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Hierarchical text classification (HTC) approaches have
recently attracted a lot of interest on the part of
researchers in human language technology and machine
learning, since they have been shown to bring about
equal, if not better, classification accuracy with respect to
their “flat” counterparts while allowing exponential time
savings at both learning and classification time. A typ-
ical component of HTC methods is a “local” policy for
selecting negative examples: Given a category c, its neg-
ative training examples are by default identified with the
training examples that are negative for c and positive
for the categories which are siblings of c in the hier-
archy. However, this policy has always been taken for
granted and never been subjected to careful scrutiny
since first proposed 15 years ago. This article proposes
a thorough experimental comparison between this pol-
icy and three other policies for the selection of negative
examples in HTC contexts, one of which (BESTLOCAL(k ))
is being proposed for the first time in this article. We
compare these policies on the hierarchical versions of
three supervised learning algorithms (boosting, support
vector machines, and naïve Bayes) by performing exper-
iments on two standard TC datasets, REUTERS-21578 and
RCV1-V2.

Introduction

Given a set of textual documents D and a predefined
set of categories (aka labels or classes) C = {c1, . . . , cm},
multi-label (aka n-of-m) text classification (TC) is the task
of approximating, or estimating, an unknown target function
�: D × C → {−1, +1} that describes how documents ought
to be classified, by means of a function �̂: D × C →
{−1, +1}, called the “classifier.”1 Here, “multi-label” indi-
cates that the same document can belong to zero, one, or
several categories at the same time.
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1Consistent with most mathematical literature, we use the caret symbol
(ˆ) to indicate estimation.
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Hierarchical text classification (HTC) refers to a variant of
the TC task, namely, that in which the set C of the categories
is organized into a hierarchy; this may be a tree or, more gen-
erally, a directed acyclic graph (DAG). HTC approaches have
recently attracted a lot of interest on the part of researchers in
human language technology and machine learning (see e.g.
Gauch, Ranganathan and Chandramouli, 2009; Liu, 2009;
Yoon, Lee, & Lee, 2006), since they have been shown to
bring about equal, if not better, classification accuracy with
respect to their “flat” counterparts while allowing exponential
time savings at both learning and classification time (Esuli,
Fagni, & Sebastiani, 2008; Liu et al., 2005).

Multi-label HTC is usually implemented by generating
a binary classifier for each nonroot node in the hierarchy
(be it an internal or a leaf node); the role of this classifier
is to decide whether the test document belongs or not to
the category associated with the node. Classification is then
performed in “Pachinko machine” style (Koller & Sahami,
1997): The test document is first submitted to the classi-
fiers corresponding to the top-level nodes, and recursively
percolates down to (i.e. is submitted to the classifiers corre-
sponding to the nodes in) the lower levels of the hierarchy
only if the classifiers at the higher levels have deemed that
the document belong to their associated category. In this way,
entire subtrees are pruned from consideration, which allows
exponential savings at classification time (Chakrabarti, Dom,
Agrawal, & Raghavan, 1998; Koller & Sahami, 1997). This
is fundamental when tackling classification tasks character-
ized by very high numbers of categories, as is the case e.g. of
the OHSUMED dataset (Hersh, Buckley, Leone, & Hickman,
1994), theWIPO-alpha dataset (Fall, Törcsvári, Benzineb, &
Karetka, 2003), and the Yahoo dataset (Liu et al., 2005),
which all contain tens of thousands of categories.

Exponential savings can also be accomplished at learn-
ing time. One way of achieving this is performing feature
selection “locally” (Koller & Sahami, 1997), i.e. selecting,
for a classifier corresponding to category c, only the features
that are most useful in discriminating among c and the cat-
egories that are its siblings in the hierarchy; in this way the
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vector space in which the documents are represented can be
much smaller, thus bringing about speedier learning (and also
classification).

A second way of speeding up learning in HTC is adopt-
ing a “local” policy for selecting negative examples: Given a
category c, its negative training examples are identified with
the training examples that, aside from being negative for c,
are also positive for the categories which are siblings of to c

in the hierarchy. With respect to a policy in which all exam-
ples negative for c are used, this results in faster learning,
since it reduces (sometimes dramatically) the overall num-
ber of training examples considered, and since practically all
learning methods are at least linear in such number.

However, this policy (hereafter called the Siblings policy)
has always been taken for granted, and never been subjected
to careful scrutiny since first being used by Wiener, Pedersen,
andWeigend (1995) and explicitly advocated by Ng, Goh, and
Low (1997).

This article proposes a thorough experimental comparison
between this policy and three other policies for the selection
of negative examples in HTC, one of which (BestLocal(k))
is being proposed for the first time in this article. We pro-
vide an intuitive basis for these policies and test them on the
hierarchical versions of three important supervised learning
algorithms (namely: boosting, support vector machines, and
naïve Bayes) by performing experiments on two standard TC
datasets: (a hierarchical version of) a small dataset consist-
ing of approximately 11,000 documents (Reuters-21578)
and a very large dataset of more than 800,000 documents
(RCV1-v2).

