (η(f ,p1), η(f ,p2), . . . , η(f ,pm)) (10)

where f and pi are the context distribution vector from the unlabelled collection of the term
f being profiled and the ith pivot, respectively, and η is the selected DCF.

Table 3 displays the term profiles associated with four relevant terms from our running
example, i.e., boring, excellent, waste, reliable. Note that excellent and waste are pivots
with opposite polarity, while the other two are domain-dependent terms, i.e., boring is only

1. Note that the ζs−t(·) function is meant to capture the cross-domain drift, and thereby we will ignore it
in the cross-lingual setting – by simply defining ζs−t(f

i) = 1 in that case – as the domain of knowledge
is the same for both collections.
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informative for Books reviews while reliable is only informative for Electronics reviews. The
DCF used in this example is the cosine kernel. Note that boring has no representation in
the target side, as this term does not appear in the Electronics dataset. Note also that
pivot terms are associated to vectorial representations that are somehow close to each other
in both domains. The same does not happen for reliable, a domain-dependent term that
plays different roles in the two domains. We can also note that correspondence tends to be
positive between terms with similar polarity (e.g., between waste and bad), and negative
otherwise (e.g., between excellent and bad). Finally, notice that cos(waste,waste) 6= 1 and
cos(excellent, excellent) 6= 1, due to the correction factor introduced on the cosine formula
(see Table 1).

Table 3: Term profiles generated for terms boring, excellent, waste, and reliable (rows) for
the different dimensions (columns) in the source (left) and target (right). Only
the first 5 dimensions, corresponding to pivots waste, excellent, bad, no, and don’t,
are shown due to space restrictions.

Books Electronics

waste excellent bad not don’t ... waste excellent bad not don’t ...

boring 0.058 -0.042 0.029 -0.029 0.004 ... - - - - - ...
excellent -0.030 0.938 -0.051 -0.082 -0.065 ... -0.042 0.927 -0.023 -0.021 -0.018 ...
waste 0.957 -0.030 0.007 -0.013 0.161 ... 0.959 -0.042 0.028 0.025 0.138 ...
reliable -0.012 -0.002 -0.007 0.004 0.016 ... 0.001 0.014 0.005 -0.004 -0.008 ...

5.3 Normalization of Term Profiles

Each dimension of the space reflects the distributional correspondence to a given pivot.
Pivots with high prevalence are likely to generate high DCF values, which could lead to
dominant dimensions in the profile vectors; this could be detrimental during the learning
phase. To avoid this effect, we center each profile dimension on its expected value and then
rescale by the standard deviation (Equation 11), so that the values for all profile dimensions
are approximately normally distributed in N (0, 1), i.e.,

~f ′ =

(
~f1 − µ1

σ1
,
~f2 − µ2

σ2
, . . . ,

~fm − µm
σm

)
(11)

where ~fi is the ith dimension of the term profile ~f (see Equation 10), and µi and σi are the
mean and the standard deviation for the same ith dimension, respectively. After normal-
ization, term profile vectors are rescaled to unit length.

Table 4 demonstrates the effect of term normalization for the example terms discussed
in Table 3. Note that, after normalization, the source and target profiles for pivot terms
seem to get closer in the vectorial space. Furthermore, the target representation of reliable
turns out to be more consistent with our intuitions, as it reflects a negative correspondence
to waste, and a stronger positive correspondence to excellent.
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Table 4: Effect of term normalization for terms boring, excellent, waste, and reliable.

Books Electronics

waste excellent bad not don’t ... waste excellent bad not don’t ...

boring 0.223 -0.163 0.105 -0.125 0.020 ... - - - - - ...
excellent -0.021 0.861 -0.038 -0.080 -0.050 ... -0.035 0.909 -0.024 -0.038 -0.023 ...
waste 0.555 -0.017 0.005 -0.008 0.094 ... 0.572 -0.032 0.016 0.018 0.087 ...
reliable -0.091 0.020 -0.056 0.076 0.169 ... -0.011 0.119 0.005 -0.146 -0.138 ...

5.4 Unification of Term Profiles

As we assume pivot terms behave similarly in the two languages, we unify their term
profiles by simply averaging the source profile and the target profile and then normalizing
the result to unit length. Unification is also applied to profiles of terms that appear in
both the source and target domains with a frequency greater than the support φ. The
rationale behind unification is to correct the possible misalignment between the source and
target term profiles for terms that should receive the same vectorial representation in both
domains, such as pivot terms or proper nouns. This is done in order to equalize across
domains the contribution of the term to the document representation (see below).

Table 5 shows the term profiles of our running example after unification. Note that
boring does not experience any change as its target counterpart does not even exist. Term
reliable is also not affected by normalization, as its frequency in the Books domain does
not exceed the support φ, set to 30 for this example. Finally, the term profiles of pivots
excellent and waste are unified, i.e., are computed as the average of their respective source
and target profile representations, and then normalized to unit norm.

Table 5: Term profile unification for terms boring, excellent, waste, and reliable.

Books Electronics

waste excellent bad not don’t ... waste excellent bad not don’t ...

boring 0.223 -0.163 0.105 -0.125 0.020 ... - - - - - ...
excellent -0.028 0.893 -0.031 -0.059 -0.037 ... -0.028 0.893 -0.031 -0.059 -0.037 ...
waste 0.570 -0.025 0.010 0.005 0.091 ... 0.570 -0.025 0.010 0.005 0.091 ...
reliable -0.091 0.020 -0.056 0.076 0.169 ... -0.011 0.119 0.005 -0.146 -0.138 ...

