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is, on algorithms capable of extracting, from the informal and unstructured texts that are generated during
everyday clinical practice, mentions of concepts relevant to such practice. Many of these research works are
about methods based on supervised learning, that is, methods for training an information extraction system
from manually annotated examples. While a lot of work has been devoted to devising learning methods that
generate more and more accurate information extractors, no work has been devoted to investigating the effect
of the quality of training data on the learning process for the clinical domain. Low quality in training data
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quality issues on the accuracy of information extraction systems as applied to the clinical domain. We do
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from training data annotated by a different coder, equally expert in the subject matter. The results indicate
that, although the disagreement between the two coders (as measured on the training set) is substantial, the
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1 INTRODUCTION

Since the early 2010s there has been a flurry of work (see, e.g., Kelly et al. (2014), Pradhan et al.
(2014), Sun et al. (2013), Suominen et al. (2013), Uzuner et al. (2012), and Uzuner et al. (2011))
on information extraction from clinical documents, that is, on algorithms capable of extracting,
from the informal and unstructured texts that are generated during everyday clinical practice (e.g.,
admission reports, radiological reports, discharge summaries, clinical notes), mentions of concepts
relevant to such practice. Many of these works are about methods based on supervised learning,
that is, methods for training an information extraction system from manually annotated examples.

While a lot of work has been devoted to devising text representation methods and variants of the
aforementioned supervised learning methods that generate more and more accurate information
extractors, no work has been devoted to investigating the effects of the quality of training data
on the learning process for the clinical domain.1 In applications of supervised learning, issues of
quality in the training data may arise for different reasons:

(1) In several scenarios, it is often the case that the main goal of the coders (a.k.a. “annotators”
or “assessors”) that carry out the annotation work is fast turnaround and not annotation
quality. An example is the (increasingly frequent) case in which annotation is performed
via crowdsourcing on platforms such as, for example, Mechanical Turk, CrowdFlower, and
so on2 (Grady and Lease 2010; Snow et al. 2008).

(2) In many organizations, it is also the case that annotation work is carried out by junior staff
(e.g., interns), since having it accomplished by senior employees would make costs soar.
This is certainly the case in the clinical domain, where annotation is usually performed
by medical students and/or trainees.

(3) It is often the case that the coders entrusted with the annotation work were not origi-
nally involved in designing the tagset (i.e., the set of concepts whose mentions are sought
in the documents). As a result, the coders may have a suboptimal understanding of the
true meaning of these concepts or of how their mentions are meant to look, which may
negatively affect the quality of their annotation. For instance, in the clinical domain the
authors of tagsets are usually senior clinical specialists, who usually do not then engage
themselves in the coding phase.

(4) The data used for training the system may sometimes be old or outdated, with the anno-
tations no longer reflecting the current meaning of the concepts. This is an example of
a phenomenon, called concept drift (Quiñonero-Candela et al. 2009; Sammut and Harries
2011), which is well known in machine learning.

We may summarize all the cases mentioned above by saying that, should the training data be
independently re-annotated by an authoritative coder, the resulting annotations would be, to a cer-
tain extent, more reliable. Here, we define the authoritative coder (hereafter indicated asCα ) to be
the coder who has annotated the test set (or the coder whose judgments we adhere to when evalu-
ating the accuracy of the system3), while we define a non-authoritative coder (hereafter indicated
as Cβ ) to simply be a coder different from the authoritative coder.

It is natural to expect the accuracy of an information extraction system to be lower if the train-
ing data have been annotated byCβ and higher if they have been annotated byCα him- or herself.

1This statement refers to a specific notion of “quality of training data” to be discussed below; we are thus not making any
claim concerning research that addresses possibly different notions of “quality of training data.”
2https://www.mturk.com/, and http://crowdflower.com/.
3This clause also serves to characterize accuracy as the degree of coincidence between the annotations automatically gen-
erated by the system and the ones manually generated by the authoritative coder.
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On the Effects of Low-Quality Training Data on Information Extraction 1:3

However, note thatCα is not necessarily more experienced, senior, or reliable thanCβ . Rather, the
fact that we expect higher accuracy if the training data have been annotated by Cα is a conse-
quence of the fact that standard supervised learning algorithms are based on the assumption that
the training set and the test set are identically and independently distributed (the so-called i.i.d.

assumption), that is, that both sets are randomly drawn from the same distribution. As a result,
these algorithms learn to replicate the subjective annotation style of their supervisors, that is, of
those who have annotated the training data. This means that we may expect accuracy to be higher
simply when the coder of the training set and the coder of the test set are the same person and
to be lower when the two coders are different, irrespective of how experienced, senior, or reliable
they are. In other words, the very fact that a coder is entrusted with the task of evaluating the au-
tomatic annotations (i.e., of annotating the test set) makes this coder authoritative by definition. In
the rest of this article, we will take the authoritative coderCα to be the coder whose annotations are

to be taken as correct, that is, considered as the “gold standard.”Cα is thus the coder who, once the
system is trained and deployed, has also the authority to evaluate the accuracy of the automatic
annotation (i.e., decide which annotations are correct and which are not).4

If the training data have been annotated byCβ , then, should it be independently re-annotated by
Cα , we would be able to precisely measure this difference in reliability by measuring the intercoder

agreement (via measures such as Cohen’s kappa—see, for example, Artstein and Poesio (2008) and
Di Eugenio and Glass (2004)) between the training data Tr as coded by Cα and the training data
as coded byCβ . In this case, intercoder (dis)agreement measures the amount of noise that is intro-
duced in the training data by having them annotated by a coderCβ different from the authoritative
coder Cα .