We stress that, while the BestLocal(k) policy is proposed
here for the first time, this should not be understood as an
essential contribution of this article: The main goal of our
work was instead to clarify the relative merits of policies
which, to date, had never been compared experimentally in a
systematic way.

The article is organized as follows: In the second section
we outline the basic scheme for learning hierarchical text
classifiers that, in our experiments, we will instantiate with
boosting, support vector machines (SVMs) and naïve Bayes
as base learners. The third section describes in detail the four
policies for the selection of negative training examples. The
fourth section describes the experimental settings that we
have adopted in our experiments. The results of these exper-
iments are reported in the fifth section and further analyzed
in the next section while the final section concludes.

A Pattern for Multi-Label HTC

In this section, we describe the basic pattern to which
we will conform in building a hierarchical classifier as a
hierarchy of standard binary classifiers. Let us first define
our notation. Let H = 〈I, L〉 be a tree-structured set of
categories, where I = {〈i1, Tr+(i1)〉, . . . , 〈in, Tr+(in)〉}, and
L = {〈l1, Tr+(l1)〉, . . . , 〈lm, Tr+(lm)〉} are the sets of cate-
gories of H corresponding to the internal nodes (hereafter:
internal categories) and the leaf nodes (leaf categories) of

H , respectively, together with their sets of positive training
examples, and where r ∈ I is the root category of H .2 For each
category cj ∈ H , we will use the following abbreviations:

Symbol Meaning

Tr+(cj) The set of positive training documents of cj
Tr−(cj) The set of negative training documents of cj
↑ (cj) The parent category of cj
↓ (cj) The set of children categories of cj
⇑ (cj) The set of ancestor categories of cj
⇓ (cj) The set of descendant categories of cj
↔ (cj) The set of categories which are siblings of cj

We here assume that documents can belong to zero, one,
or several leaf categories in L. Further, we assume that the set
of positive examples of an internal category ij is always given
by the union of the positive examples of its descendant leaf
categories; in other words, an internal category can contain no
documents that do not belong to at least one of its descendant
leaf categories. This is a common constraint in many HTC
applications, but the assumption is not restrictive anyway.3

When it comes to training examples, it thus follows that

Tr+(cj) =
⋃

l∈⇓(cj)

Tr+(l) (1)

We assume that all training examples belong to at least
one leaf category lj ∈ L; the training set Tr thus coincides
with ∪lj∈LTr+(lj).

Figure 1 describes the basic scheme (called Tree-
Learner) to which we conform in building a hierarchical
classifier. A base learner that generates binary classifiers is
passed as a parameter to TreeLearner; in the section Learn-
ing Methods, Weighting Method, and Evaluation Measures,
we will alternatively instantiate this general scheme via a
boosting-based learner, an SVM-based learner, and a naïve
Bayes learner, thus generating the TreeBoost, TreeSVM,
and TreeNB hierarchical learners. Also the policy for the
selection of negative examples is passed as a parameter to
TreeLearner; this will allow us to compare experimentally
the four different policies mentioned in the Introduction.

2Throughout this article we will always refer to tree-shaped hierar-
chies; however, all our arguments straightforwardly apply to DAG-shaped
hierarchies (see also Footnote 4).

3In fact, without loss of generality, given a hierarchically structured set of
categories H in which internal categories can indeed contain documents that
do not belong to any of their descendant leaf categories, we can transform H

into an “extended” set of categories H ′ by appending to every internal node
ij of H an additional child (leaf) node lj , and by moving into lj all documents
originally contained in ij . This mapping, originally proposed by Cheng, Tang,
Wai-Chee, and King (2001) produces a hierarchy H ′ semantically equiva-
lent to H in which all documents are indeed contained in leaf categories
only. Note that many real-world classification schemes (e.g. the ACM Clas-
sification Scheme) are of this latter type, since their internal nodes usually
have a special child category (called “General” or “Other”) that contains all
documents belonging to the node but to none of its descendant leaves.
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procedure TreeLearner(H, r, np, learner)
begin

if not (r is a leaf category) then
foreach child in ↓(r) do
begin

Tr−(child) ← GetNegatives(H, r, child, np);
Train(child, learner);
TreeLearner(H, child, np, learner);

end
else

do nothing
endif

end

FIG. 1. The TreeLearner scheme; H , r, np, and learner indicate the
hierarchy, its root, the chosen policy for the selection of negative training
examples, and the chosen learner, respectively.

The scheme is defined as a recursive procedure that, for
each nonroot (internal or leaf) category cj , generates a binary
classifier from Tr+(cj) and the chosen Tr−(cj).

Choosing Negative Examples in HTC

In this work, we present experimental comparisons of four
different strategies for selecting negative training examples
for a given category. In the following, we give a description
of the strategies used and we try to explain the key ideas
behind each policy. In the section Efficiency, we will then give
details about the computational cost of each such strategy by
describing the cost of selecting negative documents for each
category and by analyzing the impact that the number of
selected examples has on the learning phase.