5.5 Document Indexing

Finally, train and test documents are indexed in the profile space via a weighted sum of
all profile vectors associated to their terms. That is, document dj is represented as the
m-dimensional vector

~dj =
∑
fi∈dj

wij · ~f ′i (12)

where wij is the weight of term fi in document dj according to any weighting function (in

our experiments we used the standard cosine-normalized tfidf), and ~f ′i is the normalized
and unified term profile vector for fi.
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6. Experiments

In this section we experimentally compare our DCI method, implemented using different
DCFs, to other state-of-the-art methods proposed in the literature.

6.1 Datasets

We test our method on two popular, publicly available sentiment datasets: Multi-Domain
Sentiment Dataset (version 2.0) and Webis-CLS-10. The former is a dataset frequently used
for evaluating cross-domain adaptation, while the latter has often been used for evaluating
cross-lingual methods. We will also use Webis-CLS-10 to explore the cross-domain/cross-
lingual setting.

6.1.1 Multi-domain Sentiment Dataset (version 2.0)

The Multi-Domain Sentiment (MDS) dataset, first proposed by Blitzer et al. (2007), con-
tains English product reviews taken from Amazon.com for the four domains Books (B),
DVDs (D), Electronics (E), and Kitchen (K) appliances. In order to facilitate reproducibility
and to allow for a fair comparison with the results reported in previous literature, we used
the same pre-processed version of the dataset as used in previous evaluations, made publicly
available by Blitzer et al. (see MSD dataset, 2007). In this pre-processed version, terms
were extracted by taking unigrams and bigrams; reviews originally rated higher than “3
stars” were labelled as positive, and those rated lower than “3 stars” as negative; reviews
with intermediate ratings were removed. The dataset comprises 1000 positive reviews and
1000 negative reviews for each of the four domains, and a set of unlabelled documents rang-
ing from 3,586 to 5,945 documents for each domain. Table 6 shows the number of labelled
and unlabelled documents, number of distinct terms and total number of terms for each
dataset. According to the same evaluation procedure followed by the proposers of other
methods we compare against, we randomly split each labelled dataset into a training set of
1600 instances and a test set of 400 instances.

Table 6: Main characteristics of the Multi-Domain Sentiment dataset (version 2.0).

Domain Labelled Unlabelled Terms Occurrences

Books 2,000 4,465 195,887 445,793
DVDs 2,000 3,586 188,778 370,844

Electronics 2,000 5,681 111,407 392,699
Kitchen 2,000 5,945 93,474 351,162

6.1.2 Webis-CLS-10

Webis-CLS-10, first proposed by Prettenhofer and Stein (2010), is a cross-lingual sentiment
collection consisting of Amazon product reviews written in four languages (English (E),
German (G), French (F), and Japanese (J)), covering three product domains (Books (B),
DVDs (D), and Music (M)). For each language-domain pair there are 2,000 training doc-
uments, 2,000 test documents, and from 9,000 to 50,000 unlabelled documents depending
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on the language-domain combination (see Table 7 for further details). We used the pre-
processed version of the dataset made publicly available by the authors (see Webis-CLS
dataset, 2010), where terms correspond to uni-grams. Following the work by Prettenhofer
and Stein, we consider English as the source language, since it is by far the most realistic
scenario. Documents are either labelled as positive or negative, following the same proce-
dure of Blitzer et al. (2007). Positive and negative examples are balanced in all sets (see
Table 7 for details). Each labelled dataset was split into a perfectly balanced training set of
2,000 instances and a test set of 2,000 instances. This split was proposed by Prettenhofer
and Stein; all baseline methods we here compare against use exactly the same corpus both
for training and test.

Table 7: Main characteristics of the Webis-CLS-10 dataset.

Domain Labelled Unlabelled Terms Occurrences

EB 4,000 50,000 62,499 6,289,014
ED 4,000 30,000 50,124 4,001,678
EM 4,000 25,220 38,632 2,664,955

GB 4,000 50,000 105,360 6,618,037
GD 4,000 50,000 100,265 6,303,371
GM 4,000 50,000 95,952 5,688,874

FB 4,000 32,870 52,664 2,427,178
FD 4,000 9,358 26,117 714,105
FM 4,000 15,940 39,001 1,371,800

JB 4,000 50,000 51,179 7,637,325
JD 4,000 50,000 53,318 7,263,796
JM 4,000 50,000 53,078 6,284,653

6.2 Evaluation Metrics

Following the practice common in the related literature, we adopt standard accuracy as the
evaluation measure. Accuracy measures the proportion of correctly classified documents
over the total number of outcomes (Equation 13), i.e.,

Acc =
TP + TN

TP + FP + FN + TN
(13)

where TP , TN , FP , and FN stand for the numbers of true positives, true negatives, false
positives, and false negatives, respectively. Note that this measure is a perfectly adequate
choice since all datasets are balanced with respect to the positive and negative classes.

6.3 Baseline Methods

We experimentally compare DCI, using different DCFs, to different baseline methods pro-
posed in the literature for cross-domain and cross-lingual domain adaptation. We limit
the comparison to algorithms evaluated on the same corpora, and we report results taken
from the original papers. When not explicitly mentioned, results for all baseline algorithms
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were obtained by using the same datasets, though obviously using different random splits.
For the MDS dataset, following common practice, we run experiments on multiple random
splits and average them. For the Webis-CLS-10 dataset we instead used the split proposed
by Prettenhofer and Stein (2010) (more details below).

