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Abstract

Algorithms and models are increasingly deployed to inform decisions about people, in-
evitably affecting their lives. As a consequence, those in charge of developing these models
must carefully evaluate their impact on different groups of people and favour group fair-
ness, that is, ensure that groups determined by sensitive demographic attributes, such as
race or sex, are not treated unjustly. To achieve this goal, the availability (awareness)
of these demographic attributes to those evaluating the impact of these models is fun-
damental. Unfortunately, collecting and storing these attributes is often in conflict with
industry practices and legislation on data minimisation and privacy. For this reason, it can
be hard to measure the group fairness of trained models, even from within the companies
developing them. In this work, we tackle the problem of measuring group fairness under
unawareness of sensitive attributes, by using techniques from quantification, a supervised
learning task concerned with directly providing group-level prevalence estimates (rather
than individual-level class labels). We show that quantification approaches are particularly
suited to tackle the fairness-under-unawareness problem, as they are robust to inevitable
distribution shifts while at the same time decoupling the (desirable) objective of measur-
ing group fairness from the (undesirable) side effect of allowing the inference of sensitive
attributes of individuals. More in detail, we show that fairness under unawareness can be
cast as a quantification problem and solved with proven methods from the quantification
literature. We show that these methods outperform previous approaches to measure demo-
graphic parity in five experimental protocols, corresponding to important challenges that
complicate the estimation of classifier fairness under unawareness.

1. Introduction

The widespread adoption of algorithmic decision-making in high-stakes domains has deter-
mined an increased attention to the underlying algorithms and their impact on people, with
attention to sensitive (or “protected”) groups. Typically, sensitive groups are subpopula-
tions determined by salient social and demographic factors, such as race or sex. The unfair
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treatment of such groups is not only unethical, but also ruled out by anti-discrimination
laws, and is thus studied by a growing community of algorithmic fairness researchers. Im-
portant works in this area have addressed the unfair treatment of subpopulations that may
arise in the judicial system (Angwin et al., 2016; Berk et al., 2021; Larson et al., 2016),
healthcare (Gervasi et al., 2022; Obermeyer et al., 2019; Ricci Lara et al., 2022), search
engines (Ekstrand et al., 2022; Fabris et al., 2020; Geyik et al., 2019), insurance (Angwin
et al., 2017; Donahue and Barocas, 2021; Fabris et al., 2021), and computer vision (Buo-
lamwini and Gebru, 2018; Goyal et al., 2022; Raji and Buolamwini, 2019), just to name a
few domains that may be affected. One common trait of these research works is their atten-
tion to a careful definition (and subsequent measurement) of what it means for a model to
be fair to the subgroups involved (group fairness), which is typically viewed in terms of dif-
ferences, across the salient subpopulations, in quantities of interest such as accuracy, recall,
or acceptance rate. According to popular definitions of fairness, sizeable such differences
(e.g., between women and men) correspond to low fairness on the part of the algorithm
(Barocas et al., 2019; Dwork et al., 2012; Pedreshi et al., 2008).

Unfortunately, sensitive demographic data, such as the race or sex of subjects, are
often not available, since practitioners find several barriers to obtaining these data, both
during model development and after deployment. Among these barriers, legislation plays
a major role, prohibiting the collection of sensitive attributes in some domains (Bogen
et al., 2020). Even in the absence of explicit prohibition, privacy-by-design standards and a
data minimization ethos often push companies in the direction of avoiding the collection of
sensitive data from their customers. Similarly, the prospect of negative media coverage is
a clear concern, so companies often err on the side of caution and inaction (Andrus et al.,
2021). The unavailability of these data thus makes the measurement of model fairness
nontrivial, even for the company that is developing and/or deploying the model. For these
reasons, in a recent survey of industry professionals, most of the respondents stated that
the availability of tools that support fairness auditing in the absence of individual-level
demographics would be very useful (Holstein et al., 2019). In other words, the problem of
measuring group fairness when the values of the sensitive attributes are unknown (fairness
under unawareness) is pressing and requires ad hoc solutions.

In the literature on algorithmic fairness, much work has been done to propose techniques
directly aimed at improving the fairness of a model (Donini et al., 2018; Hardt et al., 2016;
Hashimoto et al., 2018; He et al., 2020; S. Sankar et al., 2021; Zafar et al., 2017). However,
relatively little attention has been paid to the problem of reliably measuring fairness. This
represents an important, but rather overlooked, preliminary step to enforce fairness and
make algorithms more equitable across groups. More recent works have studied non-ideal
conditions, such as missing data (Goel et al., 2021), noisy or missing group labels (Awasthi
et al., 2020; Chen et al., 2019), and non-iid samples (Rezaei et al., 2021; Singh et al., 2021),
and showed that näıve fairness-enhancing algorithms may actually make a model less fair
under noisy demographic information (Ghosh et al., 2021a; Mehrotra and Celis, 2021).

In this work, we propose a novel solution to the problem of measuring classifier fairness
under unawareness by using techniques from quantification (Esuli et al., 2023; González
et al., 2017), a supervised learning task concerned with estimating, rather than the class
labels of individual data points, the class prevalence values for samples of such data points,
i.e., group-level quantities, such as the percentage of women in a given sample. Quantifi-
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cation methods address two pressing facets of the fairness under unawareness problem: (1)
their estimates are robust to distribution shift (i.e., to the fact that the distribution of the
labels in the unlabeled data may significantly differ from the analogous distribution in the
training data), which is often inevitable since populations evolve, and demographic data are
unlikely to be representative of every condition encountered at deployment time; (2) they
allow the estimation of group-level quantities but do not allow the inference of sensitive
attributes at the individual level, which is beneficial since the latter might lead to the inap-
propriate and nonconsensual utilization of this sensitive information, reducing individuals’
agency over data (Andrus and Villeneuve, 2022). Quantification methods achieve these
goals by directly targeting group-level prevalence estimates. They do so through a variety
of approaches, including, e.g., dedicated loss functions, task-specific adjustments, and ad
hoc model selection procedures.

Overall, we make the following contributions:

• Quantifying fairness under unawareness. We show that measuring fairness under
unawareness can be cast as a quantification problem and solved with approaches
of proven consistency established in the quantification literature (Section 4). We
propose and demonstrate several high-accuracy fairness estimators for both vanilla
and fairness-aware classifiers.

• Experimental protocols for five major challenges. Drawing from the algorith-
mic fairness literature, we identify five important challenges that arise in estimating
fairness under unawareness. These challenges are encountered in real-world applica-
tions, and include the nonstationarity of the processes generating the data and the
variable cardinality of the available samples. For each such challenge, we define and
formalise a precise experimental protocol, through which we compare the performance
of quantifiers (i.e., group-level prevalence estimators) generated by six different quan-
tification methods (Sections 5.3–5.7).

• Decoupling group-level and individual-level inferences. We consider the prob-
lem of potential model misuse to maliciously infer demographic characteristics at an
individual level, which represents a concern for proxy methods, i.e., methods that mea-
sure model fairness based on proxy attributes. Proxy methods are estimators of sen-
sitive attributes which exploit the correlation between available attributes (e.g., ZIP
code) and the sensitive attributes (e.g., race) in order to infer the values of the latter.
Through a set of experiments, we demonstrate two methods that yield precise esti-
mates of demographic disparity but poor classification performance, thus decoupling
the (desirable) objective of group-level prevalence estimation from the (undesirable)
objective of individual-level class label prediction (Section 5.9).

It is worth noting from the outset some intrinsic limitations of proxy methods and measures
of group fairness. In essence, proxy methods exploit the co-occurrence of membership in
a group and display of a given trait, potentially learning, encoding and reinforcing stereo-
typical associations (Lipton et al., 2018). More in general, even when labels for sensitive
attributes are available, these are not all equivalent. Self-reported labels are preferable to
avoid external assignment (i.e., inference of sensitive attributes), which can be harmful in

1119



Fabris, Esuli, Moreo, & Sebastiani

itself (Keyes, 2018). In broader terms, approaches that define sensitive attributes as rigid
and fixed categories are limited in that they impose a taxonomy onto people, erasing the
needs and experiences of those who do not fit the envisioned prevalent categories (Namaste,
2000). Although we acknowledge these limitations, we hope that our work will help high-
light, investigate, and mitigate unfavourable outcomes for disadvantaged groups caused by
different automated decision-making systems.

The outline of this work is as follows. Section 2 summarizes the notation and background
for this article. Section 3 introduces related works. After giving a primer on quantification,
with emphasis on the approaches we consider in this work, Section 4 shows how these
approaches can be leveraged to measure fairness under unawareness of sensitive attributes.
Section 5 presents our experiments, in which we tackle, one by one, each of the five major
challenges mentioned above. We then summarize and discuss these results (Section 6) and
present concluding remarks (Section 7), describing key limitations and directions for future
work.

Our code is available at https://github.com/alessandro-fabris/ql4facct.

2. Preliminaries

2.1 Notation

In this paper, we use the following notation, summarized in Table 1. By x we indicate a
data point drawn from a domain X , represented via a set X of nonsensitive attributes (i.e.,
features). We use S to denote a sensitive attribute that takes values in S = {0, 1}, and by
s ∈ S a value that S may take.1 By Y we indicate a class (representing the target of a
prediction task) taking values in a binary domain Y = {⊖,⊕}, and by y ∈ Y a value that
Y can take. The symbol σ denotes a sample, i.e., a non-empty set of data points drawn
from X . By pσ(s) we indicate the true prevalence of an attribute value s in the sample σ,
while by p̂qσ(s) we indicate the estimate of this prevalence obtained by means of a quantifier
q, which we define as a function q : 2X → [0, 1]. Since 0 ≤ pσ(s) ≤ 1 and 0 ≤ p̂qσ(s) ≤ 1
for all s ∈ S, and since

∑
s∈S pσ(s) =

∑
s∈S p̂qσ(s) = 1, the pσ(s)’s and the p̂qσ(s)’s form two

probability distributions in S. We also introduce the random variable Ŷ , which denotes a
predicted label. By Pr(V = v) we indicate, as usual, the probability that a random variable
V takes value v, which we shorten as Pr(v) when V is clear from the context, since X,S, Y
can also be seen as random variables. By h : X → Y we indicate a binary classifier that
assigns classes in Y to data points in X ; by k : X → S we instead indicate a binary classifier
that assigns sensitive attribute values in S to data points (e.g., that predicts the sensitive
attribute value of a certain data item x). It is worth re-emphasizing that both h and k only
use nonsensitive attributes X as input variables, For ease of use, we will interchangeably
write h(x) = y or hy(x) = 1, and k(x) = s or ks(x) = 1.

2.2 Background

Several criteria for group fairness have been proposed in the machine learning literature,
typically requiring equalization of some conditional or marginal property of the distribution

1. Note that, for ease of exposition, we consider only one binary sensitive attribute; our approach straigh-
forwardly applies to more complex settings (see Remark 5).
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Table 1: Main notational conventions used in this work.

x ∈ X a data point, i.e., a vector of non-sensitive attribute values
s ∈ S a value for the sensitive attribute , with S = {0, 1}
y ∈ Y a class from the target domain Y = {⊖,⊕}

X,S, Y, Ŷ random variables for data points, non-sensitive attributes,
classes, and class predictions

h(x) a classifier h : X → Y issuing predictions in Y for data
points in X

k(x) a classifier k : X → S issuing predictions in S for data points
in X

σ a sample, i.e., a non-empty set of data points drawn from X
pσ(s) true prevalence of sensitive attribute value s in sample σ
p̂σ(s) estimate of the prevalence of sensitive attribute value s in

sample σ
p̂qσ(s) estimate p̂σ(s) obtained via quantifier q
q(σ) a quantifier q : 2X → [0, 1] estimating the prevalence of the

positive class of sensitive attribute S in a sample
D1 set of pairs (xi, yi) ∈ (X ,Y) for training classifier h(x)
D2 set of pairs (xi, si) ∈ (X ,S) for training quantifier q(σ)
D3 set of points xi ∈ X to which h(x) and q(σ) are to be applied

Dy
2 short for DŶ=y

2 = {(xi, si) ∈ D2 | h(xi) = y}
Dy

3 short for DŶ=y
3 = {xi ∈ D3 | h(xi) = y}

D̆ a set derived from D according to an experimental protocol
among those detailed in Sections 5.3–5.7

of sensitive variable S, ground truth Y , and classifier estimate Ŷ (Dwork et al., 2012; Hardt
et al., 2016; Narayanan, 2018). The main criteria of observational group fairness (Barocas
et al., 2019), i.e., the ones computed directly from groupwise confusion matrices, are defined
as follows:

Definition 1. Given a classifier h : X → Y issuing predictions ŷ = h(x), and given the
respective ground truth labels y, the following groupwise disparities with respect to attribute
S can be defined.

Demographic Disparity: δS,DD
h = Pr(Ŷ = ⊕|S = 1)− Pr(Ŷ = ⊕|S = 0)

True Positive Rate Disparity: δS,TPRD
h = Pr(Ŷ = ⊕|S = 1, Y = ⊕)− Pr(Ŷ = ⊕|S = 0, Y = ⊕)

True Negative Rate Disparity: δS,TNRD
h = Pr(Ŷ = ⊖|S = 1, Y = ⊖)− Pr(Ŷ = ⊖|S = 0, Y = ⊖)

Positive Predicted Value Disparity: δS,PPVD
h = Pr(Y = ⊕|S = 1, Ŷ = ⊕)− Pr(Y = ⊕|S = 0, Ŷ = ⊕)

Negative Predicted Value Disparity: δS,NPVD
h = Pr(Y = ⊖|S = 1, Ŷ = ⊖)− Pr(Y = ⊖|S = 0, Ŷ = ⊖)
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Demographic disparity, for example, measures whether the prevalence of the positive class
is the same across subpopulations identified by the sensitive attribute S; a value δS,DD

h = 0

indicates maximum fairness, while values of δS,DD
h = −1 or δS,DD

h = +1 indicate minimum
fairness, i.e., maximum advantage for S = 0 over S = 1 or vice versa. We illustrate the
problem of measuring fairness under unawareness using an example focused on demographic
disparity.

Example 1. Assume that S stands for “race”, S = 1 for “African-American” and S = 0 for
“White”,2 and that the classifier, deployed by a bank, is responsible for recommending loan
applicants for acceptance, classifying them as “grant” (⊕) or “deny” (⊖). For simplicity, let
us assume that the outcome of the classifier will be translated directly into a decision without
human supervision. The bank might want to check that the fraction of loan recipients out
of the total number of applicants is approximately the same in the African-American and
White subpopulations. In other words, the bank might want δS,DD

h to be close to 0. Of
course, if the bank is aware of the race of each applicant, this constraint is very easy to
check and, potentially, enforce. If the bank is unaware of the applicants’ race, the problem
is not trivial, and can be addressed by the method we propose in this paper.

3. Related Work

3.1 Fairness Under Unawareness

Unavailability of sensitive attribute values poses a major challenge for internal and external
fairness audits. When these values are unknown, it is sometimes possible to seek expert
advice to obtain them (Buolamwini and Gebru, 2018). Alternatively, disclosure procedures
have been proposed for subjects to provide their sensitive attributes to a trusted third
party (Veale and Binns, 2017) or to share them encrypted (Kilbertus et al., 2018). Another
line of research studies the problem of reliably estimating measures of group fairness, in
classification (Awasthi et al., 2021; Chen et al., 2019; Kallus et al., 2020) and ranking
(Ghazimatin et al., 2022; Kırnap et al., 2021), without access to sensitive attributes, via
proxy variables.

(Chen et al., 2019) is the work most closely related to ours. The authors study the
problem of estimating the demographic disparity of a classifier, exploiting the values of non-
sensitive attributesX as proxies to infer the value of the sensitive variable S. Starting from a
näıve approach, dubbed threshold estimator (TE), which estimates µ(s) = Pr(Ŷ = ⊕|S = s)
as

µ̂TE(s) =

∑
xi
ks(xi)h⊕(xi)∑
xi
ks(xi)

(1)

i.e., by using a hard classifier ks : X → {0, 1} (which outputs Boolean decisions regarding
membership in a sensitive group S = s), they propose a weighted estimator (WE) with
better convergence properties.