The SIBLINGS Policy

According to the Siblings policy, the set of negative train-
ing documents for category cj is chosen among the training
documents that are not positive for cj and may be assumed to
be most correlated to cj on topological grounds alone. That is,
it is composed of all the training documents that are not posi-
tive for cj and are positive for the categories sibling of cj: i.e.4

Tr−(cj) =

 ⋃

c∈↔(cj)

Tr+(c)


 ∖

Tr+(cj) (2)

There are two main intuitions behind this policy.
The first intuition is that, if the classifier associated with

↑ (cj) has generated no false positives, the classifier asso-
ciated with cj will only be asked to classify documents that

4Note that, if the hierarchy is tree-shaped, each category cj has a single
set of siblings, but if the hierarchy is DAG-shaped cj has in general several
such sets, since it has several parent categories. In the DAG case, the set of
categories sibling of cj to be considered in the Siblings policy is simply the
union of the various sets of siblings of cj as derived from the multiple parents
of cj . Note that the three other policies we discuss in this article do not use
the hierarchical structure of the category set; hence, they work for tree- and
DAG-shaped hierarchies alike.

belong to cj and/or one or more among its siblings. If this is
the case, it is clear that including in Tr−(cj) documents that
are neither positive for cj nor for any of its siblings would dis-
tract the classifier from focusing on the only distinction that
matters in this context, i.e. that between cj and its siblings.

The second intuition is that this is the policy that most
closely conforms to the divide et impera view of HTC at
the base of the TreeLearner scheme, in which the multi-
label problem of classifying documents into a hierarchy
H = <I, L> is decomposed into several flat classification
problems, one for each ij ∈ I, in which the set of categories
concerned is ↓(ij).

It can be a bit controversial to say who proposed the
Siblings policy first. The first authors to explicitly mention
it in contrast with the All policy (and to claim “intel-
lectual ownership” of it) are Ng, Goh, and Low (1997).
However, a careful reading of Wiener, Pedersen, & Weigend
(1995) reveals that Siblings was already used in this article,
even if discussed only between the lines and in somewhat
unclear terms. After being proposed in these two articles, the
Siblings policy was subsequently adopted in, e.g. Chiang
and Chen (2001), Dumais and Chen (2000); Esuli, Fagni, and
Sebastiani (2008), Liu et al. (2005), Ruiz and Srinivasan
(2002), Sun, Lim, and Ng (2003), Weigend, Wiener, and
Pedersen (1999), and quickly became the standard choice
for HTC contexts.

However, it is important to note that Wiener, Pedersen,
and Weigend (1995) nor Ng, Goh, and Low (1997) nor the
researchers who have followed in their footsteps have sub-
mitted this policy to careful experimental scrutiny, i.e. tested
Siblings against All (or against other policies, for that
matter) in any comparative experiment.

The ALL Policy

According to the All policy, the set Tr−(cj) of negative
training documents for category cj is simply the entire training
set minus the positive training documents of cj , i.e.

Tr−(cj) = Tr\Tr+(cj) (3)

In a sense, All is a “brute force” policy that disregards
the hierarchical structure of the set of categories, treating the
HTC problem as a flat classification problem in which no
particular selection criterion is used. However, All is still
a frequently used policy whenever the HTC classification
problem is not decomposed into recursively smaller flat clas-
sification problems (as in, e.g. Kiritchenko, Matwin, Nock, &
Famili, 2006).

Again, there are two main intuitions behind theAll policy.
The first intuition is that it is generally the case that the

classifier associated with ↑(cj) may indeed generate some
false positives, i.e. documents that belong neither to cj nor
to any of its siblings. In this case, if the classifier for cj had
been trained (according to the Siblings policy) only with
training examples belonging to ↑(cj), it might be unequipped
to correctly recognize (i.e. reject) documents that are very
different from the ones it has been trained on.
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The second intuition is, somehow crudely, that “the more
the training data, the better”, i.e. that using additional (albeit
negative) training examples may only bring about equally or
more accurate classifiers, provided efficiency is not an issue.

The BESTGLOBAL Policy

The third policy we discuss, dubbed BestGlobal, has
similarities to Siblings in that it tries to substantially limit the
size of Tr−(cj), and has similarities toAll in that it disregards
the hierarchical structure of the category set, thus basing the
selection process on nontopological considerations. While it
has never been used to date in a hierarchical context, Best-
Global simply coincides with the “query zoning” selection
strategy, proposed by Singhal, Mitra, and Buckley (1997) for
flat classification and subsequently used in Schapire, Singer,
and Singhal (1998).

In order to implement BestGlobal one first computes the
centroid of Tr+(cj), i.e. the document ζ(cj) whose vectorial
representation is obtained as5

ζ(cj) = 1

|Tr+(cj)|
∑

dp∈Tr+(cj)

dp (4)

The Tr−(cj) set is then defined as the set of the βj doc-
uments in Tr\Tr+(cj) that minimize the distance from this
centroid, according to some measure δ of vector distance; i.e.