As an upper bound, we implemented a method (hereafter called “Upper”) that trains
the SVM classifier on the training set of the target domain. As a lower bound we instead
implemented a method that trains the SVM classifier on the source domain and then applies
the trained classifier directly in the target domain, i.e., without carrying out any sort of
knowledge transfer (“NoTrans”). When considering various languages, we also report the
machine translation baseline (“MT”), which first translates all target documents into the
source language (i.e., English in our experiments) before giving them as input to the SVM
classifier trained on the source domain; we used the pre-translated documents provided by
Prettenhofer and Stein (2011).

For cross-domain adaptation the baselines we consider are Structural Correspondence
Learning using Mutual Information to select pivots (SCL-MI – Blitzer et al., 2007), Spectral
Feature Alignment (SFA – Pan et al., 2010), multiple sources Sentiment Sensitive Thesaurus
(SST – Bollegala et al., 2011), and Stacked Denoising Autoencoder (Glorot et al., 2011)
trained on domain pairs (SDA) and trained on 22 domains available in the former version
of the MDS dataset (a method that the authors abbreviate as SDAsh).

For cross-lingual adaptation the baselines we consider are cross-lingual Latent Semantic
Indexing (LSI – Dumais et al., 1997), cross-lingual Kernel Canonical Correlation Analysis
(KCCA – Vinokourov et al., 2002), Oriented Principal Component Analysis (OPCA –
Platt et al., 2010), Two-Step Learning method (TSL – Xiao & Guo, 2013), Semi-Supervised
Matrix Completion (SSMC – Xiao & Guo, 2014), and the cross-lingual version of Structural
Correspondence Learning (SCL – Prettenhofer & Stein, 2011).

Since there are no published results to compare with for the cross-lingual/cross-domain
adaptation, as a baseline we consider SCL-MI (Prettenhofer & Stein, 2011) by reusing the
publicly available source code (Natural Language Understanding Toolkit, 2011) for running
our own experiments.

6.4 Implementation Details and Parameter Setting

We implemented our method (see DCI-source, 2015) as part of the JaTeCS (2015) frame-
work. We used the popular SVMlight (2008) implementation of Support Vector Machines
as the learning device, with default parameters, for DCI and for baselines NoTrans, Upper,
and MT.

In our experiments we set the support (see Section 5.1) to φ = 30, following the indica-
tions of Prettenhofer and Stein (2010) for the Webis-CLS-10 dataset. Since the amount of
unlabelled documents in the MDS Dataset is one order of magnitude smaller, in that case
we set φ = 1.

To emulate the word oracle – and for the sake of a fair comparison – we reused the bilin-
gual dictionary2 created for evaluating cross-lingual SCL by Prettenhofer and Stein (2010).
This dictionary emulates a context-unaware word-translation oracle, i.e., each source word

2. Note that we used a different pivot selection criterion, as detailed in Section 5.1, and therefore the oracle
could be queried to translate some words that where never considered in the cited work, and thus might
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is mapped into its “most likely” translation; potential problems arising from the ambiguity
of single words are simply disregarded.

One important factor to take into consideration is the number of calls issued to the
oracle; the oracle simulates a human translator, and this number is thus an indicator of the
human effort required to perform domain adaptation. We limited the number of translations
to the top 2m terms with the highest mutual information, where m is the number of pivots
words. In order to perform comparisons with other methods, we fixed the number of pivots
to m = 100, which corresponds to the minimal setup tested by Prettenhofer and Stein
(2010). In Section 6.6 we then explore the impact in accuracy due to variations in the value
of m.

Parameters for the polynomial and RBF kernel DCFs were optimized via a grid search
on the Books → DVDs cross-domain adaptation for the MDS dataset, and on EnglishBooks
→ GermanBooks cross-lingual adaptation for Webis-CLS-10 dataset (as was done in previous
research, Prettenhofer & Stein, 2010). The actual values we ended up in using were b = 0.5
and γ = 0.82 in MDS, and b = 0.8 and γ = 0.88 in Webis-CLS-10. We set a = 0 for
the (homogeneous) polynomial DCF in both cases, as we did not perceive any consistent
improvement that justifies a more complex grid search exploration on the two parameters.

We used the normalized tfidf weighting criterion to represent the co-occurrence matrices
in all experiments.

6.5 Experimental Results

In this section we present the results of our experiments using different DCFs. Experi-
ments are presented by different domain adaptation setups, including cross-domain adapta-
tion (Section 6.5.1), cross-lingual adaptation (Section 6.5.2), and cross-domain/cross-lingual
adaptation (Section 6.5.3). Additional related experiments are then conducted in Section
6.6.

For the sake of brevity and consistently with the notation LsCs → LtCt introduced
earlier, we will use a single upper-case character (as defined in Section 6.1) to denote the
languages and the domains involved in the experimental setup. For example, EB → GD
denotes an experiment in which EnglishBooks is used as the source and GermanDVDs is used
as the target.