µ̂WE(s) =

∑
xi
πs(xi)h⊕(xi)∑
xi
πs(xi)

(2)

2. While acknowledging its limitations (Strmic-Pawl et al., 2018), we follow the race categorization adopted
by the US Census Bureau wherever possible.
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WE exploits a soft classifier πs : X → [0, 1] that outputs posterior probabilities Pr(s|xi).
The posteriors represent the probability that the classifier attributes to the fact that xi

belongs to the subpopulation with sensitive attribute S = s. The authors argue that the
näıve estimator of Equation (1) has a tendency to exaggerate disparities, and show that WE
mitigates this problem under the hypothesis that πs(xi) outputs well-calibrated posterior
probabilities. A contribution of our paper is to show that TE and WE are just instances
of a broad family of estimators (Proposition 2). Moreover, we consider alternative methods
from the same family, and show them to outperform both TE and WE on an extensive suite
of experiments (Section 5).

Kallus et al. (2020) study the problem of measuring a classifier’s demographic disparity,
true positive rate disparity, and true negative rate disparity in a setting with access to
a primary dataset involving (Ŷ , Z) and an auxiliary dataset involving (S,Z), where Z is
a generic set of proxy variables, potentially disjoint from X. They show that reliably
estimating the demographic disparity of a classifier issuing predictions Ŷ when Z is not
highly informative with respect to Ŷ or S is infeasible. Moreover, they provide upper and
lower bounds for the true value of the estimand in a setting where the primary and auxiliary
datasets are drawn from marginalisations of a common joint distribution. Our work departs
from this setting in two important ways, to focus on realistic conditions for internal fairness
audits. Firstly, we take into account the nonstationarity of the processes generating the data
and do not assume the primary and auxiliary dataset to be marginalisations of the same
joint distribution. Rather, we identify different sources of distribution shift, and formalize
them into protocols to test the performance of different estimators in a more realistic setting
(Sections 5.3–5.7). Secondly, we hypothesize that, from within the company deploying a
classifier h(x), the available proxy variables Z comprise X, and are thus highly informative
with respect to Ŷ .

Awasthi et al. (2021) characterize the structure of the best estimator for sensitive at-
tributes when the final estimand is a classifier’s disparity in true positive rates across pro-
tected groups. They show that the test accuracy of the attribute classifier and its perfor-
mance as an estimator of the true positive rate disparity are not necessarily correlated. We
contribute to this line of research, demonstrating the possibility to decouple the classifica-
tion performance of a model when deployed for sensitive attribute inference at the individual
level, which constitutes a privacy infringement, from its quantification performance in appli-
cations where it is used for group-level estimates (Section 5.9). This line of work opens the
possibility of developing estimators that reliably measure group fairness under unawareness
of sensitive attributes, while guaranteeing privacy at the individual level.

3.2 Quantification and Fairness

The application of quantification methods in algorithmic fairness research is not entirely
new. Biswas and Mukherjee (2021) study the problem of enforcing fair classification under
distribution shift, which potentially affects different demographic groups at different rates.
They define a notion of fairness based on the proportionality between the prevalence of
positives in a protected group S = s and the group-specific acceptance rate of a classifier
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issuing predictions Ŷ . This notion, called proportional equality, is defined by the quantity

PE =

∣∣∣∣∣Pr(Y = ⊕|S = 1)

Pr(Y = ⊕|S = 0)
− Pr(Ŷ = ⊕|S = 1)

Pr(Ŷ = ⊕|S = 0)

∣∣∣∣∣
calculated on a test set D, where low values of PE correspond to fairer predictions Ŷ . In the
presence of distribution shift between training and testing conditions, the true group-specific
prevalences Pr(Y = ⊕|S = 1) and Pr(Y = ⊕|S = 0) are unknown. The authors use an
approach from the quantification literature to estimate these prevalence values, integrating
it in a wider system aimed at optimizing PE.

In other words, prior work applying quantification to problems of algorithmic fairness
concentrates on enforcing classifier fairness under unawareness of target labels. Our work,
on the other hand, aims at measuring classifier fairness under unawareness of sensitive
attributes.

4. Measuring Fairness Under Unawareness: A Quantification-based
Method

In this section, we first present a primer on quantification (Section 4.1), and then show
how to measure fairness under unawareness with quantification (Section 4.2), discussing
the properties of the resulting estimators.

4.1 Learning to Quantify

Quantification (also known as supervised prevalence estimation, or learning to quantify) is
the task of training, by means of supervised learning, a predictor that estimates the relative
frequency (also known as prevalence, or prior probability) of the classes of interest in a
sample of unlabelled data points, where the data used to train the predictor are a set of
labelled data points; see González et al. (2017) for a survey of quantification research.

Definition 2. Given a sample σ of data points x ∈ X , with unknown target labels in domain
S, a quantifier q(σ) is an estimator q : 2X → [0, 1] that predicts the prevalence of class s in
the sample σ as p̂qσ(s) = q(σ).

Remark 1. The above definition is deliberately broad to include the trivial classify and
count baseline introduced below. In practice, a method is truly quantification-based when
explicitly targeting prevalence estimates, rather than simply treating them as a by-product of
classification. This includes methods that make use of dedicated loss functions, task-specific
adjustments, and ad hoc model selection procedures. Typically, the prevalence estimates
issued by these methods display desirable properties of unbiasedness and convergence.

Quantification can be trivially solved via classification, i.e., by classifying all the unlabelled
data points by means of a standard classifier, counting, for each class, the data points
that have been assigned to the class, and normalizing. However, it has unequivocally been
shown (see, among many others, Fernandes Vaz et al. (2019); Forman (2008); González
et al. (2017); González-Castro et al. (2013); Moreo and Sebastiani (2022)) that solving
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quantification by means of this classify and count (CC) method is suboptimal, and that
more accurate quantification methods exist. The key reason behind this is the fact that
many applicative scenarios suffer from distribution shift, therefore the class prevalence values
in the training set may substantially differ from the class prevalence values in the unlabelled
data that the classifier issues predictions for (Moreno-Torres et al., 2012). The presence
of distribution shift means that the well-known IID assumption, on which most learning
algorithms for training classifiers are based, does not hold; in turn, this means that CC will
perform suboptimally on scenarios that exhibit distribution shift, and that the higher the
amount of shift, the worse we can expect CC to perform.

A wide variety of quantification methods have been defined in the literature. In the
experiments presented in this paper, we compare six such methods, which we briefly present
in this section. One of them is the trivial CC baseline; we have chosen the other five
methods over other contenders because they are simple and proven, and because some
of them (especially the ACC, PACC, SLD and HDy methods; see below) have shown top-
notch performance in recent comparative tests run in other domains (Moreo and Sebastiani,
2021, 2022). We briefly describe them here, with direct reference to the application we are
interested in, i.e., estimating the prevalence of a protected subgroup.

As mentioned above, an obvious way to solve quantification (used, among others, in
Equation 1) is by aggregating the predictions of a “hard” classifier, i.e., a classifier ks :
X → {0, 1} that outputs Boolean decisions regarding membership in a sensitive group
(defined by constraint S = s). The (trivial) classify and count (CC) quantifier then comes
down to computing

p̂CC
σ (s) =

∑
xi∈σ ks(xi)

|σ|
. (3)

Alternatively, quantification methods can use a “soft” classifier πs : X → [0, 1] that produces
posterior probabilities Pr(s|xi). The resulting probabilistic classify and count quantifier
(PCC) (Bella et al., 2010) is defined by the equation

p̂PCC
σ (s) =

∑
xi∈σ πs(xi)

|σ|
. (4)

It should be noted that PCC and CC are clearly related to WE and TE, summarized by
Equations (1) and (2), as shown later in Proposition 2.

A different and popular quantification method consists of applying an adjustment to the
prevalence p̂CC

σ (s) estimated through “classify and count”. It is easy to check that, in the
binary case, the true prevalence pσ(s) and the estimated prevalence p̂CC

σ (s) are such that

pσ(s) =
p̂CC
σ (s)− fprks
tprks − fprks

(5)

where tprks and fprks stand for true positive rate and false positive rate of the classifier ks
used to obtain p̂CC

σ (s). The values of tprks and fprks are unknown, but can be estimated
via k-fold cross-validation on the training data. This boils down to using the results ks(xi)
obtained in the k-fold cross-validation (i.e., xi ranges on the training items) in Equations

ˆtprks =

∑
{(xi,si)|si=s} ks(xi)

|{(xi, si)|si = s}|
ˆfprks =

∑
{(xi,si)|si ̸=s} ks(xi)

|{(xi, si)|si ̸= s}|
. (6)
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We obtain estimates of pACC
σ (s), which define the adjusted classify and count method

(ACC) (Forman, 2008), by replacing tprks and fprks in Equation 5 with the estimates
of Equation 6, i.e.,

p̂ACC
σ (s) =

p̂CC
σ (s)− ˆfprks
ˆtprks − ˆfprks

. (7)

If the soft classifier πs(xi) is used in place of ks(xi), analogues of ˆtprks and ˆfprks from
Equation 6 can be defined as

ˆtprπ =

∑
{(xi,si)|si=s} πs(xi)

|{(xi, si)|si = s}|
ˆfprπ =

∑
{(xi,si)|si ̸=s} πs(xi)

|{(xi, si)|si ̸= s}|
. (8)

We obtain pPACC
σ (s) estimates, which define the probabilistic adjusted classify and count

method (PACC) (Bella et al., 2010), by replacing all factors on the right-hand side of
Equation 7 with their “soft” counterparts from Equations 4 and 8, i.e.,

p̂PACC
σ (s) =

p̂PCC
σ (s)− ˆfprπ
ˆtprπ − ˆfprπ

. (9)

A further method is the one proposed in (Saerens et al., 2002) (which we here call SLD,
from the names of its proposers), which consists of training a probabilistic classifier and
then using the Expectation–Maximization (EM) algorithm (i) to update (in an iterative,
mutually recursive way) the posterior probabilities that the classifier returns, and (ii) to
re-estimate the class prevalence values of the test set until convergence. This makes the
method robust to distribution shift, since the iterative process allows the estimates of the
prevalence values to become increasingly attuned to the changed conditions found in the
unlabelled set. Pseudocode describing the SLD algorithm can be found in Appendix A.

We consider HDy (González-Castro et al., 2013), a probabilistic binary quantification
method that views quantification as the problem of minimizing the divergence (measured
in terms of the Hellinger Distance) between two cumulative distributions of posterior prob-
abilities returned by the classifier, one coming from the unlabelled examples and the other
coming from a validation set. HDy looks for the mixture parameter α that best fits the val-
idation distribution (consisting of a mixture of a “positive” and a “negative” distribution)
to the unlabelled distribution, and returns α as the estimated prevalence of the positive
class. Here, robustness to distribution shift is achieved by the analysis of the distribution of
the posterior probabilities in the unlabelled set, which reveals how conditions have changed
with respect to the training data. A more detailed description of HDy can be found in
Appendix B.

Lastly, we consider Maximum Likelihood Prevalence Estimator (MLPE), a dummy
method that assumes there is no shift and always returns the class prevalence value as found
in the training data, as the estimate of any future test sample. This method is not a serious
contender, since MLPE makes no real attempt to address the problem. Notwithstanding
this, MLPE is going to generate very low error values in all protocols in which the test
prevalence is kept fixed.
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4.2 Using Quantification to Measure Fairness Under Unawareness

We assume the existence, in the operational setup, of three separate sets of data points:

• A training set D1 for h, D1 = {(xi, yi) | xi ∈ X , yi ∈ Y}, typically of large size, where
h is the classifier whose fairness we want to measure. Given the difficulties inherent
in demographic data procurement mentioned in the introduction, we assume that the
sensitive attribute S is not part of the vectorial representation X.

• A small auxiliary set D2 = {(xi, si) | xi ∈ X , si ∈ S}, containing demographic data,
employed to train quantifiers for the sensitive attribute.

• A set D3 = {xi | xi ∈ X} of unlabelled data points, which are the data to which
classifier h is to be applied, representing the deployment conditions. Alternatively,
D3 could also be a labelled held-out test set available at a company, if it has acted
proactively rather than reactively, for pre-deployment audits (Raji et al., 2020). In
our experiments we will use labelled data and call D3 the test set, on which the fairness
of the classifier h should be measured.

It is worth re-emphasizing that, from the perspective of the estimation task at hand, i.e.,
estimating the fairness of the classifier h, D2 represents the quantifier’s training set, while
D3 is its test set.

Proposition 1. Observational measures of algorithmic fairness, such as the ones introduced
in Definition 1, can be computed, under unawareness of sensitive attributes, by estimating
the prevalence of the sensitive attribute in specific subsets of the test set.

Proof. We prove this statement for TPRD in Definition 1, which we recall below:

True Positive Rate Disparity: δS,TPRD
h = Pr(Ŷ = ⊕|S = 1, Y = ⊕)− Pr(Ŷ = ⊕|S = 0, Y = ⊕)

Both terms in the above equation can be written as

Pr(Ŷ = ⊕|S = s, Y = ⊕) = Pr(Y = ⊕, Ŷ = ⊕, S = s)

Pr(Y = ⊕, S = s)

=
Pr(S = s|Y = ⊕, Ŷ = ⊕)

Pr(S = s|Y = ⊕)︸ ︷︷ ︸
obtained from prevalence estimator

· Pr(Y = ⊕, Ŷ = ⊕)
Pr(Y = ⊕)︸ ︷︷ ︸
known quantity

In other words, TPRD can be calculated by estimating the prevalence of the sensitive attribute
among the positives and the true positives in D3. Analogous results can be proven for other measures
of observational fairness, under the assumption that Y and Ŷ are known.

Remark 2. This proposition is important for two reasons. First, it shows that inference
of sensitive attributes at the individual level is not necessary to measure fairness under
unawareness; rather, prevalence estimates in given subsets are sufficient. Second, it suggests
that methods directly targeting prevalence estimates (i.e., quantifiers) are especially suited
in this setting.
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Notice that, for the purposes of a fairness audit, it is common to assume that the ground
truth variable Y is available in D3. In the banking scenario of Example 1, this is only
partially realistic, as the outcomes for the accepted applicants are eventually observed,
but the outcomes for the rejected applicants remain unknown, leaving us with a problem
of sample selection bias (Banasik et al., 2003). This is an instance of a general estimation
problem, common to all fairness criteria that require knowledge of the ground truth variable
Y , such as TPRD, TNRD, PPVD, and NPVD in Definition 1. This represents an open
research problem (Sabato and Yom-Tov, 2020; Wang et al., 2021b) which is beyond the
scope of this work and demands additional caution in the estimation and interpretation of
these fairness measures.

In the remainder of this article, we focus on a detailed study of demographic disparity
(DD). This allows us to thoroughly characterize and discuss DD estimators while avoiding
the pitfalls and complexity of uncertain ground truth information. We leave additional
measures of observational fairness for future work.

Following (Chen et al., 2019), we write DD as

δSh = Pr(Ŷ = ⊕|S = 1)− Pr(Ŷ = ⊕|S = 0) = µ(1)− µ(0), (10)

where

µ(s) = Pr(Ŷ = ⊕|S = s) (11)

is the acceptance rate of individuals in the group S = s. To estimate the demographic
disparity of a classifier h(x) in the test set D3, we can use any quantification approach from
Section 4.1. Applying Bayes’ theorem to Equation (11), we obtain

µ(s) = pD3(⊕|s)

= pD⊕
3
(s)

pD3(⊕)
pD3(s)

, (12)

where we use pD3(⊕) as a shorthand of pD3(h(x) = ⊕), and where we have defined

D⊕
3 ={x ∈ D3 | h(x) = ⊕}
D⊖

3 ={x ∈ D3 | h(x) = ⊖}.