Tr−(cj) = arg
βj

min
dn∈Tr\Tr+(cj)

δ(ζ(cj), dn) (5)

where arg
z

min
A

f denotes the z elements of A that minimize

function f .
The rationale behind this policy is that the documents thus

selected may be viewed as “near-positives” for cj , i.e. docu-
ments that tend to lie just outside the region where the positive
examples lie. As such, they tend to be the most informative
negative training documents, since they allow a learner to
fine-tune the choice of a classifier, i.e. of a surface that sepa-
rates the above region from that of the negative examples. In
this, the notion of a “near-positive training example” is akin
to the notion of support vector in kernel machines.

Note that also the Siblings policy may be viewed as
a policy for the selection of near-positives. The difference
with BestGlobal is that Siblings makes this choice based
on topological considerations alone, i.e. by making the
assumption that the negative examples of cj that are most
similar to the positive examples of cj are likely to be the pos-
itive examples of cj’s siblings. BestGlobal instead equates
similarity with closeness in the vector space in which the

5In order to simplify the notation, in this article we will indicate by the
same symboldi both a document and its vectorial representation; the intended
meaning will be clear from the context.

documents are represented. Siblings is thus a policy specific
to a hierarchical setting, whereas BestGlobal is not.

The BESTLOCAL(k) Policy

We here propose a fourth selection policy (dubbed Best-
Local(k)) that essentially consists in a variant of Best-
Global aimed at improving the selection of negative training
examples for categories that are not linearly separable.

The disadvantage of the BestGlobal policy is that the
centroid of Tr+(cj) may be too coarse a representation of
the region of the positive examples of cj . If cj is linearly
separable, the centroid is an optimal such representation; if
cj is not (i.e. if the separating surface in the vector space has
a complex geometrical form), the BestGlobal policy will
select some negative examples that are in fact far away from
the separating surface, and will miss some negative examples
that are instead close to it.

A solution to this problem might be that of selecting the
βj negative training examples whose distance from any ele-
ment of Tr+(cj) is minimum. In other words, if we define the
closest cj-positive training neighbor of document dn to be

χ(dn) = arg min
dp∈Tr+(cj)

δ(dn, dp) (6)

our policy selects the βj negative training documents dn that
are closest to any positive training example of cj , i.e.

arg
βj

min
dn∈Tr\Tr+(cj)

δ(dn, χ(dn)) (7)

We call this policy BestLocal(1). This policy avoids
selecting examples that, while close to the centroid of Tr+(cj),
are too far from the separating surface, and avoids missing
examples that, while far from the centroid of Tr+(cj), are very
close to the separating surface.

A generalization of this policy is obtained by selecting
the βj negative training examples dn for which the sum of
the distances from dn and its closest k elements of Tr+(cj) is
minimum. In other words, if we define the k closest cj-positive
training neighbors of document dn to be

χk(dn) = arg
k

min
dp∈Tr+(cj)

δ(dn, dp) (8)

our policy selects the βj negative training documents dn for
whom the sum of the distances between dn and each of the
χk(dn) is minimum, i.e.

arg
βj

min
dn∈Tr\Tr+(cj)

∑
dp∈χk(dn)

δ(dp, dn) (9)

We call this policy BestLocal(k). This policy trades the
specificity (i.e. the ability to individuate documents extremely
close to the separating surface) of BestLocal(1) for the
robustness (i.e. the ability to avoid outliers) of BestGlobal,
and may be seen as an attempt to “smooth” BestLocal(1) by
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TABLE 1. Reuters-21578 macro-categories and their member categories
from Toutanova, Chen, Popat, and Hofmann (2001).

Macrocategory Member categories

Commodities Barley, carcass, castor-oil, cocoa, coconut, coconut-oil,
coffee, copra-cake, corn cotton, cotton-oil, grain,
groundnut, groundnut-oil, hog, l-cattle, lin-oil, livestock,
lumber, meal-feed, oat, oilseed, orange, palm-oil,
palmkernel, pet-chem, potato, rape-oil, rapeseed, rice,
rubber, rye, ship, sorghum, soy-meal, soy-oil, soybean,
sugar, sun-meal, sun-oil, sunseed, tea, veg-oil, wheat

Financial Acq, bop, cpi, cpu, dfl, dlr, dmk, earn, gnp, housing,
income, instal-debt, interest, ipi, jobs, lei,
money-fx, money-supply, nkr, nzdlr, rand,
reserves, retail, trade, wpi, yen

Metals Alum, copper, gold, iron-steel, lead, nickel, palladium,
platinum, silver, strategic-metal, tin, zinc

Energy Crude, fuel, gas, heat, jet, naphtha, nat-gas, propane

insisting that, in order to be selected, a negative example must
be close not to just one, but to several elements of Tr+(cj).