6.5.1 Cross-Domain Results

Table 8 reports results obtained on the MDS dataset, including (a) performance averages
by product category, i.e., computed by averaging all the results obtained when the product
category is considered as the target domain, and (b) global averages. All results reported
correspond to the accuracy of the different methods3 computed via 5-fold cross-validation,
i.e., using 1,600 training documents and 400 test documents in each run. A direct com-
parison with many other methods (He et al., 2011; Xia & Zong, 2011; Denecke, 2009;
Ponomareva & Thelwall, 2012) would also be feasible in principle. We omitted direct com-

not be present in the dictionary. Such cases happened rarely however, and we preferred to simply skip
these candidates rather than completing the bilingual dictionary, in order to guarantee a fair comparison.

3. Missing results are ones which were not reported in the original papers.
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parisons with these methods since previous research has shown them to be comparable, but
not superior, to SFA.

Table 8: Cross-domain adaptation on the MDS dataset.

Task NoTrans Upper SCL-MI SFA SST SDA SDAsh Linear PMI AMI Cos Poly RBF

ED → EB 0.728 0.844 0.797 0.775 - 0.724 0.768 0.825 0.827 0.811 0.824 0.830 0.825
EE → EB 0.707 0.844 0.754 0.757 - 0.768 0.780 0.766 0.763 0.753 0.764 0.776 0.765
EK → EB 0.709 0.844 0.686 0.748 - 0.807 0.837 0.783 0.783 0.769 0.790 0.791 0.784

EB → ED 0.772 0.847 0.758 0.814 - 0.804 0.855 0.808 0.811 0.806 0.817 0.829 0.815
EE → ED 0.706 0.847 0.762 0.772 - 0.902 0.905 0.768 0.779 0.765 0.774 0.799 0.771
EK → ED 0.727 0.847 0.769 0.766 - 0.835 0.854 0.788 0.789 0.781 0.799 0.807 0.798

EB → EE 0.708 0.869 0.759 0.725 - 0.806 0.824 0.810 0.822 0.793 0.822 0.826 0.821
ED → EE 0.730 0.869 0.741 0.767 - 0.872 0.875 0.822 0.832 0.812 0.824 0.833 0.826
EK → EE 0.827 0.869 0.868 0.851 - 0.802 0.820 0.855 0.851 0.843 0.858 0.863 0.857

EB → EK 0.745 0.902 0.789 0.788 - 0.844 0.846 0.834 0.839 0.822 0.835 0.844 0.835
ED → EK 0.740 0.902 0.814 0.808 - 0.803 0.821 0.858 0.856 0.846 0.864 0.861 0.863
EE → EK 0.840 0.902 0.859 0.868 - 0.777 0.811 0.864 0.864 0.851 0.868 0.874 0.867

Books 0.715 0.844 0.746 0.760 0.763 0.766 0.795 0.791 0.791 0.778 0.793 0.799 0.791
DVDs 0.735 0.847 0.763 0.784 0.788 0.847 0.871 0.788 0.793 0.784 0.797 0.811 0.795

Electronics 0.755 0.869 0.789 0.781 0.836 0.827 0.840 0.829 0.835 0.816 0.835 0.841 0.835
Kitchen 0.775 0.902 0.821 0.821 0.852 0.808 0.826 0.852 0.853 0.840 0.856 0.860 0.855

Average 0.745 0.866 0.780 0.786 0.810 0.812 0.833 0.815 0.818 0.804 0.820 0.828 0.819

Most configurations of DCI outperform all compared methods, with the exception of
SDAsh; only the MI-based DCF performed slightly worse than SST on average. It should
be noted, however, that both SST and SDAsh use a different problem setting, since they train
on multiple domains. More concretely, SST trained on three out of four domains from the
MDS dataset to create the sentiment thesaurus, while SDAsh exploited 22 domains included
in the previous version of the MDS dataset to train the auto-encoder. Furthermore, SDA
and SDAsh rely on a deep learning approach, a paradigm that requires significant more
computational power and many parameters to be tuned. Notwithstanding this, DCI with
the polynomial kernel as the DCF (with only two parameters) obtained three best averaged
results (i.e., Books, Electronics, and Kitchen) out of five, not leveraging any additional
domain, and requiring low computational cost (as will be later discussed in Section 6.7).

Table 9 reports experiments on cross-domain adaptation using the Webis-CLS-10 dataset.
These results are consistent with our previous observations, i.e., the polynomial and cosine-
based DCFs are the best performers, followed by the PMI and RBF functions. In this case
the best results obtained by DCI are very close to “Upper”, and surprisingly surpass it in
ED → EB and EM → EB. We conjecture that this improvement may be due to the larger
size of the unlabelled sets, that are one order of magnitude greater with respect to the MDS
dataset, thus allowing for more robust evaluations of the cross-domain consistency function
ζs−t(·) and of the DCF.

6.5.2 Cross-Lingual Results

Table 10 reports our results on the Webis-CLS-10 dataset for cross-lingual adaptation. As
discussed earlier, the source language is always English, while the target languages include
German, French, and Japanese.

DCI outperformed the MT baseline on average in all cases but the PMI DCF in the
German case. All kernel-based DCFs outperformed all the compared methods in terms of
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Table 9: Cross-domain performance on the Webis-CLS-10 dataset.