Since pD3(⊕) is known (it is the fraction of items in D3 that have been assigned class ⊕ by
the classifier h), in order to compute µ(s) through Equation (12), for s ∈ {0, 1}, we only
need to estimate the prevalence values p̂D⊕

3
(s) and p̂D⊖

3
(s); the latter is needed to estimate

the denominator of Equation (12), i.e., the prevalence pD3(s) of the sensitive attribute value
s in the entire test set D3, since

pD3(s) = pD⊕
3
(s) · pD3(⊕) + pD⊖

3
(s) · pD3(⊖). (13)

In order to compute pD⊕
3
(s) and pD⊖

3
(s) we can use a quantification-based approach, which

can be easily integrated into existing machine learning workflows, as summarized by the
method below.

Method. Quantification-Based Estimate of Demographic Disparity.
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1. The classifier h : X → Y is trained on D1 and ready for deployment, e.g., to estimate
the creditworthiness of individuals. The assumption that, at this training stage, we are
unaware of the sensitive attribute S is due to the inherent difficulties in demographic
data procurement already mentioned in Section 1.

2. We use the classifier h to classify the auxiliary set D2, thus inducing a partition of D2

into D⊕
2 = {(xi, si) ∈ D2 | h(x) = ⊕} and D⊖

2 = {(xi, si) ∈ D2 | h(x) = ⊖}.

3. We use D⊕
2 as the training set for the quantifier q⊕(s), whose task will be to estimate

the prevalence of value s (e.g., African-American applicants) on sets of data points
labelled with class ⊕ (e.g., creditworthy applicants). Likewise, we use D⊖

2 as the
training set for a quantifier q⊖(s) whose task will be to estimate the prevalence of
s on sets of data points labelled with ⊖. Intuitively, separate quantifiers specialized
on different subpopulations (of positively and negatively classified individuals) should
perform better than a single quantifier. The ablation study in Section 5.10 supports
this hypothesis.

4. The classifier h is deployed, classifying the test set D3, thus inducing a partition of
D3 into positive D⊕

3 = {x ∈ D3 | h(x) = ⊕} and negative D⊖
3 = {x ∈ D3 | h(x) = ⊖}.

5. We apply the quantifier q⊕ to D⊕
3 to obtain an estimate p̂

q⊕
D⊕

3

(s) of the prevalence of s

in D⊕
3 , and we apply q⊖ to D⊖

3 to obtain an estimate p̂
q⊖
D⊖

3

(s) of the prevalence of s in

D⊖
3 . Recall from Section 2.1 that p̂qσ(s) denotes the prevalence of an attribute value s

in a set σ as estimated via quantification method q.

6. To avoid numerical instability in the denominator of Equation (15) below, we apply
Laplace smoothing to the estimated prevalence values p̂

q⊕
D⊕

3

(s) and p̂
q⊖
D⊖

3

(s). We use the

variant that uses known incidence rates, using D⊖
2 and D⊕

2 as the control populations,
and assume a pseudocount α = 1/2. We thus compute the smoothed estimator

p̃
q⊕
D⊕

3

(s) =
p̂
q⊕
D⊕

3

(s) · |D⊕
3 |+ pD⊕

2
(s) · α · |Y|

|D⊕
3 |+ α · |Y|

=
p̂
q⊕
D⊕

3

(s) · |D⊕
3 |+ pD⊕

2
(s)

|D⊕
3 |+ 1

and analogously for p̃
q⊖
D⊖

3

(s).

7. Finally, we estimate the demographic disparity of h, defined in Equation (10), as

δ̂Sh = µ̂(1)− µ̂(0) (14)

where, as from Equations (12) and (13),

µ̂(s) = p̃
q⊕
D⊕

3

(s) · pD3(⊕)
p̃
q⊕
D⊕

3

(s) · pD3(⊕) + p̃
q⊖
D⊖

3

(s) · pD3(⊖)
(15)
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Remark 3. Therefore, prevalence estimates p̂
q⊕
D⊕

3

(s) and p̂
q⊖
D⊖

3

(s), obtained with a quantifi-

cation method of the type introduced in Section 4.1, can be translated into estimates of a
classifier’s demographic disparity using Equations (14) and (15). Importantly, the bias and
variance of said estimate depend on the properties of the underlying quantification method,
which have been characterized in the quantification literature. For example, SLD, ACC, and
PACC have been shown to be Fisher-consistent, that is, unbiased, under prior probability
shift (Fernandes Vaz et al., 2019; Tasche, 2017). In other words, we expect Equation 14
instantiated with SLD, PCC, and PACC to provide unbiased estimates when D2 and D3 are
linked by prior probability shift. We verify this property in Sections 5.3 and 5.4.

It is worth noting that the weighted estimator (WE) introduced in (Chen et al., 2019),
summarized by Equation (2), can be viewed as a special case of this approach, as shown by
the proposition below.

Proposition 2. The weighted estimator of Equation (2) is a special case of quantification-
based estimation of demographic disparity, instantiated with the PCC quantification method.
Moreover, the threshold estimator of Equation (1) corresponds to CC.

Proof. See Appendix C.

Remark 4. The above proposition shows that PCC and WE are equivalent, and that the
trivial CC quantifier is equivalent to TE. We treat these methods as prior art and refer to
them as CC and PCC for consistency of exposition.

This quantification-based method of addressing demographic disparity is suitable for inter-
nal fairness audits, since it allows unawareness of the sensitive attribute S (i) in the set
D1 used for training the classifier h to be audited, and (ii) in the set D3 on which this
classifier is going to be deployed; it only requires the availability of an auxiliary data set D2

where the attribute S is labelled. Dataset D2 may originate from a targeted effort, such as
interviews (Baker et al., 2005), surveys sent to customers asking for voluntary disclosure of
sensitive attributes (Andrus et al., 2021), or other optional means of sharing demographic
information (Beutel et al., 2019a,b). Alternatively, it could derive from data acquisitions
carried out for other purposes (Galdon Clavell et al., 2020).

Finally, note that, in this paper, we assume the existence of a single binary sensitive
attribute S only for ease of exposition; our approach can straightforwardly used in more
complex scenarios.

Remark 5. Our method can deal with multiple, non-binary sensitive attributes.

If multiple sensitive attributes are present at the same time, one can simply measure
fairness with respect to each sensitive attribute separately, if interested in independent
assessments, or jointly, if emphasizing intersectionality (Ghosh et al., 2021b). Our ap-
proach can also be extended to deal with categorical, non-binary attributes. In this case,

1130



Measuring Fairness Under Unawareness Using Quantification

Table 2: Summary of experimental protocols.

Protocol name Variable Motivation Section

sample-prev-D3 joint distribution of (S, Ŷ )
in D3, via sampling

post-deployment drift, ripple
effect, domain adaptation

§ 5.3

sample-prev-D2 joint distribution of (S, Ŷ )
in D2, via sampling

skewed auxiliary data, non-
response bias

§ 5.4

sample-size-D2 size of D2, via sampling variable response rates, issues
with sensitive data procure-
ment

§ 5.5

sample-prev-D1 joint distribution of (S, Y )
in D1, via sampling

censored data, sampling bias § 5.6

flip-prev-D1 joint distribution of (S, Y )
in D1, via label flipping

ground truth distortion, group-
dependent annotation inaccu-
racy

§ 5.7

one needs (1) to extend the notion of demographic disparity to the case of non-binary at-
tributes. This can be done, e.g., by considering, instead of the simple difference between
two acceptance rates µ(s) as in Equation (10), the variance of the acceptance rates across
the possible values of S, or the difference between the highest and lowest acceptance rate
maxs∈S µ(s) −mins∈S µ(s); and (2) to use a single-label multiclass (rather than a binary)
quantification system. Concerning this, note that all the methods discussed in Section 4.1
except HDy admit straightforward extensions from the binary case to the single-label mul-
ticlass case (see (Moreo and Sebastiani, 2022) for details). HDy is a method for binary
quantification only, but it can be adapted to the single-label multiclass scenario by training
a binary quantifier for each class in one-vs-all fashion, estimating the prevalence of each
class independently of the others, and normalising the obtained prevalence values so that
they sum to 1.

5. Experiments

5.1 General Setup

In this section, we carry out an evaluation of different estimators of demographic disparity.
We propose five experimental protocols (Sections 5.3–5.7) summarized in Table 2. Each pro-
tocol addresses a major challenge that may arise in estimating fairness under unawareness,
and does so by varying the size and the mutual distribution shift of the training, auxiliary,
and test sets. Protocol names are in the form action-characteristic-dataset, as they
act on datasets (D1, D2 or D3), modifying their characteristics (size or class prevalence)
through one of two actions (sampling or flipping of labels). We investigate the performance
of six estimators of demographic disparity in each of the five challenges/protocols, keep-
ing the remaining factors constant. For every protocol, we perform an extensive empirical
evaluation as follows:
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• We compare the performance of each estimation technique on three datasets (Adult,
COMPAS, and CreditCard). The datasets and respective preprocessing are described
in detail in Section 5.2. We focus our discussion (and we present plots – see Fig-
ures 1–8) on the experiments carried out on the Adult dataset, while we summarise
numerically the results on COMPAS and CreditCard (Tables 4–8), discussing them
only when significant differences from Adult arise.

• We divide a given data set into three subsetsDA,DB,DC of identical sizes and identical
joint distribution over (S, Y ). We perform five random such splits; in order to test
each estimator under the same conditions, these splits are the same for every method.
For each split, we permute the role of the stratified subsets DA,DB,DC , so that each
subset alternatively serves as the training set (D1), or auxiliary set (D2), or test set
(D3). We test all (six) such permutations.

• Whenever an experimental protocol requires sampling from a set, for instance when
artificially altering a class prevalence value, we perform 10 different samplings. To
perform extensive experiments at a reasonable computational cost, every time an
experimental protocol requires changing a dataset D into a version D̆ characterized
by distribution shift, we also reduce its cardinality to |D̆| = 500. Further details and
implications of this choice on each experimental protocol are provided in the context
of the protocol’s setup (e.g., Section 5.6.1).

• Different learning approaches can be used to train the sensitive attribute classifier ks
underlying the quantification methods. We test Logistic Regression (LR) and Support
Vector Machines (SVMs).3 Sections 5.3–5.7 report results of quantification algorithms
wrapped around a classifier trained via LR. Analogous results obtained with SVMs
are reported in Appendix D.

• We train the classifier h, whose demographic disparity we aim to estimate, using LR
with balanced class weights (i.e., loss weights inversely proportional to class frequen-
cies).

• To measure the performance of different quantifiers, we report the signed estimation
error, derived from Equations (10) and (14) as

e = δ̂Sh − δSh = [µ̂(1)− µ̂(0)]− [µ(1)− µ(0)] (16)

We refer to |e| as the Absolute Error (AE), and evaluate the results of our experiments
by Mean Absolute Error (MAE) and Mean Squared Error (MSE), defined as

MAE(E) =
1

|E|
∑
ei∈E
|ei| (17)

MSE(E) =
1

|E|
∑
ei∈E

e2i (18)

3. Some among the quantification methods we test in this study require the classifier to output posterior
probabilities (as is the case for classifiers trained via LR). If a classifier natively outputs classification
scores that are not probabilities (as is the case for classifiers trained via SVM), we convert the former
into the latter via Platt (2000)’s probability calibration method.
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where the mean of the signed estimation errors ei is computed over multiple exper-
iments E. Overall, our experiments consist of over 700,000 separate estimations of
demographic disparity.

The remainder of this section is organized as follows. Section 5.2 presents the datasets that
we have chosen and the pre-processing steps we apply. Sections 5.3–5.7 motivate and detail
each of the five experimental protocols, reporting the performance of different demographic
disparity estimators. Section 5.8 presents an experiment on fairness-aware methods, where
the classifier whose fairness we aim to estimate has been trained to optimize that measure.
Section 5.9 shows that reliable fairness auditing may be decoupled from undesirable misuse
aimed at inferring the values of the sensitive attribute at an individual level. Finally,
Section 5.10 describes an ablation study, aimed at investigating the benefits of training and
maintaining multiple class-specific quantifiers.

5.2 Datasets

We perform our experiments on three datasets. We choose Adult and COMPAS, the two
most popular datasets in algorithmic fairness research (Fabris et al., 2022), and Credit Card
Default (hereafter: CreditCard), which serves as a representative use case for a bank per-
forming a fairness audit of a prediction tool used internally. For each dataset, we standardize
the selected features by subtracting the mean and scaling to unit variance.

Adult.4 One of the most popular resources in the UCI Machine Learning Reposi-
tory, the Adult dataset was curated to benchmark the performance of machine learning
algorithms. It was extracted from the March 1994 US Current Population Survey and
represents respondents along demographic and socioeconomic dimensions, reporting, e.g.,
their sex, race, educational attainment, and occupation. Each instance comes with a binary
label, encoding whether their income exceeds $50,000, which is the target of the associated
classification task. We consider “sex” the sensitive attribute S, with a binary categoriza-
tion of respondents as “Female” or “Male”. From the non-sensitive attributes X, we remove
“education-num” (a redundant feature), “relationship” (where the values “husband” and
“wife” are near-perfect predictors of “sex”), and “fnlwgt” (a variable released by the US
Census Bureau to encode how representative each instance is of the overall population).
Categorical variables are dummy-encoded and instances with missing values (7%) are re-
moved.

COMPAS.5 This dataset was curated to audit racial biases in the Correctional Of-
fender Management Profiling for Alternative Sanctions (COMPAS) risk assessment tool,
which estimates the likelihood of a defendant becoming a recidivist (Angwin et al., 2016;
Larson et al., 2016). The dataset represents defendants who were scored for risk of re-
cidivism by COMPAS in Broward County, Florida between 2013 and 2014, summariz-
ing their demographics, criminal record, custody, and COMPAS scores. We consider the
compas-scores-two-years subset published by ProPublica on github, consisting of defen-
dants who were observed for two years after screening, for whom a binary recidivism ground
truth is available. We follow standard pre-processing to remove noisy instances (ProPublica,
2016). We focus on “race” as a protected attribute S, restricting the data to defendants

4. https://archive.ics.uci.edu/ml/datasets/adult
5. https://github.com/propublica/compas-analysis
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labelled “African-American” or “Caucasian”. Our attributes X are the age of the defendant
(“age”, an integer), the number of juvenile felonies, misdemeanours, and other convictions
(“juv fel count”, “juv misd count”, “juv other count”, all integers), the number of prior
crimes (“priors count”, an integer) and the degree of current charge (“c charge degree”,
felony or misdemeanour, dummy-encoded).

CreditCard.6 This resource was curated to study automated credit card default pre-
diction, following a wave of defaults in Taiwan. The dataset summarizes the payment
history of customers of an important Taiwanese bank, from April to October 2005. De-
mographics, marital status, and education of customers are also provided, along with the
amount of credit given and a binary variable encoding the default on payment within the
next month, which is the associated prediction task. We consider “sex” (binarily encoded)
as the sensitive attribute S and keep every other variable in X, preprocessing categorical
ones via dummy-encoding (“education”, “marriage”, “pay 0”, “pay 2”, “pay 3”, “pay 4”,
“pay 5”, “pay 6”). Differently from Adult, we keep marital status as its values are not
trivial predictors of the sensitive attribute.

A summary of these datasets and related statistics is reported in Table 3.

Table 3: Dataset statistics after preprocessing.