Similar to what happens for the BestGlobal policy, also
the negative examples selected by BestLocal(k) allow a
learner to fine-tune the choice of a surface that separates the
positive region from the negative region, and in this case too
these examples play a role akin to the support vectors of ker-
nel machines. In this case, the k parameter is used to trade the
fit of the model for its simplicity, i.e. its generalization capa-
bility: Lower numbers of k bring about complex separating
surfaces that may tend to overfit the training data, whereas
higher values of k bring about simpler separating surfaces,
i.e. surfaces that fit the training data less accurately but tend
to be more robust.

Experiments

The Datasets

The first dataset we have used in our experiments is the
“Reuters-21578, Distribution 1.0” corpus, one of the most
widely used datasets in TC research.6 In origin, the Reuters-
21578 category set is not hierarchically structured, and is thus
not suitable “as is” for HTC experiments; we have thus used
a hierarchical version of it generated by Toutanova, Chen,
Popat, and Hofmann (2001) by the application of hierar-
chical agglomerative clustering on the 90 Reuters-21578
categories that have at least one positive training example
and one positive test example. The original Reuters-21578
categories are thus “leaf” categories in the resulting hierarchy,
and are clustered into four “macro-categories” (i.e. internal
nodes—see Table 1) whose parent category is the root of
the tree. Conforming to the experiments of Toutanova, Chen,
Popat, and Hofmann (2001), we have used (according to the
ModApte split) the 7,770 training examples and 3,299 test
examples that are labeled by at least one of the selected leaf

6Reuters-21578 is freely available for experimentation purposes from
http://www.daviddlewis.com/resources/testcollections/∼reuters21578/

categories; the average number of leaf categories per docu-
ment is 1.23, ranging from a minimum of 1 to a maximum
of 15. The average number of positive training examples per
leaf category is 106.5, ranging from a minimum of 1 to a
maximum of 2,877.

The second dataset we have used is Reuters CorpusVol-
ume 1 version 2 (RCV1-v2),7 a more recent TC dataset made
available by Reuters and consisting of 804,414 news stories
produced by Reuters from Aug 20, 1996 to Aug 19, 1997;
all news stories are in English, and have 109 distinct terms
per document on average (Rose, Stevenson, & Whitehead,
2002). In our experiments, we have used the “LYRL2004”
split defined in Lewis,Yang, Rose, and Li (2004), in which the
(chronologically) first 23,149 documents are used for train-
ing and the other 781,265 are used for testing. Out of the 82
“Topic” leaf categories, in our experiments we have restricted
our attention to the 80 such categories with at least one posi-
tive training example. The RCV1-v2 hierarchy is four levels
deep (including the root, to which we conventionally assign
level 0); there are four internal nodes at level 1, and the leaves
are all at levels 2 and 3. The average number of leaf cate-
gories per document is 3.18, ranging from a minimum of 1 to
a maximum of 14. The average number of positive training
examples per leaf category is 347.2, ranging from a minimum
of 1 to a maximum of 10,786.

Learning Methods, Weighting Method, and Evaluation
Measures

As the base learner for the TreeLearner procedure, we
have decided to use a boosting-based learner, an SVM-based
learner, and a naïve Bayes learner.

The first learning algorithm we have used is our own imple-
mentation of MP-Boost (Esuli, Fagni, & Sebastiani, 2006), a
learner based on boosting-by-reweighting technology. In all
the experiments, the algorithm has been run with a number
of iterations fixed to 1,000. In the remainder of the article,
this configuration will be referred to as TreeBoost.8

The second learner is the implementation9 of SVMs avail-
able in the svm_light package (Joachims, 1999, Chap-
ter 11), which we have run with a linear kernel and the
parameters set at their default values. In the experiments,
this configuration will be referred to as TreeSvm.

The third learner we have used is our own implementa-
tion of a multinomial version of naïve Bayes (McCallum &
Nigam, 1998), in which we use the Laplace smoothing in
order to smooth parameter estimates obtained via maximum
likelihood estimation. In the experiments, this configuration
will be referred to as TreeNB.

In all the experiments discussed in this section, punctu-
ation has been removed, all letters have been converted to

7Freely available from http://trec.nist.gov/data/reuters/∼reuters.html
8Note that TreeBoost should not be confused with the TreeBoost.MH

algorithm we have presented in (Esuli, Fagni, and Sebastiani, 2008); in fact,
while TreeBoost uses MP-Boost as base learner, TreeBoost.MH uses
AdaBoost.MH (Schapire & Singer, 2000).

9Freely downloadable from http://svmlight.joachims.org/
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lowercase, numbers have been removed, stop words have
been removed using the stop list provided in Lewis (1992),
and stemming has been performed by means of Porter’s stem-
mer. All remaining terms that occur at least once in Tr have
thus been used as dimensions of our vectorial representations
of documents. No feature selection has been performed.