Task NoTrans Upper SCL-MI Linear PMI AMI Cos Poly RBF

ED → EB 0.803 0.829 0.839 0.840 0.843 0.831 0.851 0.855 0.848
EM → EB 0.783 0.829 0.823 0.828 0.838 0.826 0.840 0.841 0.838

EB → ED 0.798 0.831 0.810 0.798 0.812 0.788 0.818 0.818 0.806
EM → ED 0.778 0.831 0.797 0.802 0.821 0.798 0.821 0.822 0.816

EB → EM 0.786 0.845 0.804 0.825 0.835 0.816 0.838 0.836 0.831
ED → EM 0.804 0.845 0.823 0.831 0.833 0.815 0.829 0.832 0.827

Books 0.793 0.829 0.831 0.834 0.841 0.829 0.846 0.848 0.843
DVDs 0.788 0.831 0.804 0.800 0.817 0.793 0.819 0.820 0.811
Music 0.795 0.845 0.814 0.828 0.834 0.816 0.834 0.834 0.829

Average 0.792 0.835 0.816 0.821 0.830 0.812 0.833 0.834 0.828

Table 10: Cross-lingual performance on the Webis-CLS-10 dataset.

Task Upper MT SCL-MI LSI KCCA OPCA TSL SSMC Linear PMI AMI Cos Poly RBF

EB → GB 0.868 0.808 0.833 0.776 0.791 0.747 0.792 0.819 0.798 0.714 0.797 0.827 0.837 0.829
ED → GD 0.835 0.800 0.809 0.796 0.776 0.766 0.819 0.823 0.826 0.819 0.800 0.822 0.833 0.788

EM → GM 0.859 0.791 0.829 0.727 0.695 0.714 0.726 0.813 0.844 0.850 0.837 0.856 0.844 0.801

EB → FB 0.862 0.821 0.813 0.792 0.767 0.746 0.813 0.831 0.746 0.761 0.768 0.842 0.819 0.844
ED → FD 0.872 0.795 0.804 0.778 0.782 0.705 0.820 0.827 0.823 0.823 0.801 0.827 0.806 0.846

EM → FM 0.890 0.765 0.781 0.726 0.748 0.718 0.766 0.805 0.816 0.827 0.818 0.844 0.840 0.803

EB → JB 0.812 0.692 0.770 0.738 0.792 0.745 0.794 0.738 0.779 0.731 0.711 0.758 0.754 0.782
ED → JD 0.834 0.722 0.764 0.754 0.782 0.737 0.793 0.776 0.822 0.768 0.797 0.801 0.795 0.761

EM → JM 0.842 0.714 0.773 0.734 0.735 0.750 0.762 0.775 0.826 0.816 0.807 0.839 0.832 0.826

German 0.854 0.800 0.824 0.766 0.754 0.742 0.779 0.818 0.823 0.794 0.811 0.835 0.838 0.806
French 0.875 0.794 0.799 0.765 0.766 0.723 0.800 0.821 0.795 0.804 0.796 0.838 0.822 0.831

Japanese 0.829 0.709 0.769 0.742 0.770 0.744 0.783 0.763 0.809 0.772 0.772 0.799 0.794 0.790

Average 0.852 0.767 0.797 0.758 0.763 0.736 0.787 0.801 0.809 0.790 0.793 0.824 0.818 0.809

average accuracy, and the best result was obtained by one of the kernel-based DCFs in 11
out of 12 cases. The best performing DCFs are again the cosine and polynomial DCFs.

6.5.3 Cross-Domain/Cross-Lingual Results

Table 11 reports our experiments in the cross-domain/cross-lingual setting.

This setting is arguably the most difficult one, since both the term space and the
marginal probabilities of the domains differ, as reflected in the noticeable degradation of
MT results. Notwithstanding this, consistent observations could be derived from these re-
sults. The cosine and polynomial DCFs confirm their superiority with respect to all other
compared methods. The best result was obtained by DCI in 17 out of 18 cases; in half of
the cases the cosine DCF obtained the best result.

6.5.4 Statistical Significance Tests

Statistical significance tests (paired t-test on the accuracy values from Table 8) indicate that
all our DCI configurations, with the exception of MI, are significantly better with p < 0.01
than SCL, SCL-MI, and SFA in the MDS dataset. For the polynomial DCF, which obtained
10 best results out of 12, higher-confidence levels were obtained, i.e., p < 0.001. A t-test
on all runs on Webis-CLS-10 reveals that all kernel-based DCFs and the Linear DCF are
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Table 11: Cross-domain/cross-lingual accuracy on the Webis-CLS-10 dataset.

Task Upper MT SCL-MI Linear PMI AMI Cos Poly RBF

ED → GB 0.868 0.789 0.823 0.823 0.764 0.811 0.824 0.818 0.824
EM → GB 0.868 0.751 0.825 0.791 0.821 0.705 0.812 0.791 0.800
EB → GD 0.835 0.774 0.784 0.790 0.796 0.788 0.827 0.825 0.783
EM → GD 0.835 0.773 0.792 0.778 0.829 0.772 0.834 0.814 0.808
EB → GM 0.859 0.768 0.811 0.786 0.812 0.793 0.843 0.833 0.807
ED → GM 0.859 0.768 0.824 0.844 0.844 0.828 0.816 0.835 0.832

ED → FB 0.862 0.788 0.790 0.744 0.798 0.747 0.848 0.846 0.852
EM → FB 0.862 0.765 0.784 0.810 0.833 0.785 0.845 0.843 0.789
EB → FD 0.872 0.783 0.780 0.810 0.816 0.788 0.823 0.793 0.841
EM → FD 0.872 0.780 0.745 0.798 0.822 0.761 0.841 0.829 0.775
EB → FM 0.889 0.771 0.762 0.822 0.753 0.794 0.833 0.824 0.829
ED → FM 0.889 0.745 0.757 0.836 0.826 0.827 0.847 0.849 0.855