Dataset Adult COMPAS CreditCard

# data points 45,222 5,278 30,000
# non-sensitive features 84 6 81
sensitive attribute sex race sex
S = 1 Male Caucasian Male
Pr(S = 1) 0.675 0.398 0.396
target variable income recidivist default
Y = ⊕ >$50,000 no no
Pr(Y = ⊕) 0.248 0.498 0.779

5.3 Distribution Shift Affecting the Test Set: Protocol sample-prev-D3

5.3.1 Motivation and Setup

The first experimental protocol models a setting in which the test set D3 shows a significant
distribution shift with respect to the sets D1 and D2 available during training of h and k. In
other words, in this protocol, D1 and D2 are marginalisations of the same joint distribution,
while D3 (more precisely D̆3) is drawn from a different joint distribution. We consider
two sub-protocols (sample-prev-D⊖

3 and sample-prev-D⊕
3 ) that model changes in the

distribution of a sensitive variable S in D⊖
3 and D⊕

3 , the test subsets of either negatively
or positively predicted instances. More in detail, we let Pr(s|⊖) (or its dual Pr(s|⊕))
in D̆3 range on eleven evenly spaced values between 0 and 1. For example, under sub-
protocol sample-prev-D⊖

3 , we vary the distribution of sensitive attribute S in D̆⊖
3 , so

6. https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients. Note that we
discuss variables with the names they are given in the tabular data (.xls file), which do not match those
in the documentation.
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that Pr(s|⊖) ∈ {0.0, 0.1 . . . , 0.9, 1.0}, while keeping the distribution in D̆⊕
3 fixed. For both

sub-protocols, in each repetition we sample subsets of the test set D3 such that |D̆⊖
3 | =

|D̆⊕
3 | = 500. Pseudocode 1 describes the protocol when acting on D⊖

3 ; the case for D⊕
3

is analogous and consists of swapping the roles of D⊖
3 and D⊕

3 in Lines 18 and 19. The
pale red region highlights the part of the experimental protocol that is specific to Protocol
sample-prev-D3; the rest is common to all the experimental protocols mentioned in this
paper.

This protocol accounts for the inevitable evolution of phenomena, especially those re-
lated to human behaviour. Indeed, it is common in real-world scenarios for data generation
processes to be nonstationary and change across development and deployment, due, e.g., to
seasonality, changes in the spatiotemporal application context, or any sort of unmodelled
novelty and difference in populations (Ditzler et al., 2015; Malinin et al., 2021; Moreno-
Torres et al., 2012). Given that most work on algorithmic fairness focuses on decisions
or predictions about people, and given inevitable changes in human lives, values, and be-
haviour, the above considerations about non-stationarity seem particularly relevant. For
example, data available from one population is often repurposed to train algorithms that
will be deployed on a different population, requiring ad hoc fair learning approaches (Coston
et al., 2019) and evoking the portability trap of fair machine learning (Selbst et al., 2019).
In addition, agents can respond to novel technology in their social context and adapt their
behaviour accordingly (Hu et al., 2019; Tsirtsis et al., 2019), causing ripple effects (Selbst
et al., 2019) and feedback loops (Mansoury et al., 2020). Finally, personalized pricing
constitutes an increasingly possible practice with nontrivial fairness concerns (Kallus and
Zhou, 2021) and inevitable shifts due to changing habits and environments (Sindreu, 2021).

In this protocol, quantifiers are tested on subsets D̆⊖
3 , D̆

⊕
3 that exhibit a different preva-

lence of sensitive attribute s with respect to their counterparts D⊖
2 , D

⊕
2 in the auxiliary set.

More specifically, with this protocol we vary the joint distribution of (S, Ŷ ) to directly influ-
ence the demographic disparity of the classifier h in the test set D3, and move it away from
the value δSh of the same measure that we would obtain on the set D2. This is a fundamental
evaluation protocol, as it makes our estimand different across D2 and D3 (or, more precisely,
its modified version D̆3), which is typically expected in practice. If this was not the case,
a practitioner could simply resort to an explicit calculation of the demographic disparity
in the auxiliary set D2 and consider it representative of any deployment condition, as in
the MLPE trivial baseline. Given this reasoning, this protocol imposes sizeable variations
in the demographic disparity of h between D2 and D3, which act as the training set and
the test set, respectively, for our quantifiers. For example, on Adult, δSh is approximately
equal to 0.3 in D2, while in D3 we let it vary in the range [−0.7, 0.9]. Despite these sizeable
variations, we expect that methods such as SLD, ACC, and PACC perform well, due to
their proven unbiasedness in this setting (Remark 3).

5.3.2 Results

In Figure 1 we report the performance of CC, PCC, ACC, PACC, SLD, HDy, and MLPE
on the Adult dataset under the sample-prev-D3 experimental protocol. The estimation
error (Equation 16) is reported on the y axis, as we vary the prevalence of the protected
group in the test set, which is displayed on the x axis. Figure 1a concentrates on prevalence
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Input : • Dataset D ;
• Classifier learner CLS;
• Quantification method Q;

Output: • MAE of the demographic disparity estimates ;
• MSE of the demographic disparity estimates ;

1 E ← ∅ ;
2 for 5 random splits do
3 DA,DB ,DC ← split stratify(D) ;
4 for D1,D2,D3 ∈ permutations(DA,DB ,DC) do
5 /* Learn a classifier h : X → Y */

6 h← CLS.fit(D1) ;

7 D⊖
2 ← {(xi, si) ∈ D2 | h(xi) = ⊖} ;

8 D⊕
2 ← {(xi, si) ∈ D2 | h(xi) = ⊕} ;

9 /* Learn quantifiers qy : 2X → [0, 1] */

10 q⊖ ← Q.fit(D⊖
2 ) ;

11 q⊕ ← Q.fit(D⊕
2 ) ;

12 /* Split instances in D3 based on predicted labels from h */

13 D⊖
3 ← {xi ∈ D3 | h(xi) = ⊖} ;

14 D⊕
3 ← {xi ∈ D3 | h(xi) = ⊕} ;

15 for 10 repeats do
16 for p ∈ {0.1, 0.2, . . . , 0.9} do
17 /* Generate samples from D⊖

3 at desired prevalence and size, and

uniform samples from D⊕
3 at desired size */

18 D̆⊖
3 ∼ D

⊖
3 with pD̆⊖

3
(s) = p and |D̆⊖

3 | = 500 ;

19 D̆⊕
3 ∼ D

⊕
3 with |D̆⊕

3 | = 500 ;
20 /* Use quantifiers to estimate demographic prevalence */

21 p̂
q⊖

D̆⊖
3

(s)← q⊖(D̆⊖
3 ) ;

22 p̂
q⊕

D̆⊕
3

(s)← q⊕(D̆⊕
3 ) ;

23 /* Compute the signed error of the demographic disparity estimate */

24 e← compute error using p̂
q⊖

D̆⊖
3

(s), p̂
q⊕

D̆⊕
3

(s) and Equation (16)

25 E ← E ∪ {e}
26 end

27 end

28 end

29 end
30 mae← MAE(E) ;
31 mse← MSE(E) ;
32 return mae, mse

Pseudocode 1: Protocol sample-prev-D3, shown for variations of prevalence values
in class y = ⊖.

variations in D⊖
3 , while Figure 1b considers variations of the prevalence of the protected

group in D⊕
3 . Each boxplot summarizes the results of 5 random splits, 6 role permutations,

and 10 samplings of D̆3, for a total of 300 repetitions for each combination of 6 methods
and 11 values which vary on the x axis. Boxes enclose the two central quartiles (separated
by a median horizontal line), while whiskers surround points in the outer quartiles, except
for outliers marked with diamonds.
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(b) Protocol sample-prev-D⊕
3

Figure 1: Experiments conducted according to protocol sample-prev-D3 on the Adult
dataset. The figure shows the distribution of the estimation error (on the y axis) as D̆3 is
sampled with a given Pr(S = 1|Y = ⊖) value (a) or with a given Pr(S = 1|Y = ⊕) value
(b), which are shown on the x axis. The green line indicates the value of Pr(S = 1) as
observed in D⊖

2 (a) or in D⊕
2 (b).

Similar trends emerge under both sub-protocols. CC, PCC, and MLPE display a clear
trend along the x axis, vastly over- or underestimating the demographic disparity of h, and
proving unreliable in settings where the prevalence values in the unlabelled (test) set shift
away from the prevalence values of the training set. In sub-protocol sample-prev-D⊕

3 ,
summarised in Figure 1b, the prevalence of men (S = 1) in D̆⊕

3 , used to test one of the
quantifiers, is almost always lower than the prevalence in the respective training set D⊕

2 ,
reported with a vertical green line. As a result, quantifiers trained on D⊕

2 tend to sys-
tematically overestimate the prevalence of males in D⊕

3 , thus also overestimating µ(1) and
δSh , according to Equations (14) and (15). Similar considerations hold for sub-protocol
sample-prev-D⊖

3 , with a sign flip.
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Table 4: Results obtained in the experiments run according to protocol sample-prev-D3.

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(LR) 0.382 ± 0.304 0.239 ± 0.305 0.207 0.386
PCC(LR) 0.299 ± 0.237 0.146 ± 0.199 0.235 0.427
ACC(LR) 0.103 ± 0.097 0.020 ± 0.047 0.595 0.870
PACC(LR) 0.061 ± 0.059 0.007 ± 0.016 0.813 0.970
SLD(LR) 0.055 ± 0.052 0.006 ± 0.012 0.846 0.980
HDy(LR) 0.110 ± 0.079 0.018 ± 0.032 0.500 0.893
MLPE 0.397 ± 0.298 0.246 ± 0.316 0.162 0.294

COMPAS

CC(LR) 0.541 ± 0.369 0.429 ± 0.472 0.118 0.237
PCC(LR) 0.337 ± 0.242 0.172 ± 0.214 0.181 0.344
ACC(LR) 0.495 ± 0.363 0.377 ± 0.471 0.143 0.252
PACC(LR) 0.252 ± 0.213 0.109 ± 0.184 0.287 0.492
SLD(LR) 0.169 ± 0.139 0.048 ± 0.077 0.385 0.669
HDy(LR) 0.267 ± 0.213 0.116 ± 0.176 0.250 0.472
MLPE 0.349 ± 0.249 0.184 ± 0.227 0.175 0.332

CreditCard

CC(LR) 0.345 ± 0.241 0.177 ± 0.212 0.172 0.339
PCC(LR) 0.325 ± 0.213 0.151 ± 0.157 0.176 0.340
ACC(LR) 0.341 ± 0.259 0.183 ± 0.256 0.189 0.367
PACC(LR) 0.259 ± 0.211 0.111 ± 0.173 0.269 0.480
SLD(LR) 0.190 ± 0.148 0.058 ± 0.086 0.334 0.609
HDy(LR) 0.251 ± 0.190 0.099 ± 0.142 0.248 0.478
MLPE 0.334 ± 0.218 0.159 ± 0.165 0.172 0.330

ACC, PACC, SLD and HDy, on the other hand, display low bias, even under sizeable
prevalence shift. Their variance is higher than CC and PCC, but their estimation error is
moderate overall. The condition Pr(S = 1|Ŷ = ⊖) = 1 (right-most point in Figure 1a) is
particularly critical for every method due to pD3(s = 0) dropping below 0.1, thus making
small estimation errors for the denominator of Equation 15 especially impactful on µ̂(0).

The results of the COMPAS and CreditCard datasets are reported in Table 4, along with
a summary of the results of the Adult dataset we have just discussed. The first and second
columns indicate the MAE and MSE values (lower is better), while the third and fourth
columns indicate the probability that the Absolute Error (AE) falls below 0.1 and 0.2 across
the entire experimental protocol (higher is better). Boldface indicates the best method for
a given dataset and metric. The superscripts † and ‡ denote the methods (if any) whose
error scores (MAE, MSE) are not statistically significantly different from the best according
to a paired sample, two-tailed t-test at different confidence levels. Symbol † indicates
0.001 < p-value < 0.05 while symbol ‡ indicates 0.05 ≤ p-value; the absence of any such
symbol indicates p-value ≤ 0.001 (i.e., that the performance of the method is statistically
significantly different from that of the best method). Overall, SLD strikes the best balance
between bias and variance. PACC is the second-best approach, outperforming ACC and
PCC, demonstrating the utility of combining posterior probabilities and adjustments when
the latter can reliably be estimated. The trends we discussed also hold for COMPAS and
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CreditCard. Note that both datasets appear to provide a setting harder than Adult for the
inference of the sensitive attribute S from the non-sensitive attributes X.

5.4 Distribution Shift Affecting the Auxiliary Set: Protocol sample-prev-D2

5.4.1 Motivation and Setup

This protocol is analogous to protocol sample-prev-D3 (Section 5.3), but for the fact that it
focuses on shifts in the auxiliary set D2, while D1 and D3 remain at their natural prevalence.
Similarly to Section 5.3, we assess the signed estimation error under shifts that affect D⊖

2

or D⊕
2 , that is, the subsets of D2 labelled positively or negatively by the classifier h. Here

too, we consider two experimental sub-protocols, describing variations in the prevalence of
sensitive attribute s in either subset. More specifically, we let Pr(s|⊖) (or its dual Pr(s|⊕))
take 9 evenly spaced values between 0.1 and 0.9. Pseudocode 3 describes the protocol
when acting on D⊖

2 ; the case for D⊕
2 is analogous, and comes down to swapping the roles

of D⊖
2 and D⊕

2 in Lines 12 and 13.

This protocol captures issues of representativity in demographic data, e.g., due to
nonuniform response rates across subpopulations (Schouten et al., 2009, 2012). Given the
importance of trust for the provision of one’s sensitive attributes, in some domains this pro-
vision is considered akin to a data donation (Andrus et al., 2021). Individuals from groups
that were historically served with worse quality or had lower acceptance rates for a service
can be reluctant to disclose their membership in those groups, fearing that it may be used
against them as grounds for rejection or discrimination (Hasnain-Wynia and Baker, 2006).
This may be especially true for individuals who perceive to be at high risk of rejection,
and this can cause complex selection biases, jointly dependent on S and Y , or S and Ŷ if
individuals have some knowledge of the classification procedure. For example, health care
providers may be advised to collect information about the race of patients to monitor the
quality of services across subpopulations. In a field study, 28% of patients reported discom-
fort in revealing their own race to a clerk, with African-American patients significantly less
comfortable than white patients on average (Baker et al., 2005).

5.4.2 Results

Figure 2 shows the signed estimation error on the y axis, as we vary, on the x axis, the
prevalence of the sensitive attribute in D⊖

2 (Figure 2a) and D⊕
2 (Figure 2b). MLPE, CC,

PCC, and HDy prove to be fairly sensitive to shifts in their training set. In sub-protocol
sample-prev-D⊕

2 , symmetrically to the sub-protocol sample-prev-D⊕
3 discussed in the

previous section, the prevalence of males (S = 1) in subset D⊕
2 , used to train one of the

quantifiers, is almost always lower than the prevalence in the respective test subset D⊕
3 ,

indicated with a vertical green line. As a result, quantifiers trained on D⊕
2 tend to sys-

tematically underestimate the prevalence of males in D⊕
3 and underestimate the (signed)

demographic disparity of the classifier h.

ACC and PACC require splitting their training set to estimate the respective adjust-
ments (Equations (6)–(9)), and suffer from a reduced cardinality |D̆2| = 1, 000. Their
performance worsens substantially with respect to protocol sample-prev-D3, where |D2| >
15, 000. Indeed, these methods have been shown to be Fisher-consistent under prior prob-
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Figure 2: Protocol sample-prev-D2 on the Adult dataset. Distribution of the estimation
error (y axis) as D̆2 is sampled with a given Pr(S = 1|Y = ⊖) value, plot (a), or Pr(S =
1|Y = ⊕) value, plot (b) (x axis). The green line indicates the value of Pr(S = 1) as
observed in D⊖

3 , plot (a), or D
⊕
3 , plot (b).

ability shift (Fernandes Vaz et al., 2019; Tasche, 2017), that is, they are guaranteed to be
accurate, thanks to the respective adjustments, if D2 is large enough and linked to D3 by
prior probability shift. While the latter condition holds, the former is violated under this
protocol, hence ACC and PACC are unbiased (in expectation), but display a large variance,
due to unstable adjustments. SLD, on the other hand, shows a moderate variance and bias.
These effects are especially evident at the extremes of the x axis, which correspond to set-
tings where few instances with either S = 0 or S = 1 are available for quantifier training.
In turn, the few positives (negatives) make it particularly difficult to reliably estimate tprks
(tnrks), as required by Equations 7 and 9. For example, in Figure 2a we see that the error
of ACC ranges between −1.3 and 0.7. Given that the true demographic disparity of the
classifier h is δSh = 0.3, these are the worst possible errors, corresponding to extreme esti-
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Table 5: Results obtained in the experiments run according to protocol sample-prev-D2.