The vectors provided as input to TreeSvm have been
obtained via the “ltc” variant (Salton & Buckley, 1988) of
the well-known tfidf class of weighting functions, i.e.

tfidf(tk, di) = tf(tk, di) · log
|Tr|

#Tr(tk)
(10)

where #Tr(tk) denotes the number of documents in Tr in which
tk occurs at least once and

tf(tk, di) =
{

1 + log #(tk, di) if #(tk, di) > 0
0 otherwise

(11)

where #(tk, di) denotes the number of times tk occurs in di.
Weights obtained by Equation (10) are normalized through
cosine normalization, i.e.

wki = tfidf(tk, di)√∑|T |
s=1 tfidf(ts, di)2

(12)

The vectors provided as input to TreeBoost and TreeNB
are instead binary; this is a constraint imposed by the use of
MP-Boost and naïve Bayes, respectively, as base learners.

As a measure of effectiveness that combines the contri-
butions of precision (π) and recall (ρ), we have used the
well-known F1 function, defined as

F1 = 2πρ

π + ρ
= 2TP

2TP + FP + FN
(13)

which corresponds to the harmonic mean of precision and
recall; here TP stands for true positives, FP for false posi-
tives, and FN for false negatives. Note that F1 is undefined
when TP = FP = FN = 0; in this case we take F1 equal to 1,
since the classifier has correctly classified all documents as
negative examples.

In order to obtain F1 figures global to an entire dataset,
i.e. that cut across the entire set L of leaf categories in the
dataset, we compute both microaveraged F1 (denoted by F

µ
1 )

and macroaveraged F1 (FM
1 ). Fµ

1 is obtained by (1) comput-
ing the category-specific values TPj for all leaf categories
lj ∈ L, (2) obtaining TP as the sum of all the TPj’s (same
for FP and FN), and then (3) applying Equation (13). FM

1
is obtained by first computing the F1 values specific to the
individual leaf categories, and then averaging them across all
lj ∈ L. Microaveraged and macroaveraged notions of preci-
sion and recall (indicated by πµ, ρµ, πM , ρM) are obtained
analogously.

Setting the Number of Negative Examples

While the number βj = |Tr−(cj)| of negative training
examples chosen for each category cj is not under user con-
trol for the All and Siblings policies, it can be set by the

user for BestGlobal and BestLocal(k). In order to allow a
fair comparison between Siblings (as argued in the Introduc-
tion, the main focus of our comparative study), BestGlobal,
and BestLocal(k), we always choose the same number βj

of negative training examples for the two latter policies as
selected by the Siblings policy. Of course, different values
of βj are thus chosen for different lj ∈ L.

Experimental Results

Parameter Optimization

Before comparing the four policies experimentally, we
need to analyze more in detail BestLocal(k) and how it
depends on the k parameter. In Figures 2 and 3, we show how
BestLocal(k) behaves as a function of k on Reuters-21578
and RCV1-v2, respectively, as resulting from preliminary
experiments we have run in order to optimize this value.
In these experiments we have tested all integer values of
k up to 20 by performing five-fold cross-validation on the
training set.

As evident from these plots, BestLocal(k) proves fairly
insensitive to the value of k, both for microaveraged and
macroaveraged F1, and on both datasets; only on the RCV1-
v2 dataset macroaveraged F1 seems to decrease slightly as
the value of k increases. In other words, these results suggest
that BestLocal(k) performs fairly stably notwithstanding
the stand we take on the tradeoff between specificity and
robustness mentioned at the end of the section The BestLo-
cal(k) Policy, and that in some cases specificity is slightly
more important than robustness.

Overall, these findings thus indicate that k should prefer-
ably be set to a low value. This would also have beneficial
effects on computational cost, as will be evident from the
discussion in the section Efficiency. We have thus set k to 1
for all our experiments.

The Results

Table 2 shows the results obtained with the three learners
and four policies discussed on the Reuters-21578 dataset,
whereas Table 3 does the same for the RCV1-v2 data set.
Table 4 summarizes these results by averaging across datasets
and learners.

One general observation that we can make from Tables 2
and 3 is that TreeBoost and TreeSVM are much more
effective than TreeNB, regardless of the dataset and of the
effectiveness measure used. This is not surprising, and sim-
ply confirms the evidence, both theoretical and experimental,
that has accumulated over the last 10 years in the machine
learning/information retrieval literature concerning the rela-
tive merits of boosting, SVMs, and naïve Bayes.

The relative merits of TreeBoost and TreeSVM, as
derived from our experiments, are instead less clearcut. In
general, TreeBoost outperforms TreeSVM in terms of FM

1
(this is so by a large margin on Reuters-21578).The opposite
is instead true for F

µ
1 , where TreeSVM usually outperforms
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FIG. 2. Influence of parameter k on the effectiveness of the BestLocal(k) policy on Reuters-21578.

FIG. 3. Influence of parameter k on the effectiveness of the BestLocal(k) policy on RCV1-v2.

TreeBoost, although by a smaller margin than in the previ-
ous case.These two facts indicate that TreeSVM is somewhat
more effective than its competitor on the more frequent cat-
egories, whereas TreeBoost is decidedly more effective on
the less frequent ones; this observation is based on the well-
known fact that Fµ

1 results are dominated by the performance
of the classifiers on the more frequent categories, whereas a
good behavior on the more infrequent ones is needed in order
to make an impact on FM

1 (Sebastiani, 2002).
Concerning the differences between our four strategies,

the most important observation we can make from Tables 2

and 3 is that All is often the winner in terms of precision
(it always is with TreeBoost and TreeSVM) whereas Sib-
lings is often the winner in terms of recall (again, it always
is with TreeBoost and TreeSVM). When it comes to bal-
ancing precision and recall into F1, however, the situation is
more uncertain, with Siblings and All winning out as best
performers in approximately the same number of cases.