ED → JB 0.812 0.700 0.725 0.738 0.675 0.715 0.761 0.741 0.741
EM → JB 0.812 0.642 0.708 0.711 0.621 0.636 0.721 0.689 0.722
EB → JD 0.834 0.708 0.742 0.813 0.663 0.710 0.805 0.789 0.782
EM → JD 0.834 0.693 0.756 0.792 0.828 0.721 0.790 0.763 0.711
EB → JM 0.842 0.673 0.742 0.826 0.699 0.811 0.831 0.826 0.827
ED → JM 0.842 0.710 0.776 0.817 0.804 0.762 0.816 0.817 0.804

German 0.854 0.771 0.810 0.802 0.811 0.783 0.826 0.819 0.809
French 0.874 0.772 0.770 0.803 0.808 0.784 0.840 0.831 0.824

Japanese 0.829 0.688 0.742 0.783 0.715 0.726 0.787 0.771 0.765

Books 0.847 0.739 0.776 0.770 0.752 0.733 0.802 0.788 0.788
DVDs 0.847 0.752 0.767 0.797 0.792 0.757 0.820 0.802 0.783
Music 0.863 0.739 0.779 0.822 0.790 0.803 0.831 0.831 0.826

Average 0.852 0.743 0.774 0.796 0.778 0.768 0.818 0.807 0.799

better than SCL-MI with statistical significance at confidence level p < 0.01; the Cosine
DCF obtained p = 0.854 · 10−7 and the Polynomial DCF p = 0.522 · 10−5.

6.6 Further Experiments

This section presents further experiments aimed at testing the influence of different param-
eters and modules of DCI, and its performance in the standard text classification setting.

Regarding the effect of parameters, we show trend plots for some representative cases,
considering the Linear function as a representative example of a probabilistic-based DCF
and the Cosine function as an example of a kernel-based DCF. Each plot involves three
settings, one for each scenario: cross-domain adaptation, cross-lingual adaptation, and
cross-domain/cross-lingual adaptation. For the sake of brevity we selected some illustrative
examples, omitting experiments showing similar behaviour. First, we investigated the sen-
sitivity to the value of parameter m, which indicates the number of pivots to select. Figure
1 shows how performance varies at the variation of m, from 5 to 500 pivots.

The overall tendency displayed in the plots is that performance tends to stabilise as m
increases. Adaptations involving the cross-lingual setting seem to be more strongly affected
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Figure 1: Variation of accuracy at the variation of the number of pivots for different setups.

by the number of pivots. We attribute this effect to the more limited capability of a pivot
to reflect a term correspondence through imprecision introduced by the context-unaware
single-word translations of the oracle. Such a negative effect seems however to reduce as
the number of pivots increases. The method scales well on the number of pivots in terms
of efficiency (see below), which might be an indication that simply increasing the pivot set
size could be a feasible alternative rather than moving to more complicated definitions of
the cross-lingual pivots in order to cover translation nuances. Larger fluctuations could be
observed for m < 75, but also surprising peaks of performance for extremely small values
of m. For example, DCI obtained 81.1% accuracy with the Linear DCF in the ED → GM
adaptation with only 30 pivots, while other baselines obtained 76.8% (MT) or 82.4% (SCL-
MI, which uses 450 pivots). A similar experiment was reported by Prettenhofer and Stein
(2010) for CL-SCL, by varying parameter m in the range [100, 800]. A direct comparison
shows that our method achieves better accuracy for smaller values of m. Given that the
number of calls to the oracle is directly related to m (i.e., m calls in the cross-lingual case,
and 2m in cross-domain/cross-lingual case due to the cross-consistency reweighting, see
Section 5.1), it follows that DCI requires less human effort in creating the bilingual pivots.

The unlabelled collection plays a key role in the domain adaptation, as it is responsible
for the term-distribution representation; we thus can expect better estimations of distri-
butions for larger collections. We have investigated how the unlabelled set size affects the
performance of the method. We plot the accuracy score obtained for different reduction
ratios – preserving balance – in Figure 2.

As expected, the observed trend shows that accuracy is high for large unlabelled collec-
tions, and performance tends to stabilize with the addition of unlabelled examples. Better
performance is observed in the cross-domain experiments, even with smaller distributional
representations.

We also validated empirically each of the different elements that constitute the DCI
method, including the cross-distortion factor in pivot selection, the dimensionality stan-
dardization, and the unification process. For reasons of conciseness we only report the
global improvement for the linear DCF averaged in each dataset, since consistent variations
are observable for other DCFs. We found a consistent improvement of 0.47% ± 1.02 in
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Figure 2: Variation of accuracy at the variation of the unlabelled corpus size for different
setups.

accuracy due to cross-consistency in pivot selection, 1.785% ± 3.63 due to dimensionality
standardization, and 1.261%± 2.18 due to unification.