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(LR) 0.230 ± 0.177 0.084 ± 0.118 0.274 0.523
PCC(LR) 0.213 ± 0.169 0.074 ± 0.103 0.323 0.551
ACC(LR) 0.159 ± 0.178 0.057 ± 0.159 0.439 0.789
PACC(LR) 0.112 ± 0.118 0.026 ± 0.093 0.559 0.889
SLD(LR) 0.081 ± 0.070 0.011 ± 0.020 0.705 0.929
HDy(LR) 0.219 ± 0.188 0.084 ± 0.128 0.345 0.573
MLPE 0.295 ± 0.218 0.134 ± 0.165 0.239 0.410

COMPAS

CC(LR) 0.498 ± 0.253 0.312 ± 0.260 0.044 0.128
PCC(LR) 0.264 ± 0.186 0.104 ± 0.126 0.227 0.431
ACC(LR) 0.469 ± 0.276 0.296 ± 0.303 0.080 0.184
PACC(LR) 0.338 ± 0.254 0.179 ± 0.250 0.185 0.356
SLD(LR) 0.160 ± 0.123 0.041 ± 0.060 0.386 0.678
HDy(LR) 0.255 ± 0.189 0.101 ± 0.135 0.246 0.463
MLPE 0.275 ± 0.193 0.112 ± 0.134 0.219 0.417

CreditCard

CC(LR) 0.429 ± 0.252 0.248 ± 0.236 0.103 0.225
PCC(LR) 0.204 ± 0.140 0.061 ± 0.073 0.287 0.551
ACC(LR) 0.535 ± 0.316 0.387 ± 0.353 0.085 0.165
PACC(LR) 0.512 ± 0.311 0.359 ± 0.343 0.094 0.171
SLD(LR) 0.171 ± 0.123 0.044 ± 0.058 0.348 0.645
HDy(LR) 0.222 ± 0.159 0.074 ± 0.101 0.260 0.508
MLPE 0.210 ± 0.143 0.065 ± 0.077 0.280 0.536

mates δ̂Sh = −1 and δ̂Sh = 1, respectively. Finally, it is worth noting that PACC outperforms
ACC, thanks to efficient use of posteriors πs(xi) in place of binary decisions ks(xi).

These trends also hold for COMPAS and CreditCard, as summarized in Table 5. Sim-
ilarly to Table 4, we find that, under large shifts between the auxiliary and the test set,
the estimation of demographic disparity is more difficult on COMPAS and CreditCard than
on Adult. Overall, these experiments show that CC and PCC fare poorly under prior
probability shift, and are outperformed by estimators with better theoretical guarantees.

5.5 Reduced Cardinality of the Auxiliary Set: Protocol sample-size-D2

5.5.1 Motivation and Setup

In this experimental protocol, we focus on the size of the auxiliary set D2, studying its
influence on the estimation problem. Our goal is to understand how small this set can
be before degrading the performance of our estimation techniques. We use subsets D̆2 of
the auxiliary set, obtained by sampling instances uniformly without replacement from it.
We let their cardinality |D̆2| take five values evenly spaced on a logarithmic scale, between
a minimum size |D̆2|=1,000 and a maximum size |D̆2| = |D2|. In other words, we let
the cardinality of the auxiliary set take five different values between 1,000 and |D2| in a
geometric progression.
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This protocol is justified by the well-documented difficulties in the acquisition of demo-
graphic data for industry professionals, which vary depending on the domain, the company
and other factors of disparate nature (Andrus et al., 2021; Beutel et al., 2019b; Bogen et al.,
2020; Galdon Clavell et al., 2020; Holstein et al., 2019). As an example, Galdon Clavell et al.
(2020) perform an internal fairness audit of a personalized wellness recommendation app,
for which sensitive features are not collected during production, following the principles of
data minimization. However, sensitive features were available in a previously obtained aux-
iliary set. Furthermore, in the US, the collection of sensitive attributes is highly industry
dependent, ranging from mandatory to forbidden, depending on the fragmented regulation
applicable in each domain (Bogen et al., 2020). High-quality auxiliary sets can be obtained
through optional surveys (Wilson et al., 2021), for which response rates are highly depen-
dent on trust, and can be improved by making the intended use of the data clearer (Andrus
et al., 2021), directly impacting the cardinality of D2.

Therefore, the cardinality of the auxiliary set D2 is an interesting variable in the context
of fairness audits. The estimation methods that we consider have peculiar data require-
ments, such as the need to estimate true/false positive rates. For this reason, interesting
patterns should emerge from this protocol. We expect key trends for the estimation er-
ror to vary monotonically with |D̆2|, which is why we let it vary according to a geometric
progression.

5.5.2 Results

The signed estimation error on the Adult dataset under this experimental protocol is illus-
trated in Figure 3, as we vary the cardinality |D̆2| along the x axis. Clearly, the variance for
each approach decreases as the size of D̆2 increases. Additionally, slight biases may improve,
as is the case with HDy, whose median error approaches zero as |D̆2| increases. These trends
are a direct confirmation of hints already obtained from the protocols discussed above. The
most striking trend is the unreliability of ACC and PACC (and especially the former) in
the small data regime.

Similar results are obtained for COMPAS and CreditCard, as reported in Table 6. Across
the three datasets, PACC and ACC perform quite poorly due to the difficulty in estimating
tprks and fprks with the few labelled data points available from D̆2. On the other hand, both
SLD and HDy are fairly reliable. PCC and MLPE stand out as strong performers, with low
bias and low variance. This is due to the fact that, under this experimental protocol, there
is no shift between the auxiliary set D2, on which the quantifiers are trained, and the test
set D3, on which they are tested. Since the current protocol focuses on the cardinality of
the auxiliary set, D2 and D3 remain stratified subsets of the Adult dataset, with identical
distributions over (S, Y ). In turn, this favours MLPE, which assumes no shift between D2

and D3, and PCC, which relies on the fact that the posterior probabilities of its underlying
classifier k are well-calibrated on D3.

7

7. Posterior probabilities Pr(s|x) are said to be well-calibrated when, given a sample σ drawn from X

lim
|σ|→∞

|{x ∈ s|Pr(s|x) = α}|
|{x ∈ σ|Pr(s|x) = α}| = α.

i.e., when for big enough samples, α approximates the true proportion of data points belonging to class
s among all data points for which Pr(s|x) = α.
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Figure 3: Protocol sample-size-D2 on the Adult dataset. Distribution of the estimation
error (y axis) as the cardinality |D̆2| is varied (x axis).

5.6 Distribution Shift Affecting D1: Protocol sample-prev-D1

5.6.1 Motivation and Setup

With this protocol we evaluate the impact of shifts in the training set D1, by drawing
different subsets D̆1 as we vary Pr(Y = S).8 More specifically, we vary Pr(Y = S) between
0 and 1 with a step of 0.1. In other words, we sample at random from D1 a proportion p
of instances (xi, si, yi) such that Y = S and a proportion (1 − p) such that Y ̸= S, with
p ∈ {0.0, 0.1, . . . , 0.9, 1.0}. We choose a limited cardinality |D̆1| = 500, which allows us to
perform multiple repetitions at reasonable computational costs, as described in Section 5.1.
Although this may impact the quality of the classifier h, this aspect is not the central focus
of the present work.

This experimental protocol aligns with biased data collection procedures, sometimes
referred to as censored data (Kallus and Zhou, 2018). Indeed, it is common for the ground-
truth variable to represent a mere proxy for the actual quantity of interest, with nontrivial
sampling effects between the two. For example, the validity of arrest data as a proxy for
offence has been brought into question (Fogliato et al., 2021). In fact, in this domain,
different sources of sampling bias can be in action, such as uneven allocation of police
resources between jurisdictions and neighbourhoods (Holmes et al., 2008) and lower levels
of cooperation in populations who feel oppressed by law enforcement (Xie and Lauritsen,
2012).

By varying Pr(Y = S) we impose a spurious correlation between Y and S, which may be
picked up by the classifier h. In extreme situations, such as when Pr(Y = S) ≃ 1, a classifier
h can confound the concepts behind S and Y . In turn, we expect this to unevenly affect

8. While Y and S take values from different domains, by Y = S we mean (Y = ⊕∧S = 1)∨(Y = ⊖∧S = 0),
i.e. a situation where positive outcomes are associated with group S = 1 and negative outcomes with
group S = 0.

1143



Fabris, Esuli, Moreo, & Sebastiani

Table 6: Results obtained in the experiments run according to protocol sample-size-D2

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(LR) 0.120 ± 0.022 0.015 ± 0.005 0.159 1.000
PCC(LR) 0.012 ± 0.010 0.000 ± 0.000 1.000 1.000
ACC(LR) 0.083 ± 0.113 0.020 ± 0.082 0.747 0.928
PACC(LR) 0.055 ± 0.079 0.009 ± 0.048 0.856 0.969
SLD(LR) 0.025 ± 0.020 0.001 ± 0.002 0.996 1.000
HDy(LR) 0.047 ± 0.033 0.003 ± 0.004 0.922 1.000
MLPE 0.013‡ ± 0.012 0.000† ± 0.001 1.000 1.000

COMPAS

CC(LR) 0.353 ± 0.047 0.127 ± 0.032 0.000 0.005
PCC(LR) 0.030‡ ± 0.020 0.001 ± 0.001 0.999 1.000
ACC(LR) 0.381 ± 0.213 0.190 ± 0.214 0.097 0.186
PACC(LR) 0.265 ± 0.212 0.115 ± 0.183 0.247 0.467
SLD(LR) 0.135 ± 0.098 0.028 ± 0.038 0.441 0.765
HDy(LR) 0.108 ± 0.082 0.018 ± 0.027 0.549 0.858
MLPE 0.029 ± 0.021 0.001‡ ± 0.002 0.999 1.000

CreditCard

CC(LR) 0.177 ± 0.078 0.037 ± 0.030 0.177 0.629
PCC(LR) 0.016‡ ± 0.013 0.000‡ ± 0.001 1.000 1.000
ACC(LR) 0.337 ± 0.266 0.184 ± 0.259 0.203 0.368
PACC(LR) 0.299 ± 0.255 0.154 ± 0.240 0.261 0.445
SLD(LR) 0.053 ± 0.043 0.005 ± 0.008 0.871 0.985
HDy(LR) 0.057 ± 0.046 0.005 ± 0.009 0.831 0.991
MLPE 0.016 ± 0.013 0.000 ± 0.001 1.000 1.000

the acceptance rates for the two demographic groups, effectively changing the demographic
disparity of h, i.e., our estimand δSh . Pseudocode 5 describes the main steps to implement
Protocol sample-prev-D1.

5.6.2 Results

In Figure 4, the y axis depicts the estimation error (Equation 16), as we vary Pr(Y = S)
along the x axis. Each quantification approach outperforms vanilla CC, which overestimates
the demographic disparity of the classifier h, i.e., its estimate is larger than the ground truth
value, so δ̂S,CC

h > δSh . ACC, PCC, PACC, SLD, HDy, and MLPE display a negligible bias
and a reliable estimate of demographic disparity. The absolute error for these techniques is
always below 0.1, except for a few outliers.

Results for the COMPAS and CreditCard datasets are reported in Table 7. Confirming
the results of previous protocols, these datasets provide a harder setting for the estimate
of demographic disparity, as shown by higher MAE and MSE, which, for instance, increase
by one order of magnitude for SLD and PACC moving from Adult to COMPAS. PCC is
the best performer, for the same reasons discussed in Section 5.3, i.e., the absence of shift
between D2 and D3.
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Figure 4: Protocol sample-prev-D1 on the Adult dataset. Distribution of the estimation
error (y axis) as D̆1 is sampled with a given Pr(Y = S) (x axis). Each boxplot summarizes
the results of 5 random splits, 6 role permutations and 10 samplings of D̆1.

5.7 Distribution Shift Affecting D1: Protocol flip-prev-D1

5.7.1 Motivation and Setup

Certain biases in the training set resulting from domain-specific practices, such as the use
of arrest as a substitute for the offence, can be modelled as either a selection bias (Fogliato
et al., 2021) or a label bias distorting the ground truth variable Y (Fogliato et al., 2020).
With this experimental protocol, we impose the latter bias by actively flipping some ground
truth labels Y in D1 based on their sensitive attribute. Similarly to sample-prev-D1, this
protocol achieves a given association between the target Y and the sensitive variable S in
the training set D1. However, instead of sampling, it does so by flipping the Y label of
some data points. More specifically, we impose Pr(Y = ⊖|S = 0) = Pr(Y = ⊕|S = 1) = p
and let p take values across eleven evenly spaced values between 0 and 1. For every value
of p, we first sample a random subset D̆1 of the training set with cardinality 500. Next, we
actively flip some Y labels in both demographic groups, until both Pr(Y = ⊖|S = 0) and
Pr(Y = ⊕|S = 1) reach the desired value of p ∈ {0.0, 0.1, . . . , 0.9, 1.0}. Finally, we train a
classifier h on the attributes X and modified ground truth Y of D̆1.

This experimental protocol is compatible with settings where the training data capture a
distorted ground truth due to systematic biases and group-dependent annotation accuracy
(Wang et al., 2021a). As an example, the quality of medical diagnoses can depend on
race, sex, and socioeconomic status (Gianfrancesco et al., 2018). In addition, health care
expenditures have been used as a proxy to train an algorithm deployed nationwide in the
US to estimate patients’ health care needs, resulting in a systematic underestimation of
the needs of African-American patients (Obermeyer et al., 2019). In the hiring domain,
employer response rates to resumes have been found to vary with the perceived ethnic
origin of an applicant’s name (Bertrand and Mullainathan, 2004). These are all examples
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Table 7: Results obtained in the experiments run according to protocol sample-prev-D1.

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(LR) 0.112 ± 0.038 0.014 ± 0.008 0.321 0.998
PCC(LR) 0.008 ± 0.005 0.000 ± 0.000 1.000 1.000
ACC(LR) 0.029 ± 0.024 0.001 ± 0.003 0.983 1.000
PACC(LR) 0.019 ± 0.014 0.001 ± 0.001 1.000 1.000
SLD(LR) 0.013 ± 0.010 0.000 ± 0.000 1.000 1.000
HDy(LR) 0.022 ± 0.016 0.001 ± 0.001 1.000 1.000
MLPE 0.008 ± 0.006 0.000 ± 0.000 1.000 1.000

COMPAS

CC(LR) 0.328 ± 0.091 0.116 ± 0.056 0.022 0.081
PCC(LR) 0.026 ± 0.019 0.001 ± 0.001 1.000 1.000
ACC(LR) 0.349 ± 0.211 0.166 ± 0.192 0.130 0.252
PACC(LR) 0.194 ± 0.164 0.065 ± 0.115 0.345 0.607
SLD(LR) 0.114 ± 0.083 0.020 ± 0.027 0.512 0.849
HDy(LR) 0.096 ± 0.076 0.015 ± 0.023 0.605 0.897
MLPE 0.027‡ ± 0.019 0.001‡ ± 0.001 1.000 1.000

CreditCard

CC(LR) 0.152 ± 0.095 0.032 ± 0.036 0.338 0.711
PCC(LR) 0.010 ± 0.007 0.000 ± 0.000 1.000 1.000
ACC(LR) 0.187 ± 0.152 0.058 ± 0.094 0.347 0.626
PACC(LR) 0.130 ± 0.106 0.028 ± 0.046 0.487 0.777
SLD(LR) 0.047 ± 0.037 0.004 ± 0.005 0.902 0.998
HDy(LR) 0.061 ± 0.047 0.006 ± 0.009 0.814 0.989
MLPE 0.011 ± 0.008 0.000 ± 0.000 1.000 1.000

where the “ground truth” associated with a dataset is distorted to the disadvantage of a
sensitive demographic group.