Although there is no clear winner, there are two clear
losers, namely, BestGlobal and BestLocal(k). In fact,
neither the former nor the latter ever stand out as the best
performer (at least for our two stronger learning methods,
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TABLE 2. Results on Reuters-21578.

πµ ρµ F
µ
1 πM ρM FM

1

TreeBoost
All 0.840 0.823 0.831 0.835 0.525 0.547
Siblings 0.810 0.842 0.826 0.747 0.538 0.540
BestGlobal 0.818 0.824 0.821 0.804 0.532 0.545
BestLocal(1) 0.830 0.828 0.829 0.812 0.528 0.547

TreeSVM
All 0.912 0.805 0.855 0.961 0.376 0.433
Siblings 0.898 0.825 0.860 0.951 0.402 0.458
BestGlobal 0.906 0.810 0.855 0.960 0.379 0.436
BestLocal(1) 0.902 0.811 0.854 0.959 0.379 0.434

TreeNB
All 0.680 0.764 0.720 0.405 0.218 0.218
Siblings 0.708 0.635 0.670 0.560 0.193 0.219
BestGlobal 0.708 0.658 0.682 0.689 0.186 0.205
BestLocal(1) 0.740 0.634 0.683 0.665 0.176 0.205

Note. Boldface indicates the best performer.

TABLE 3. Results on RCV1-v2.

πµ ρµ F
µ
1 πM ρM FM

1

TreeBoost
All 0.854 0.685 0.760 0.690 0.389 0.471
Siblings 0.771 0.726 0.748 0.569 0.469 0.492
BestGlobal 0.777 0.699 0.736 0.594 0.408 0.455
BestLocal(1) 0.794 0.707 0.748 0.597 0.427 0.474

TreeSVM
All 0.945 0.627 0.754 0.892 0.229 0.387
Siblings 0.881 0.694 0.776 0.807 0.410 0.479
BestGlobal 0.902 0.664 0.765 0.835 0.332 0.411
BestLocal(1) 0.925 0.658 0.769 0.865 0.336 0.422

TreeNB
All 0.636 0.721 0.676 0.386 0.342 0.327
Siblings 0.746 0.563 0.642 0.566 0.227 0.282
BestGlobal 0.727 0.580 0.646 0.593 0.244 0.298
BestLocal(1) 0.747 0.562 0.641 0.615 0.223 0.277

Note. Boldface indicates the best performer.

TABLE 4. Results averaged across two data sets (Reuters-21578 and
RCV1-v2) and three hierarchical learners (TreeBoost, TreeSVM,
and TreeNB).

πµ ρµ F
µ
1 πM ρM FM

1

All 0.811 0.738 0.766 0.695 0.347 0.397
Siblings 0.802 0.714 0.754 0.700 0.373 0.412
BestGlobal 0.806 0.706 0.751 0.746 0.347 0.392
BestLocal(1) 0.823 0.700 0.754 0.752 0.345 0.393

Note. Boldface indicates the best performer.

TreeBoost and TreeSVM), neither for precision nor for
recall nor for F1. This observation is interesting, because
it decrees the inferiority of distance-based methods (i.e.
methods that are based on the computation of the distance
δ(d′, d′′) between documents, such as BestGlobal and
BestLocal(k)) with respect to the other two.

The average results reported in Table 4 confirm the lack
of a clear superiority of one of All and Siblings over the

other. While All is the best performer according to microav-
eraged F1, Siblings is the best according to macroaveraged
F1, which shows a better propensity of Siblings to work well
with the less highly populated categories.

However, the key observation to be made is that the dif-
ferences in effectiveness (both for F

µ
1 and for FM

1 ) among
the four methods are pretty small anyway: For instance, for
microaveraged F1 the average difference (as from Table 4)
in performance between the best technique (All) and the
worst technique (BestGlobal) is 0.015, which is very small.
In the absence of a clear winner in terms of effectiveness,
efficiency considerations should thus also be considered in
order to make an informed choice between our two best
techniques. The aim of the section Efficiency will exactly
be that of discussing how efficiency may have an impact on
the final choice while uninteresting negative documents can
bring about better results.

Discussion

It may be interesting to analyze why, as observed in the
second section, All and Siblings are often (more precisely:
They are always in the case of our two stronger learning
methods, TreeBoost and TreeSVM) the winners in terms
of precision and recall, respectively.