Our experiments reveal that classification performance seems to benefit when the adap-
tation involves semantically close domains, as is the case of Books→DVDs in the MDS
dataset, or English→German in Webis-CLS-10. Analogously, the performance seems to de-
grade when the source and target domains are dissimilar, as for example Kitchen→Books
in MDS or English→Japanese in Webis-CLS-10. It has been noticed in the literature that
reducing the distance between the representations of source and target domains is crucial
in order to allow better knowledge transfer. Given that the probability distributions are
unknown, their distance is sometimes computed through an approximation (the proxy A-
distance Ben-David, Blitzer, Crammer, & Pereira, 2006) that considers the source and target
documents as two samples drawn from each distribution. The proxy A-distance is computed
as d̂A = 2(1−2ε), where ε is the error produced by an SVM trained to discriminate between
the source and target domains.

Figure 3 graphically compares, for the MDS dataset, the proxy A-distances between
domains (i) for the raw representations, and (ii) for the DCI representations. The d̂A is
clearly reduced in the cross-domain space generated by DCI, which contributes to explain
the improvement in performance with respect to the baseline “NoTrans” on the raw repre-
sentation. Such reduction is even more noticeable for semantically close domains such as
Electronics→Kitchen and Books→DVDs. Hence, DCI projects both domains into a common
vector space where the source and target distributions get effectively closer to each other,
thus facilitating the transfer of knowledge between them.

Finally, Table 12 reports performance accuracy in the text classification setting, that is,
assuming the test data follows the same marginal distribution and is represented in the same
term space as the training data. In this case, we consider as baselines (a) the well-known
BoW representation with tfidf weighting, and (b) the SCL-MI.

Even though the amount of experiments for the text classification case is too small to
allow any substantial claim, it is surprising that, in some runs, DCI with only 100 dimensions
yielded better results than traditional BoW representation considering all terms. This is a
topic we will investigate in future research.
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Figure 3: Proxy A-distances between domains of the MDS dataset. The vertical axis dis-
plays d̂A in the raw data (NoTrans), while the horizontal axis displays d̂A in the
vector space produced by DCI using cosine as the DCF. The abscissa coordinate
for each point (e.g., BK) is the averaged d̂A produced by domain adaptation in
both directions (e.g., EB → EK and EK → EB).

Table 12: Text Classification performance on the Webis-CLS-10 dataset.

Task BoW SCL-MI Linear PMI AMI Cos Poly RBF

EB → EB 0.829 0.828 0.848 0.855 0.836 0.854 0.856 0.853
ED → ED 0.831 0.815 0.819 0.826 0.798 0.818 0.821 0.809
EM → EM 0.845 0.832 0.838 0.846 0.825 0.841 0.844 0.835

Average 0.835 0.825 0.835 0.842 0.820 0.838 0.840 0.832

6.7 Efficiency

The computational cost of DCI is asymptotically bound by the cost of projecting f terms
from the two domains into an m-dimensional space, that could be roughly estimated as
O(fmc), where the c component is due to the cost of comparing two term distribution
models, that depends on the average prevalence c of terms in the unlabelled corpus –
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typically much smaller than the effective number of unlabelled documents as a result of to
sparsity.

Note that all probabilistic functions discussed in Section 4 can be implemented very
efficiently by using sparse data structures. For example, calculating the joint probability
P (v, w) is achieved in O(c) steps by intersecting two hash sets with c expected elements.
The kernel-based DCFs discussed here depend on the dot product or the Euclidean distance,
that can also be computed in O(c) by iterating only over non-zero values. Thus, DCI has
a computational cost of O(fmc); note that m is a fixed parameter, so that the overall cost
can also be considered to be O(fc). Other relevant alternatives do typically involve singular
value decomposition or matrix multiplication, thus resulting in O(dfc) algorithms, where d
is the number of documents or contexts in the collection.

We performed efficiency tests comparing DCI to SCL on the Webis-CLS-10 dataset.
The test was run for all combinations of source and target classes and all target languages,
which amounts to 36 runs. The same dedicated computer4 run all experiments with the
same number of 10 threads. Table 13 shows the averaged time scores obtained.

Table 13: Running time (in seconds) for DCI with two different DCFs (linear or cosine)
and for SCL.

Linear Cosine SCL-MI

Min (s) 6.406 7.501 449.988

Max (s) 22.119 27.032 859.719

Average (s) 11.553 17.774 678.834

Standard Deviation 3.976 5.516 98.324

SCL suffers from much higher computational costs than DCI. On average, DCI reduced
by 98.3% and 97.4% the computational cost with respect to SCL for the linear and cosine
DCFs, respectively. SCL required m = 450 binary optimization problems and translations,
and required performing LSA on the predictive parameters. Our DCI-based method ob-
tained better results in substantially less time. These efficiency tests suggest that DCI could
scale well to larger datasets.

6.8 Embeddings

As a final note, the intuitions behind DCI have strong relationships with those behind
“word embeddings”, as from deep learning, a research area that has gained interest in the
last renewed years. Neural language models are trained to obtain meaningful term repre-
sentations that seem to capture interesting language regularities (Bengio, 2009). Although
deep learning has been applied to cross-domain adaptation by Glorot et al. (2011) (a work
we used as a baseline in Section 6.5.1), cross-lingual adaptation requires additional effort.
That is, to consistently obtain bilingual word embeddings, large unlabelled datasets and
aligned corpora (Zou, Socher, Cer, & Manning, 2013) or bilingual dictionaries (Mikolov, Le,
& Sutskever, 2013) are typically required. Assuming a small set of words are translated (no

4. Computer specifications: 64-bit Intel Core (TM) Genuine-Intel I7 with 12 processors at 3.47GH, 24GB
RAM, running Ubuntu 14.04.2 LTS.
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more than 200 words in our experiments), our method obtains term profiles that perform
consistently in both languages for the classification task. Table 14 illustrates the semantic
properties captured by our term profiles; it lists the most similar (via cosine similarity)
target terms to a given source term.