Similarly to Section 5.6, we expect that this experimental protocol will cause significant
variations in the demographic disparity of the classifier h due to the strong correlation we
impose between S and Y by label flipping. The pseudocode that describes this protocol is
essentially the same as in Pseudocode 5, simply replacing the sampling in line 8 with the
label flipping procedure described above; therefore, we omit it.

5.7.2 Results

Figure 5 illustrates the key trends caused by this experimental protocol on the Adult dataset.
A clear trend is visible along the x axis, which reports the true demographic disparity δSh
for the classifier h (Equation 10), quantized with a step of 0.1. We choose to depict the
true demographic disparity on the x axis as it is the estimand, hence a quantity of interest
by definition. The error incurred by CC displays a linear trend that goes from severe
underestimation (for low values of the x axis) to severe overestimation (for large values of the
x axis). In other words, the (signed) estimation error increases with the true demographic
disparity of the classifier h, a phenomenon also noticed by Chen et al. (2019). All remaining
approaches compensate for this weakness and display a good estimation error: PCC, ACC,
PACC, SLD, HDy, and MLPE have low variance and a median estimation close to zero
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Figure 5: Protocol flip-prev-D1 on the Adult dataset. Distribution of the estimation
error (y axis) as δSh varies (x axis).

across different values of the estimand. Table 8 summarizes similar results on COMPASS
and CreditCard; PCC remains well-calibrated and very effective, while SLD and HDy also
have good performance.

5.8 Estimating Fairness for Discrimination-Aware Classifiers

5.8.1 Motivation and Setup

So far, we have considered classifiers h(x) which only maximize accuracy. In practice, it can
be especially interesting to monitor fairness for methods that target this quantity, explicitly
optimizing fairness during training. In fact, sensitive attributes may be available during
training, allowing for a direct optimization of equity, but unavailable after deployment,
complicating fairness evaluation of live systems. In this section, we replace the vanilla LR
classifier from the previous experiments with a fairness-aware method. We train a decision
tree hT, jointly optimizing accuracy and demographic parity, with the cost-sensitive method
of Agarwal et al. (2018). This method makes use of s during training to adjust the cost
of positive and negative predictions according to group membership. This learning scheme
leads to a classifier hT(x) which is fairness-aware but does not require access to sensitive
attributes to issue predictions on D3.

5.8.2 Results

We focus our exposition on protocol sample-prev-D3; analogous results are obtained on
the remaining protocols. The fairness-aware decision tree improves DD by one order of
magnitude, with an average δShT

= 0.017, down from δSh = 0.158 for LR. Figure 6, reporting
the estimation error from different quantifiers, shows the same patterns as its counterpart
from Figure 1. CC and PCC have a sizeable bias, while ACC, PACC, SLD, and HDy
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Table 8: Results obtained in the experiments run according to protocol flip-prev-D1.

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(LR) 0.151 ± 0.072 0.028 ± 0.021 0.274 0.706
PCC(LR) 0.008 ± 0.006 0.000 ± 0.000 1.000 1.000
ACC(LR) 0.030 ± 0.025 0.002 ± 0.003 0.982 0.999
PACC(LR) 0.020 ± 0.015 0.001 ± 0.001 1.000 1.000
SLD(LR) 0.014 ± 0.011 0.000 ± 0.000 1.000 1.000
HDy(LR) 0.022 ± 0.017 0.001 ± 0.001 1.000 1.000
MLPE 0.009 ± 0.006 0.000 ± 0.000 1.000 1.000

COMPAS

CC(LR) 0.388 ± 0.116 0.164 ± 0.083 0.027 0.068
PCC(LR) 0.027 ± 0.020 0.001 ± 0.001 0.998 1.000
ACC(LR) 0.392 ± 0.211 0.198 ± 0.199 0.105 0.194
PACC(LR) 0.195 ± 0.160 0.063 ± 0.106 0.337 0.611
SLD(LR) 0.115 ± 0.084 0.020 ± 0.027 0.513 0.836
HDy(LR) 0.094 ± 0.075 0.015 ± 0.023 0.612 0.906
MLPE 0.028‡ ± 0.019 0.001‡ ± 0.001 0.999 1.000

CreditCard

CC(LR) 0.159 ± 0.101 0.036 ± 0.037 0.345 0.640
PCC(LR) 0.011 ± 0.009 0.000 ± 0.000 1.000 1.000
ACC(LR) 0.223 ± 0.185 0.084 ± 0.130 0.307 0.565
PACC(LR) 0.147 ± 0.117 0.035 ± 0.056 0.420 0.725
SLD(LR) 0.056 ± 0.043 0.005 ± 0.007 0.843 0.995
HDy(LR) 0.071 ± 0.055 0.008 ± 0.012 0.732 0.973
MLPE 0.012† ± 0.009 0.000† ± 0.000 1.000 1.000

display low estimation error for all the tested prevalence values. This experiment confirms
the suitability of our method in measuring fairness under unawareness, also for fairness-
aware classifiers.

5.9 Quantifying Without Classifying

5.9.1 Motivation and Setup

The motivating use case for this work are internal audits of group fairness, to characterize a
model and its potential to harm sensitive categories of users. Following Awasthi et al. (2021),
we envision this as an important first step in empowering practitioners to argue for resources
and, more broadly, to advocate for a deeper understanding and careful evaluation of models.
Unfortunately, developing a tool to infer demographic information, even if motivated by
careful intentions and good faith, leaves open the possibility for misuse, especially at an
individual level. Once a predictive tool, also capable of instance-level classification, is
available, it will be tempting for some actors to exploit it precisely for this purpose.

For example, the Bayesian Improved Surname Geocoding (BISG) method was designed
to estimate population-level disparities in health care (Elliott et al., 2009), but later used to
identify individuals potentially eligible for settlements related to discriminatory practices of
auto lenders (Andriotis and Ensign, 2015; Koren, 2016). Automatic inference of sensitive
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3

Figure 6: Experiments conducted according to protocol sample-prev-D3 on a fairness-
aware classifier.

attributes of individuals is problematic for several reasons. Such procedure exploits the
co-occurrence of membership in a group and display of a given trait, running the risk of
learning, encoding, and reinforcing stereotypical associations. Although also true of group-
level estimates, this practice is particularly troublesome at the individual level, where it
is likely to cause harms for people who do not fit the norm, resulting, for instance, in
misgendering and the associated negative effects (McLemore, 2015). Even when “accurate”,
the mere act of externally assigning sensitive labels can be problematic. For example, gender
assignment can be forceful and cause psychological harm for individuals (Keyes, 2018).

In this section, we aim to demonstrate that it is possible to decouple the objective of
(group-level) quantification of sensitive attributes from that of (individual-level) classifica-
tion. For each protocol in the previous sections, we compute the accuracy and F1 score
(defined below) of the sensitive attribute classifier k underlying the tested quantifiers, com-
paring it against their estimation error for class prevalence of the same sensitive attribute
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(Equation 16). Accuracy is the proportion of correctly classified instances over the total
(Equation 19) while F1 is the harmonic mean of precision and recall (Equation 20). Both
measures can be computed from the counters of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN), as follows:

accuracy =
TP + TN

TP+ TN+ FP + FN
(19)

F1 =


2TP

2TP + FP + FN
if TP + FP + FN > 0

1 if TP = FP = FN = 0

(20)

5.9.2 Results

Figures 7 and 8 displays the quantification performance (MAE – dashed) and classification
performance (F1, accuracy – solid) of CC, SLD and PACC on the Adult dataset under
protocols sample-prev-D2 and sample-prev-D3, respectively. As usual, we describe the
results for LR-based learners and report their SVM-based duals in the appendix (Figures 12
and 13). To evaluate the quantification performance of each approach, we simply report
their MAE in estimating the prevalence pD⊖

3
(S = 1), pD⊕

3
(S = 1) in either test subset,

depending on the protocol at hand. To assess the performance of the sensitive attribute
classifier k underlying each quantifier, we proceed as follows. For CC and PACC, we simply
run k (LR) on either D⊖

3 or D⊕
3 , reporting its accuracy and F1 score in inferring the sensitive

attribute of individual instances. The classification performance scores of the classifiers
underlying CC and PACC are equivalent, so we omit the latter from Figures 7 and 8 for
readability. For SLD, we take the novel posteriors obtained by applying the EM algorithm
to either test subset, and use them for classification with a threshold of 0.5.

Clearly, SLD improves both the quantification and classification performance of the
classifier k. In terms of quantification, its MAE is consistently below that of CC, and in
terms of classification, it displays better F1 and accuracy. However, under large prevalence
shifts across the auxiliary set D2 and the test set D3, its classification performance becomes
unreliable. In particular, under protocol sample-prev-D⊖

3 (resp. sample-prev-D⊕
3 ) in

Figure 8a (resp. Figure 8b), for low values of the x axis, i.e., when the true prevalence
values pD⊖

3
(S = 1) (resp. pD⊕

3
(S = 1)) becomes small, the SLD-based classifier starts

acting as a trivial rejector with low recall, and hence low F1 score. On the other hand, the
quantification performance of SLD does not degrade in the same way, since its MAE is low
and flat across the entire x axis in Figures 8a and 8b. This is a first hint of the fact that
classification and quantification performance may be decoupled.

PACC is another method that significantly outperforms CC in estimating the prevalence
of sensitive attributes in both test subsets D⊖

3 , D
⊕
3 . Indeed, its MAE is well aligned with

that of SLD, displaying low quantification error under all protocols (Figures 7–8). On the
other hand, its classification performance is aligned with the accuracy and F1 score of CC,
which is unsatisfactory and can even become worse than random. This fact shows that it
is possible to build models which yield good prevalence estimates for the sensitive attribute
within a sample, without providing reliable demographic estimates for single instances. In-
deed, quantification methods of type aggregative (that is, based on the output of a classifier
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Figure 7: Performance of CC, SLD and PACC on the Adult dataset when used for quantifi-
cation (MAE – lower is better, dashed) and classification (F1, accuracy – higher is better,
solid) under protocol sample-prev-D2. The classification performance of PACC is equiva-
lent to that of CC (both equal to the performance of the underlying LR), and we thus omit
it for readability.

– like all methods we use in this study) are suited to repair the initial prevalence estimate
(computed by classifying and counting) without precise knowledge of which specific data
points have been misclassified. In the context of models to measure fairness under unaware-
ness of sensitive attributes, we highlight this as a positive result, decoupling a desirable
ability to estimate group-level disparities from the potential for undesirable misuse at the
individual level.
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Figure 8: Performance of CC, SLD and PACC on the Adult dataset when used for quantifi-
cation (MAE – lower is better, dashed) and classification (F1, accuracy – higher is better,
solid) under protocol sample-prev-D3. The classification performance of PACC is equiva-
lent to that of CC (both equal to the performance of the underlying LR), and we thus omit
it for readability.

5.10 Ablation Study

5.10.1 Motivation and Setup

In the previous sections, we tested six approaches to estimate demographic disparity. For
each approach, we used multiple quantifiers for the sensitive attribute S, namely one for
each class in the codomain of the classifier h, as described in Step 3 of the method for
quantification-based estimate of demographic disparity. In the binary setting adopted in
this work, where Y = {⊖,⊕}, we trained two quantifiers. A quantifier was trained on the
set of positively-classified instances of the auxiliary set D⊕

2 = {(xi, si) ∈ D2 | h(x) = ⊕}

1152



Measuring Fairness Under Unawareness Using Quantification

and deployed to quantify the prevalence of sensitive instances (such that S = s) within the
test subset D⊕

3 . The remaining quantifier was trained on D⊖
2 and deployed on D⊖

3 .

Training and maintaining multiple quantifiers is more expensive and cumbersome than
having a single one. Firstly, quantifiers that depend on the classification outcome ŷ = h(x)
require retraining every time h is modified, e.g., due to a model update being rolled out.
Second, the maintenance cost is multiplied by the number of classes |Y| that are possible
for the outcome variable. To ensure that these downsides are compensated by performance
improvements, we perform an ablation study and evaluate the performance of different
estimators of demographic disparity supported by a single quantifier.

In this section we concentrate on three estimation approaches, namely PCC, SLD, and
PACC. SLD and PACC are among the best overall performers, displaying low bias or vari-
ance across all protocols. PCC shows great performance in situations where its posteriors
are well-calibrated on D3. We compare their performance in two settings. In the first
setting, adopted so far, two separate quantifiers q⊖ and q⊕ are trained on D⊖

2 , D
⊕
2 and

deployed on D⊖
3 , D

⊕
3 , respectively. In the second setting, we train a single quantifier q on

D2 and deploy it separately on D⊖
3 and D⊕

3 to estimate δ̂Sh using Equations (14) and (15),
specialized so that q⊖ and q⊕ are the same quantifier.

5.10.2 Results

Figure 9 summarizes results for the Adult dataset under two protocols that are represen-
tative of the overall trends, namely sample-prev-D2 (Figure 9a) and sample-prev-D3

(Figure 9b).9 The y axis depicts the estimation error of PCC, SLD, PACC, and their
single-quantifier counterparts, denoted by the suffix “nosD2” to indicate that the auxiliary
set D2 is not split into D⊖

2 , D
⊕
2 during training. The x axis depicts the quantity of interest

varied under each protocol.

Interestingly, PCC appears to be rather insensitive to the ablation study, so that the
estimation errors of PCC and PCC-nosD2 are well-aligned. PCC-nosD2 performs slightly
better under the protocol sample-prev-D2, where the auxiliary set is small, and splitting
it to learn separate quantifiers may result in poor performance. The opposite is true for
PACC-nosD2, showing a clear decline in performance in the single-quantifier setting. This
is due to the fact that the estimates of tpr (and fpr) in D⊕

3 and D⊖
3 for the adjustment

(Equation 9) are more precise when issued by dedicated estimators rather than a single one
computed without splitting D2. SLD-nosD2 also shows a sizeable performance decay.

Under all protocols, the performance of SLD and PACC is compromised in the absence
of class-specific quantifiers q⊖ and q⊕. If a single quantifier is trained on the full auxiliary
set D2, the corrections brought about by SLD and PACC can end up worsening, rather
than improving, the prevalence estimates of vanilla CC. PCC is less sensitive to the abla-
tion, showing small performance differences in both directions under the single quantifier
setting. In general, it seems beneficial to partition the auxiliary set into subsets D⊖

2 and
D⊕

2 according to the method in Section 4.2.

9. In the interest of brevity, the figures in this section refer to LR-based quantification on the Adult
dataset under two protocols. Results for SVM-based quantifiers under every protocol are depicted in the
Appendix (Figures 10 and 11). Analogous results hold on CreditCard and COMPAS.
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Figure 9: Ablation study on the Adult dataset. Distribution of the estimation error (y axis)
for CC, PACC, SLD, and their single-quantifier counterparts, as Pr(S = 1|Ŷ = ⊖) vary in
D2, plot (a), and D3, plot (b).

6. Summary and Takeaway Message

Overall, our work shows that quantification approaches are suited to measure demographic
parity under unawareness of sensitive attributes if a small auxiliary dataset, containing
sensitive and non-sensitive attributes, is available. This is a common setting in real-world
scenarios, where such datasets may originate from targeted efforts or voluntary disclosure.
Despite an inevitable selection bias, these datasets still represent a valuable asset for fair-
ness audits, if coupled with robust estimation approaches. Indeed, several quantification
methods tested in this work provide precise estimates of demographic disparity despite the
distribution shift across training and testing caused by selection bias, and other distribu-
tion shifts that arise in the context of human processes. This is an important improvement
over CC and PCC, previously studied in the algorithmic fairness literature as the thresh-
old estimator and weighted estimator (Chen et al., 2019). SLD strikes the best balance in
performance across all protocols; we suggest its adoption, especially when the distribution
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shift between development and deployment conditions has not been carefully characterized.
Moreover, while the development of proxy methods typically comes with a potential for
misuse on individuals (e.g., profiling), quantification approaches demonstrate the potential
to circumvent this issue. More in detail, from the above experimental section, we summarize
the following trends concerning different approaches to measure demographic parity under
unawareness.