We conjecture that this difference may be due to the fact
that All makes the classification problem more imbalanced
(see e.g. Chawla, Japkowicz, & Kolcz, 2004) than Siblings
does. In fact, the result of applying All is that, when training
a binary classifier for class cj , the size of Tr−(cj) is much,
much larger than the size of Tr+(cj); for instance, given
a Reuters-21578 leaf category lj , the fraction of training
examples that are positive for lj is, on average, equal to 0.013.
This imbalance between the numbers of positive and negative
training examples of a given class is not as severe when Sib-
lings is applied, since Siblings selects much fewer negative
examples than All does.

Now, the key observation is that “standard” learning meth-
ods (such as the ones we have adopted in this work) were not
originally devised to handle imbalance, and as a result they
tend to emphasize precision at the expense of recall when
datasets are imbalanced. In fact, these learning methods were
usually devised to optimize accuracy, defined as the frac-
tion of classification decisions that are correct (which is an
effectiveness measure substantially different from F1). In a
severely imbalanced setting, when negative examples by far
outnumber positive ones, a trivial way to optimize accuracy
is to “always reject,” i.e. to return a negative decision for all
test examples: If the positive test examples are, say, 1% of the
entire lot (a percentage which, as discussed above, is roughly
that of Reuters-21578), accuracy will be 0.99, i.e. extremely
high. A side effect of always rejecting is that precision has a
value of 1, since no false positive is generated, but recall has
a value of 0, since no true positive is generated.

More realistically, a genuinely trained classifier will likely
not always reject, but will anyway reject very often, since it
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has been trained to optimize accuracy, and being conserva-
tive (i.e. tending to reject rather than to accept) is a policy
that tends to increase accuracy in imbalanced settings. As a
result, since All generates a very imbalanced training set,
and since our learning methods were originally devised to
optimize accuracy, precision tends to be high and recall tends
to be low.

Efficiency

The computational cost that the different policies bring
about depends on (1) the number of negative examples that
are fed to the training phase, and (2) the cost of selecting
these negative examples.

In terms of issue (1), All is clearly more expensive than
Siblings. While the average number of negative training
examples per category (averaged across all categories, inter-
nal, and leaf) generated by the All policy was 7583.6 on
Reuters-21578 and 22419.3 on RCV1-v2, the Siblings
policy generated 2435.7 on Reuters-21578 and 4383.8 on
RCV1-v2 (i.e. 68% less on Reuters-21578 and 80% less
on RCV1-v2). Since the computational cost of training is,
for most supervised learning algorithms, at least linear in the
number of training examples (it is certainly so for the three
base learners we have used in our experiments (see Esuli,
Fagni, & Sebastiani, 2006; Joachims, 2006; McCallum &
Nigam, 1998), this translates into a considerable advantage
for Siblings at training time. Concerning BestGlobal and
BestLocal(k), nothing can be said concerning this aspect,
since the number of negative training examples that are
selected is chosen by the user. However, BestGlobal and
BestLocal(k) are akin in spirit to Siblings, in that their very
aim is the reduction of the number of negative training exam-
ples to be selected; we may thus consider them on a par with
Siblings.

In terms of issue (2), however, All and Siblings
are the clear winners, since they do not require any
extra time for individuating the negative training examples.
For this, BestGlobal and BestLocal(k) instead require
considerable additional time. If we take αj = |Tr+(cj)| and
γj = |Tr\Tr+(cj)|, BestGlobal requires, for each category,
a sum of O(αj) vectors for computing the centroid and
O(γj log γj) vector similarity computations for ranking the set
of negative training examples. BestLocal(k) is even more
expensive, requiring O(αjγj) vector similarity computations
and further O(γjαj log αj) operations for obtaining the χ(dn)

values of Equation (8), O(kγi) sums for computing the values
from Equation (9), and O(γi log γi) comparisons for finally
choosing the negative training examples.

To summarize, Siblings, BestGlobal, and BestLo-
cal(k) are the winners in terms of issue (1), whereas All
and Siblings are optimal in terms of issue (2). Overall, Sib-
lings is a thus a very clear winner over all the other three
policies, at least on counts of efficiency alone. Since it is also
one of the two most effective policies, we can conclude that
it should indeed be the policy of choice in HTC applications.

Conclusion

We have presented an extensive experimental comparison
of four different policies for selecting negative examples in
HTC. The comparison has involved hierarchical variants of
three popular supervised learning algorithms, and two stan-
dard datasets, one of which contains almost 800,000 test
documents, which lends robustness and credibility to the con-
clusions drawn. Our aim was to test the conjecture according
to which the best policy for selecting negative examples for
a category c is the Siblings policy, namely, that of selecting
the examples that are negative for c and positive for the cat-
egories that are sibling to c in the category hierarchy. This
conjecture, although widespread, had never been subjected
to careful scrutiny.

Our experiments have shown that, although no policy
systematically outperforms all others, on average the Sib-
lings policy outperforms the others when macroaveraged
F1 is used as the effectiveness measure, and closely trails the
best-performing technique when microaveraged F1 is used
instead. Since Siblings is, as we have argued in detail, the
policy that carries the smallest computational cost, we have
concluded that it should indeed be the policy of choice in
HTC applications.
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