Table 14: Five most similar terms in each of three target languages (German, French,
Japanese) given three terms (beautifully, classical, delightful) in English for the
Music domain.

beautifully classical delightful

schöne (≈ beautiful) 0.635 adagio 0.767 魅力(≈ attractive) 0.610

liebevoll (≈ loving) 0.596 Martenot 0.746 描き出さ(≈ portrayed) 0.546

sehnsucht (≈ longing) 0.533 Charles-Marie 0.736 風景(≈ scenes) 0.545

ungewöhnlich (≈ unusual) 0.510 violoncelle (≈ cello) 0.727 繊細(≈ delicate) 0.542

phantastisch (≈ fantastic) 0.507 soliste (≈ soloist) 0.720 味わえる(≈ taste) 0.538

For word embeddings, even assuming that external resources are available, an addi-
tional optimization problem, posed as a geometrical transformation involving scaling and
rotating the data matrices, is subsequently required in order to align the two embedding
spaces. This was done by Mikolov et al. (2013) by forcing the embedding representations
of some words of the bilingual dictionary to get closer to each other through the matrix
transformation. Apart from the additional computational cost this may involve, we believe
that such method might not be directly applicable to the scenario in which cross-domain
and cross-lingual adaptations are tackled simultaneously. The main reason is that this
final transformation aims at aligning the meaning of words taken from the bilingual dic-
tionary in both domains, which could play different roles across domains, i.e., if they are
not pivots. The embeddings generated by DCI do not require computationally expensive
post-processing, and the correspondences in roles for different terms in both domains turn
out to be directly captured by the DCF scores to the pivots.

To illustrate this, we used LSI to plot into a bidimensional space some important term
profiles from the EB → GM adaptation obtained by DCI with cosine as the DCF. Figure 4
shows two zoomed-in areas of the bilingual space. Noticeably, the left-most part of the plot
seems to represent the positive sentiment, while the right-most one seems to capture the
negative sentiment. Some relevant semantic correspondences could be directly observed.
Semantically related English words, such as expecting, expected, and hoping, are projected
close together in the space. More interestingly, some related semantics seem to be preserved
across languages, e.g., English words boring, irritating, bored and German words erschreckend
(terrifying), acherlich (ridiculous), and schrecklich (terribly) are projected into regions of the
space close to each other. Some interesting cases could be regarded as examples of cross-
semantic correspondence. For example classic and love (book genres) from English reviews
were projected close to folk and rock (music genres) from German reviews, an incidental
semantic correspondence that emerged due to the juxtaposition of cross-domain and cross-
lingual adaptation.
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Figure 4: Vector profiles as word embeddings obtained for EB → GM adaptation. Zoom
in the positive (left) and negative (right) sentiment area. The plot was obtained
by applying LSI to terms deemed highly informative by mutual information.

These preliminary experiments suggest that DCI embeddings could be potentially use-
ful for other tasks in natural language processing. This however will require a dedicated
investigation that we defer to future work.

7. Conclusions and Future Work

We have proposed Distributional Correspondence Indexing, an efficient method for domain
adaptation that represents terms in a vectorial space based on their distributional corre-
spondence with respect to a small, fixed set of terms. This representation is motivated by
Harris’ distributional hypothesis and the notion of a “pivot term” of Blitzer et al. (2006);
the method indexes documents from different domains into a common vector space based
on their semantic correspondence.

Empirical evaluation on two popular sentiment analysis benchmarks shows that our
method outperforms several state-of-the-art approaches in different domain-adaptation set-
tings, including cross-domain and cross-lingual sentiment adaptation. We have also pro-
posed an extended formulation of the domain adaptation problem, which tackles cross-
domain adaptation and cross-language adaptation at the same time; on this we have present
experiments where our system compares favourably to other related approaches. From the
point of view of efficiency, we show our method to require modest computational resources,
which is an indication that DCI can scale well to huge collections; in particular, in the
cross-lingual case it required a smaller amount of human intervention than competing ap-
proaches in order to create the pivot set. We presented some high-performance DCFs that
are parameter-free, which is a valuable characteristic in the domain adaptation setting,
given that we are not expected to count on labelled data drawn from the target distribution
on which parameters could be optimized.

The bilingual pivots created by a context-unaware word-translator oracle represent ar-
guably an oversimplified naive approach of the translation problem. Notwithstanding this,
DCI seems to compensate it with the aggregative contribution of the partial semantics scat-
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tered in several pivots. In this regard, we are interested in enhancing the concept of pivots for
cross-lingual adaptation in a more general direction that better captures the context-aware
multi-word translation, so as to attempt the polylingual case. Some possible directions
might include enriching the term representation so as to incorporate part-of-speech tags
and syntactic information, and also keeping track of the contexts in which a given term
appeared. Moreover, and motivated by some empirical evidences in the cross-domain ex-
periments that suggested comparable performance could be achieved even with extremely
reduced sets of pivots, we will investigate more sophisticated pivot selection techniques by
better characterizing the concept of pivot and the geometrical properties of the vector space
they generate. We also plan to put to test DCI in other domains and settings, including
multi-class multi- and single-label datasets, highly imbalanced classes, and transductive
problems.
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