Fairness under unawareness can be measured using quantification, for both
vanilla and fairness-aware classifiers. Group fairness under unawareness can be cast as
a prevalence estimation problem and effectively solved by methods of proven consistency
from the quantification literature. We demonstrate several estimators that outperform the
previously proposed methods (Chen et al., 2019), corresponding to CC and PCC, i.e., two
weak baselines in the quantification literature.

CC is suboptimal. Näıve Classify-and-Count represents the default approach for
practitioners unaware of quantification. Ad hoc quantification methods outperform CC in
most combinations of 5 protocols, 3 datasets, and 2 underlying learners.

PCC suffers under distribution shift. As long as the underlying posteriors are well-
calibrated, PCC is a strong performer. However, when its training set and test set have
different prevalence values for the sensitive attribute S, a common situation in practice, PCC
displays a systematic estimation bias, which increases sharply with the prior probability shift
between training and test.

HDy, ACC and PACC deteriorate in the small data regime. These methods
require splitting their training set (that is, the auxiliary set D2), so their performance drops
faster when its cardinality is small. PACC and ACC display good median performance but
a large variance; the former method always outperforms the latter.

SLD strikes a good balance. This method was shown to be the best performer under
(the inevitable) distribution shift between the auxiliary set D2 and the test set D3, with
a moderate performance decrease when |D2| becomes small. However, in situations where
it is not possible to maintain separate quantifiers for positively and negatively predicted
instances, its performance may drop substantially.

Decoupling is possible. Methods such as SLD and PACC fare much better than
CC in estimating group-level quantities (such as demographic parity), while if misused for
individual classification of sensitive attributes, the improvement is minor (SLD) or zero
(PACC).

7. Conclusion

Measuring the differential impact of models on groups of individuals is important to under-
stand their effects in the real world and their tendency to encode and reinforce divisions
and privilege across sensitive attributes. Unfortunately, in practice, demographic attributes
are often not available. In this work, we have taken the perspective of responsible prac-
titioners, interested in internal fairness audits of production models. We have proposed a
novel approach to measure group fairness under unawareness of sensitive attributes, utiliz-
ing methods from the quantification literature. These methods are specifically designed for
group-level prevalence estimation rather than individual-level classification. Since practi-
tioners who try to measure fairness under unawareness are precisely interested in prevalence
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estimates of sensitive attributes (Proposition 1), it is useful for the fairness and quantifica-
tion communities to exchange lessons.

We have studied the problem of estimating a classifier’s fairness under unawareness of
sensitive attributes, with access to a disjoint auxiliary set of data for which demographic in-
formation is available. We have shown how this can be cast as a quantification problem, and
solved with established approaches of proven consistency. We have conducted a detailed em-
pirical evaluation of different methods and their properties focused on demographic parity.
Drawing from the algorithmic fairness literature, we have identified five important factors
for this problem, associating each of them with a formal evaluation protocol. We have
tested several quantification-based approaches, which, under realistic assumptions for an
internal fairness audit, outperform previously proposed estimators in the fairness literature.
We have discussed their benefits and limitations, including the unbiasedness guarantees of
some methods, and the potential for misuse at an individual level.

Future work may require a deeper study of the relation between classification and quan-
tification performance and the extent to which these two objectives can be decoupled. It
would be interesting to explicitly target decoupling through learners aimed at maximiz-
ing quantification performance subject to a low classification performance constraint. Ide-
ally, decoupling should provide precise privacy guarantees to individuals while allowing for
precise group-level estimates. Another important avenue for future work is the study of
confidence intervals for fairness estimates provided by quantification methods. A reliable
indication of confidence for estimates of group fairness may be invaluable for a practitioner
arguing for resources and attention to the disparate effects of a model on different popu-
lations. Finally, the estimators presented in this work may be plugged into optimization
procedures aimed at improving, rather than measuring, algorithmic fairness. Mixed loss
functions, jointly optimizing accuracy and fairness can be optimized, even under unaware-
ness of sensitive attributes, with our methods providing fairness estimates at each iteration.
It will be interesting to evaluate fairness estimators in this broader context and extend
them, e.g., to ranking problems and counterfactual settings.
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Appendix A. The SLD Method

SLD (Saerens et al., 2002) produces prevalence estimates p̂SLDσ (s) iteratively, using EM
algorithms. In detail, given two sets, L and U , where the former represents the labelled
one (training set) and the latter represents the unlabelled one (test set). The method
iterates until convergence (i.e., the difference between the prevalence estimated across two
consecutive iterations is less than a tolerance factor ϵ –we use ϵ = 1e−4) or until a maximum
number of iterations is reached. The pseudocode describing SLD is as follows:

Input : Class prevalence values pL(s) on L;
Posterior probabilities πs(xi), for all xi ∈ U ;

Output: Estimates p̂U (s) of class prevalence values on U ;

/* Initialisation */

t← 0;
for s ∈ S do

p̂
(t)
U (s)← pL(s);

for xi ∈ U do

Pr(t)(s|xi)← πs(xi);
end

end

/* Main Iteration Cycle */

while stopping condition = false do
t← t+ 1;
for s ∈ S do

for xi ∈ U do

Pr(t)(s|xi)←

p̂
(t−1)
U (s)

p̂
(0)
U (s)

·
(0)

Pr(s|xi)

∑
s∈S

p̂
(t−1)
U (s)

p̂
(0)
U (s)

·
(0)

Pr(s|xi)

end

p̂
(t)
U (s)← 1

|U |
∑
xi∈U

(t)

Pr(s|xi)

end

end

/* Generate output */

for s ∈ S do

p̂SLDU (s)← p̂
(t)
U (s)

end

Pseudocode 2: The SLD algorithm (Saerens et al., 2002).
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Appendix B. The HDy Method

HDy (González-Castro et al., 2013) measures the divergence between two distributions of
posterior probabilities (i.e., as returned by a calibrated classifier) v and u in terms of the
Hellinger Distance (HD), defined as

HD(v, u) =

√∫ (√
v(x)−

√
u(x)

)2
dx

The HD between two continuous distributions v and u is typically approximated by dis-
cretizing v and u across bins and then integrating

ĤD(V,U) =

√√√√ b∑
i=1

(√
|Vi|
|V |
−

√
|Ui|
|U |

)2

with V and U the discrete distributions, b the number of bins and Vi, Ui representing the
frequency in the ith bin for each distribution, respectively.

The method seeks the α parameter that yields the smallest distance between the vali-
dation distribution V (typically, a held-out split of the training set that has not been used
to train the classifier) and the unlabelled distribution U , i.e.,

α∗ = arg min
α∈[0,1]

ĤD(V α, U)

where V α is the mixture of the positive distribution (V S=1) and the negative distribution
(V S=0) defined by

V α(x) = (1− α) · V S=0(x) + α · V S=1(x)

HDy returns α∗ as the sought positive class prevalence

p̂HDy
σ (1) = α∗

Since the number of bins b could have a significant impact on the calculation, one typically
returns the median of the distribution of the best α’s found for a range of b’s (in our case,
we explore b ∈ [10, 20, 30, . . . , 110]).
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Appendix C. Proof of Proposition 2

We show that Equation (2) and Equation (15) are equivalent when the latter is instantiated
by prevalence estimates given by PCC:

µ̂PCC(s) = p̂PCC
D⊕

3
(s)

pD3(⊕)
p̂PCC
D⊕

3

(s)pD3(⊕) + p̂PCC
D⊖

3

(s)pD3(⊖)

The terms in the denominator can be written as

p̂PCC
D⊕

3
(s) =

∑
xi∈D⊕

3
πs(xi)

|D⊕
3 |

=

∑
xi
πs(xi)h⊕(xi)∑
xi
h⊕(xi)

p̂PCC
D⊖

3
(s) =

∑
xi
πs(xi)(1− h⊕(xi))∑
xi
(1− h⊕(xi))

pD3(⊕) =
∑

xi
h⊕(xi)

|D3|

pD3(⊖) =
∑

xi
(1− h⊕(xi))

|D3|

Plugging them into the denominator yields

µ̂PCC(s) = p̂PCC
D⊕

3
(s)

pD3(⊕)∑
xi

πs(xi)

|D3|

=

∑
xi
πs(xi)h⊕(xi)∑
xi
h⊕(xi)

·
∑

xi
h⊕(xi)

|D3|
· |D3|∑

xi
πs(xi)

= µ̂WE(s)

The equivalence between CC and TE is straightforward.
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Appendix D. SVM-based Quantification

In this appendix we report the results of experiments, analogous to the ones in Sections 5.6-
5.9, where quantifiers are wrapped around an SVM classifier rather than an LR classifier.
The experimental protocols are summarized in Tables 9-13. The ablation study is depicted
in Figures 10 and 11. Experiments on decoupling the quantification performance of a model
from its classification performance are reported in Figures 12 and 13.

Table 9: Results obtained in the experiments run according to protocol sample-prev-D3

with the SVM-based classifier.

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(SVM) 0.410 ± 0.323 0.273 ± 0.341 0.193 0.365
PCC(SVM) 0.308 ± 0.244 0.154 ± 0.210 0.230 0.412
ACC(SVM) 0.107 ± 0.105 0.022 ± 0.053 0.606 0.857
PACC(SVM) 0.059 ± 0.057 0.007 ± 0.016 0.824 0.971
SLD(SVM) 0.056 ± 0.050 0.006 ± 0.011 0.836 0.983
HDy(SVM) 0.104 ± 0.078 0.017 ± 0.028 0.546 0.895
MLPE 0.397 ± 0.298 0.246 ± 0.316 0.162 0.294

COMPAS

CC(SVM) 0.543 ± 0.370 0.432 ± 0.474 0.115 0.235
PCC(SVM) 0.339 ± 0.243 0.174 ± 0.216 0.179 0.343
ACC(SVM) 0.497 ± 0.346 0.367 ± 0.448 0.127 0.224
PACC(SVM) 0.269 ± 0.207 0.115 ± 0.165 0.250 0.445
SLD(SVM) 0.227 ± 0.202 0.092 ± 0.154 0.335 0.566
HDy(SVM) 0.265 ± 0.204 0.112 ± 0.162 0.238 0.459
MLPE 0.349 ± 0.249 0.184 ± 0.227 0.175 0.332

CreditCard

CC(SVM) 0.346 ± 0.241 0.178 ± 0.213 0.171 0.335
PCC(SVM) 0.329 ± 0.215 0.155 ± 0.161 0.173 0.335
ACC(SVM) 0.358 ± 0.270 0.201 ± 0.276 0.175 0.348
PACC(SVM) 0.267 ± 0.215 0.118 ± 0.180 0.252 0.473
SLD(SVM) 0.243‡ ± 0.191 0.096† ± 0.143 0.268 0.496
HDy(SVM) 0.237 ± 0.186 0.090 ± 0.137 0.271 0.507
MLPE 0.334 ± 0.218 0.159 ± 0.165 0.172 0.330
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Table 10: Results obtained in the experiments run according to protocol sample-prev-D2

with the SVM-based classifier.

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(SVM) 0.217 ± 0.168 0.075 ± 0.106 0.286 0.554
PCC(SVM) 0.242 ± 0.190 0.095 ± 0.129 0.303 0.507
ACC(SVM) 0.150 ± 0.169 0.051 ± 0.147 0.458 0.799
PACC(SVM) 0.111 ± 0.114 0.025 ± 0.085 0.555 0.888
SLD(SVM) 0.095 ± 0.100 0.019 ± 0.067 0.634 0.929
HDy(SVM) 0.182 ± 0.151 0.056 ± 0.084 0.381 0.634
MLPE 0.295 ± 0.218 0.134 ± 0.165 0.240 0.415

COMPAS

CC(SVM) 0.506 ± 0.255 0.321 ± 0.267 0.036 0.116
PCC(SVM) 0.266 ± 0.187 0.106‡ ± 0.128 0.226 0.430
ACC(SVM) 0.479 ± 0.276 0.306 ± 0.305 0.076 0.175
PACC(SVM) 0.356 ± 0.260 0.194 ± 0.261 0.167 0.324
SLD(SVM) 0.297 ± 0.244 0.148 ± 0.228 0.231 0.424
HDy(SVM) 0.255 ± 0.192 0.102 ± 0.141 0.240 0.479
MLPE 0.275 ± 0.192 0.112 ± 0.134 0.220 0.410

CreditCard

CC(SVM) 0.428 ± 0.253 0.247 ± 0.237 0.106 0.229
PCC(SVM) 0.209 ± 0.142 0.064 ± 0.076 0.285 0.537
ACC(SVM) 0.531 ± 0.316 0.382 ± 0.352 0.090 0.164
PACC(SVM) 0.542 ± 0.313 0.391 ± 0.352 0.078 0.145
SLD(SVM) 0.445 ± 0.284 0.279 ± 0.288 0.118 0.237
HDy(SVM) 0.246 ± 0.193 0.098 ± 0.150 0.256 0.487
MLPE 0.210‡ ± 0.143 0.065‡ ± 0.077 0.287 0.530
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Table 11: Results obtained in the experiments run according to protocol sample-size-D2

with the SVM-based classifier

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(SVM) 0.131 ± 0.028 0.018 ± 0.007 0.133 1.000
PCC(SVM) 0.012 ± 0.011 0.000 ± 0.000 1.000 1.000
ACC(SVM) 0.081 ± 0.107 0.018 ± 0.076 0.759 0.935
PACC(SVM) 0.051 ± 0.066 0.007 ± 0.036 0.873 0.977
SLD(SVM) 0.043 ± 0.062 0.006 ± 0.030 0.907 0.971
HDy(SVM) 0.045 ± 0.034 0.003 ± 0.005 0.918 0.999
MLPE 0.013‡ ± 0.011 0.000‡ ± 0.001 1.000 1.000

COMPAS

CC(SVM) 0.355 ± 0.044 0.128 ± 0.031 0.000 0.003
PCC(SVM) 0.029 ± 0.019 0.001 ± 0.001 0.999 1.000
ACC(SVM) 0.389 ± 0.212 0.196 ± 0.212 0.090 0.171
PACC(SVM) 0.284 ± 0.231 0.134 ± 0.210 0.233 0.444
SLD(SVM) 0.228 ± 0.199 0.092 ± 0.158 0.305 0.555
HDy(SVM) 0.130 ± 0.102 0.027 ± 0.041 0.461 0.778
MLPE 0.029‡ ± 0.021 0.001‡ ± 0.002 0.999 1.000

CreditCard

CC(SVM) 0.189 ± 0.079 0.042 ± 0.032 0.132 0.552
PCC(SVM) 0.016 ± 0.013 0.000 ± 0.001 1.000 1.000
ACC(SVM) 0.358 ± 0.269 0.201 ± 0.267 0.181 0.328
PACC(SVM) 0.322 ± 0.257 0.169 ± 0.248 0.213 0.385
SLD(SVM) 0.243 ± 0.192 0.096 ± 0.142 0.284 0.497
HDy(SVM) 0.105 ± 0.096 0.020 ± 0.051 0.583 0.876
MLPE 0.017‡ ± 0.013 0.000‡ ± 0.001 1.000 1.000
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Table 12: Results obtained in the experiments run according to protocol sample-prev-D1

with the SVM-based classifier.

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(SVM) 0.126 ± 0.047 0.018 ± 0.011 0.268 0.959
PCC(SVM) 0.007 ± 0.005 0.000 ± 0.000 1.000 1.000
ACC(SVM) 0.032 ± 0.032 0.002 ± 0.014 0.968 0.998
PACC(SVM) 0.018 ± 0.014 0.001 ± 0.001 1.000 1.000
SLD(SVM) 0.013 ± 0.010 0.000 ± 0.000 1.000 1.000
HDy(SVM) 0.022 ± 0.016 0.001 ± 0.001 1.000 1.000
MLPE 0.008 ± 0.006 0.000 ± 0.000 1.000 1.000

COMPAS

CC(SVM) 0.334 ± 0.087 0.119 ± 0.055 0.018 0.063
PCC(SVM) 0.026 ± 0.018 0.001 ± 0.001 1.000 1.000
ACC(SVM) 0.349 ± 0.196 0.160 ± 0.174 0.123 0.221
PACC(SVM) 0.208 ± 0.179 0.075 ± 0.134 0.332 0.578
SLD(SVM) 0.170 ± 0.166 0.057 ± 0.117 0.422 0.707
HDy(SVM) 0.113 ± 0.089 0.021 ± 0.031 0.528 0.839
MLPE 0.027‡ ± 0.019 0.001‡ ± 0.001 1.000 1.000

CreditCard

CC(SVM) 0.152 ± 0.100 0.033 ± 0.038 0.360 0.708
PCC(SVM) 0.010 ± 0.007 0.000 ± 0.000 1.000 1.000
ACC(SVM) 0.194 ± 0.160 0.063 ± 0.104 0.342 0.618
PACC(SVM) 0.132 ± 0.108 0.029 ± 0.046 0.482 0.778
SLD(SVM) 0.110 ± 0.091 0.020 ± 0.032 0.560 0.845
HDy(SVM) 0.080 ± 0.061 0.010 ± 0.014 0.683 0.953
MLPE 0.011† ± 0.008 0.000 ± 0.000 1.000 1.000
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Table 13: Results obtained in the experiments run according to protocol flip-prev-D1

with the SVM-based classifier.

↓ MAE ↓ MSE ↑ P (AE < 0.1) ↑ P (AE < 0.2)

Adult

CC(SVM) 0.175 ± 0.085 0.038 ± 0.028 0.231 0.544
PCC(SVM) 0.007 ± 0.006 0.000 ± 0.000 1.000 1.000
ACC(SVM) 0.032 ± 0.028 0.002 ± 0.004 0.969 0.999
PACC(SVM) 0.020 ± 0.015 0.001 ± 0.001 1.000 1.000
SLD(SVM) 0.015 ± 0.012 0.000 ± 0.001 1.000 1.000
HDy(SVM) 0.022 ± 0.018 0.001 ± 0.001 1.000 1.000
MLPE 0.009 ± 0.006 0.000 ± 0.000 1.000 1.000

COMPAS

CC(SVM) 0.395 ± 0.113 0.169 ± 0.083 0.021 0.055
PCC(SVM) 0.027 ± 0.019 0.001 ± 0.001 0.998 1.000
ACC(SVM) 0.399 ± 0.204 0.201 ± 0.193 0.094 0.174
PACC(SVM) 0.207 ± 0.176 0.074 ± 0.131 0.325 0.587
SLD(SVM) 0.160 ± 0.146 0.047 ± 0.095 0.418 0.722
HDy(SVM) 0.112 ± 0.084 0.020 ± 0.028 0.528 0.842
MLPE 0.027‡ ± 0.019 0.001‡ ± 0.001 0.999 1.000

CreditCard

CC(SVM) 0.165 ± 0.105 0.038 ± 0.039 0.328 0.627
PCC(SVM) 0.012‡ ± 0.009 0.000‡ ± 0.000 1.000 1.000
ACC(SVM) 0.227 ± 0.186 0.086 ± 0.130 0.303 0.542
PACC(SVM) 0.144 ± 0.120 0.035 ± 0.059 0.442 0.742
SLD(SVM) 0.118 ± 0.095 0.023 ± 0.036 0.512 0.819
HDy(SVM) 0.092 ± 0.070 0.013 ± 0.019 0.621 0.913
MLPE 0.012 ± 0.009 0.000 ± 0.000 1.000 1.000
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Figure 10: Results obtained in the ablation study on the Adult dataset with SVM-based
quantification for protocol sample-prev-D2.
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Figure 11: Results obtained in the ablation study on the Adult dataset with SVM-based
quantification for protocol sample-prev-D3.
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Figure 12: Performance of SVM-based methods CC, SLD and PACC on the Adult dataset
when used for quantification (MAE – lower is better) and classification (F1, accuracy –
higher is better) under protocol sample-prev-D2. The classification performance of PACC
is equivalent to that of CC (both equal to the performance of the underlying SVM), and
we thus omit it for readability.
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Figure 13: Performance of SVM-based methods CC, SLD and PACC on the Adult dataset
when used for quantification (MAE – lower is better) and classification (F1, accuracy –
higher is better) under protocol sample-prev-D3. The classification performance of PACC
is equivalent to that of CC (both equal to the performance of the underlying SVM), and
we thus omit it for readability.
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Appendix E. Pseudocode

This section reports pseudocode for protocols sample-prev-D2 (Pseudocode 3), sample-size-D2

(Pseudocode 4), and sample-prev-D1 (Pseudocode 5).

Input : • Dataset D ;
• Classifier learner CLS;
• Quantification method Q;

Output: • MAE of the demographic disparity estimates ;
• MSE of the demographic disparity estimates ;

1 E ← ∅ ;
2 for 5 random splits do
3 DA,DB ,DC ← split stratify(D) ;
4 for D1,D2,D3 ∈ permutations(DA,DB ,DC) do
5 /* Learn a classifier h : X → Y */

6 h← CLS.fit(D1) ;

7 D⊖
2 ← {(xi, si) ∈ D2 | h(xi) = ⊖} ;

8 D⊕
2 ← {(xi, si) ∈ D2 | h(xi) = ⊕} ;

9 for 10 repeats do
10 for p ∈ {0.1, 0.2, . . . , 0.9} do
11 /* Generate samples from D⊖

2 at desired prevalence and size, and

uniform samples from D⊕
2 at desired size */

12 D̆⊖
2 ∼ D

⊖
2 with pD̆⊖

2
(s) = p and |D̆⊖

2 | = 500 ;

13 D̆⊕
2 ∼ D

⊕
2 with |D̆⊕

2 | = 500 ;

14 /* Learn quantifiers qy : 2X → [0, 1] */

15 q⊖ ← Q.fit(D̆⊖
2 ) ;

16 q⊕ ← Q.fit(D̆⊕
2 ) ;

17 /* Use quantifiers to estimate demographic prevalence */

18 D⊖
3 ← {xi ∈ D3 | h(xi) = ⊖} ;

19 D⊕
3 ← {xi ∈ D3 | h(xi) = ⊕} ;

20 p̂
q⊖

D⊖
3

(s)← q⊖(D⊖
3 ) ;

21 p̂
q⊕

D⊕
3

(s)← q⊕(D⊕
3 ) ;

22 /* Compute the signed error of the demographic disparity estimate */

23 e← compute error using p̂
q⊖

D⊖
3

(s), p̂
q⊕

D⊕
3

(s) and Equation 16

24 E ← E ∪ {e}
25 end

26 end

27 end

28 end
29 mae← MAE(E) ;
30 mse← MSE(E) ;
31 return mae, mse

Pseudocode 3: Protocol sample-prev-D2, shown for variations of prevalence values
in class y = ⊖.
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Input : • Dataset D ;
• Classifier learner CLS;
• Quantification method Q;

Output: • MAE of the demographic disparity estimates ;
• MSE of the demographic disparity estimates ;

1 E ← ∅ ;
2 for 5 random splits do
3 DA,DB ,DC ← split stratify(D) ;
4 for D1,D2,D3 ∈ permutations(DA,DB ,DC) do
5 /* Learn a classifier h : X → Y */

6 h← CLS.fit(D1) ;
7 for 10 repeats do
8 for size s ∈ logspace(from: 1000, to: |D2|, steps: 5) do
9 /* Generate samples from D2 at desired size */

10 D̆2 ∼ D2 with |D̆2| = s ;

11 /* Learn quantifiers qy : 2X → [0, 1] */

12 D̆⊖
2 ← {(xi, si) ∈ D̆2 | h(xi) = ⊖} ;

13 D̆⊕
2 ← {(xi, si) ∈ D̆2 | h(xi) = ⊕} ;

14 q⊖ ← Q.fit(D̆⊖
2 ) ;

15 q⊕ ← Q.fit(D̆⊕
2 ) ;

16 /* Use quantifiers to estimate demographic prevalence */

17 D⊖
3 ← {xi ∈ D3 | h(xi) = ⊖} ;

18 D⊕
3 ← {xi ∈ D3 | h(xi) = ⊕} ;

19 p̂
q⊖

D⊖
3

(s)← q⊖(D⊖
3 ) ;

20 p̂
q⊕

D⊕
3

(s)← q⊕(D⊕
3 ) ;

21 /* Compute the signed error of the demographic disparity estimate */

22 e← compute error using p̂
q⊖

D⊖
3

(s), p̂
q⊕

D⊕
3

(s) and Equation 16

23 E ← E ∪ {e}
24 end

25 end

26 end

27 end
28 mae← MAE(E) ;
29 mse← MSE(E) ;
30 return mae, mse

Pseudocode 4: Protocol sample-size-D2.
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Input : • Dataset D ;
• Classifier learner CLS;
• Quantification method Q;

Output: • MAE of the demographic disparity estimates ;
• MSE of the demographic disparity estimates ;

1 E ← ∅ ;
2 for 5 random splits do
3 DA,DB ,DC ← split stratify(D) ;
4 for D1,D2,D3 ∈ permutations(DA,DB ,DC) do
5 for 10 repeats do
6 for p ∈ {0.0, 0.1, . . . , 0.9, 1.0} do
7 /* Generate samples from D1 at desired prevalence */

8 D̆1 ∼ D1 with P (Y = S) = p and |D̆1| = 500 ;
9 /* Learn a classifier h : X → Y */

10 h← CLS.fit(D̆1) ;

11 /* Learn quantifiers qy : 2X → [0, 1] */

12 D⊖
2 ← {(xi, si) ∈ D2 | h(xi) = ⊖} ;

13 D⊕
2 ← {(xi, si) ∈ D2 | h(xi) = ⊕} ;

14 q⊖ ← Q.fit(D⊖
2 ) ;

15 q⊕ ← Q.fit(D⊕
2 ) ;

16 /* Use quantifiers to estimate demographic prevalence */

17 D⊖
3 ← {xi ∈ D3 | h(xi) = ⊖} ;

18 D⊕
3 ← {xi ∈ D3 | h(xi) = ⊕} ;

19 p̂
q⊖

D⊖
3

(s)← q⊖(D⊖
3 ) ;

20 p̂
q⊕

D⊕
3

(s)← q⊕(D⊕
3 ) ;

21 /* Compute the signed error of the demographic disparity estimate */

22 e← compute error using p̂
q⊖

D⊖
3

(s), p̂
q⊕

D⊕
3

(s) and Equation 16

23 E ← E ∪ {e}
24 end

25 end

26 end

27 end
28 mae← MAE(E) ;
29 mse← MSE(E) ;
30 return mae, mse

Pseudocode 5: Protocol sample-prev-D1.
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Maŕıa Agustina Ricci Lara, Rodrigo Echeveste, and Enzo Ferrante. Addressing fairness in
artificial intelligence for medical imaging. nature communications, 13(1):4581, 2022.

Govind S. Sankar, Anand Louis, Meghana Nasre, and Prajakta Nimbhorkar. Matchings
with group fairness constraints: Online and offline algorithms. In Proc. of the 30th
International Joint Conference on Artificial Intelligence (IJCAI 2021), pages 377–383,
2021. doi: 10.24963/ijcai.2021/53.

Sivan Sabato and Elad Yom-Tov. Bounding the fairness and accuracy of classifiers from
population statistics. In Proc. of the 37th International Conference on Machine Learning
(ICML 2020), pages 8316–8325, Virtual Event, 2020.

Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting the outputs of a
classifier to new a priori probabilities: A simple procedure. Neural Computation, 14(1):
21–41, 2002. doi: 10.1162/089976602753284446.

Barry Schouten, Fannie Cobben, and Jelke Bethlehem. Indicators for the representativeness
of survey response. Survey Methodology, 35(1):101–113, 2009.

Barry Schouten, Jelke Bethlehem, Koen Beullens, Oyvin Kleven, Geert Loosveldt, Anne-
mieke Luiten, Katja Rutar, Natalie Shlomo, and Chris Skinner. Evaluating, comparing,
monitoring, and improving representativeness of survey response through R-indicators
and partial R-indicators. International Statistical Review, 80(3):382–399, 2012.

Andrew D. Selbst, Danah Boyd, Sorelle A. Friedler, Suresh Venkatasubramanian, and Janet
Vertesi. Fairness and abstraction in sociotechnical systems. In Proc. of the 2nd ACM
Conference on Fairness, Accountability, and Transparency (FAT* 2019), pages 59–68,
Atlanta, US, 2019. doi: 10.1145/3287560.3287598.

Jon Sindreu. Covid-19 wrecked the algorithms that set airfares, but they won’t stay dumb.
The Wall Street Journal, May 17, 2021, 2021. URL https://on.wsj.com/2UQg1yQ.

1179



Fabris, Esuli, Moreo, & Sebastiani

Harvineet Singh, Rina Singh, Vishwali Mhasawade, and Rumi Chunara. Fairness violations
and mitigation under covariate shift. In Proc. of the 4th ACM Conference on Fairness,
Accountability, and Transparency (FAccT 2021), pages 3–13, Toronto, CA, 2021. doi:
10.1145/3442188.3445865.

Hephzibah V. Strmic-Pawl, Brandon A. Jackson, and Steve Garner. Race counts: Racial
and ethnic data on the u.s. census and the implications for tracking inequality. Sociology
of Race and Ethnicity, 4(1):1–13, 2018. doi: 10.1177/2332649217742869. URL https:

//doi.org/10.1177/2332649217742869.

Dirk Tasche. Fisher consistency for prior probability shift. Journal of Machine Learning
Research, 18:95:1–95:32, 2017.

Stratis Tsirtsis, Behzad Tabibian, Moein Khajehnejad, Adish Singla, Bernhard Schölkopf,
and Manuel Gomez-Rodriguez. Optimal decision-making under strategic behavior.
arXiv:1905.09239v5 [cs.LG], 2019.

Michael Veale and Reuben Binns. Fairer machine learning in the real world: Mitigating
discrimination without collecting sensitive data. Big Data and Society, 4(2):1–17, 2017.
doi: 10.1177/2053951717743530.

Jialu Wang, Yang Liu, and Caleb Levy. Fair classification with group-dependent label
noise. In Proc. of the 4th ACM Conference on Fairness, Accountability, and Transparency
(FAccT 2021), pages 526–536, Toronto, CA, 2021a. doi: 10.1145/3442188.3445915.

Jialu Wang, Yang Liu, and Caleb Levy. Fair classification with group-dependent label
noise. In Proc. of the 2021 ACM Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 526–536, New York, NY, USA, 2021b. Association for Com-
puting Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445915. URL
https://doi.org/10.1145/3442188.3445915.

Christo Wilson, Avijit Ghosh, Shan Jiang, Alan Mislove, Lewis Baker, Janelle Szary, Kelly
Trindel, and Frida Polli. Building and auditing fair algorithms: A case study in candidate
screening. In Proc. of the 4th ACM Conference on Fairness, Accountability, and Trans-
parency (FAccT 2021), pages 666–677, Toronto, CA, 2021. doi: 10.1145/3442188.3445928.

Min Xie and Janet L Lauritsen. Racial context and crime reporting: A test of Black’s
stratification hypothesis. Journal of Quantitative Criminology, 28(2):265–293, 2012.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi.
Fairness constraints: Mechanisms for fair classification. In Proc. of the 20th International
Conference on Artificial Intelligence and Statistics (AISTATS 2017), pages 962–970, Fort
Lauderdale, US, 2017.

1180