The above arguments point to the fact that the impact of training data quality—under its many
facets discussed in items (1)–(4) above—on the accuracy of information extraction systems may be
measured by

(1) evaluating the accuracy of the system in an authoritative setting (i.e., both training and
test sets annotated by the authoritative coder Cα ), and then

(2) evaluating the loss in accuracy, with respect to the authoritative setting, that derives from
working instead in a non-authoritative setting (i.e., test set annotated by Cα and training
set annotated by a non-authoritative coder Cβ ).5

1.1 Our Contribution

In this article, we test the impact of training data quality on the accuracy of information extraction
systems as applied to the clinical domain. We do this by testing the accuracy of two widely used
supervised learners on a dataset of radiology reports (originally discussed in Esuli et al. (2013))
in which a portion of the data has independently been annotated by two different coders, equally
expert in the subject matter.6 In other words, we try to answer the question: “What is the conse-
quence of the fact that my training data are not sterling quality? (i.e., that the labels associated to

4In some organizations this authoritative coder may well be a fictional entity, for example, several coders may be equally
experienced and thus equally authoritative. However, without loss of generality, we will hereafter assume that Cα exists
and is unique.
5In the domain of classification, the authoritative and non-authoritative settings have also been called self-classification

and cross-classification, respectively (Webber and Pickens 2013). We depart from this terminology to avoid any confusion
with self-learning (which refers to retraining a classifier by using, as additional training examples, examples the classifier
itself has classified) and cross-lingual classification (which denotes a variant of text classification that exploits synergies
between training data expressed in different languages).
6Note that, as more fully explained in Section 3.2, we had no role in the annotation of the dataset; we thus take both the
concept set and the dataset as given. Note also that our work entirely relies on preexisting data and that (for various reasons,
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1:4 D. Marcheggiani and F. Sebastiani

the training data are not the same as an authoritative annotator would have associated to them)
What is the consequence of the fact that the coders who produced them are not authoritative?
How much am I going to lose in terms of accuracy of the trained system?”

In these experiments we not only test the “pure” authoritative and non-authoritative settings de-
scribed above, but we also test partially authoritative settings, in which increasingly large portions
of the training data as annotated byCα are replaced with the corresponding portions as annotated
by Cβ , thus simulating the presence of incrementally higher amounts of noise. For each setting,
we compute the intercoder agreement between the two training sets; this allows us to study the
relative loss in extraction accuracy as a function of the agreement between authoritative and non-
authoritative assessor as measured on the training set. Since in many practical situations it is easy
to compute (or estimate) the intercoder disagreement between (a) the coder to whom we would
ideally entrust the annotation task (e.g., a senior expert in the organization), and (b) the coder to
whom we can indeed entrust it given time and cost constraints (e.g., a junior member of staff),
this will give the reader a sense of how much intercoder disagreement generates how much loss
in extraction accuracy.

While our experiments are carried out on clinical data, our findings are of general interest, since
no features unique to the clinical domain are used in processing the data.

The rest of the article is organized as follows. Section 2 reviews related work on information
extraction from clinical documents and on establishing the relations between training data quality
and extraction accuracy. In Sections 3 and 4, we describe experiments that attempt to quantify
the degradation in extraction accuracy that derives from low-quality training data, with Section 3
devoted to spelling out the experimental setting and Section 4 devoted instead to presenting and
discussing the results. Section 5 concludes, discussing avenues for further research.

2 RELATED WORK

2.1 Information Extraction from Clinical Documents

Many research works on information extraction from clinical documents rely on methods based on
supervised learning, that is, methods for training an information extraction system from manually
annotated examples. Support vector machines (SVMs) (Jiang et al. 2011; Li et al. 2008; Sibanda
et al. 2006), hidden Markov models (HMMs) (Li et al. 2010), and (especially) conditional random
fields (CRFs) (Esuli et al. 2013; Gupta et al. 2014; Jiang et al. 2011; Jonnalagadda et al. 2012; Li
et al. 2008; Patrick and Li 2010; Torii et al. 2011; Wang and Patrick 2009) have been the learners
of choice in this field, due to their good performance and to the existence of publicly available
implementations.

In recent years, research on the analysis of clinical texts has been further boosted by the exis-
tence of “shared tasks” on this topic, such as the seminal i2b2 series (“Informatics for Integrating
Biology and the Bedside”) (Sun et al. 2013; Uzuner et al. 2012, 2011), the 2013–2016 editions of the
ShARe/CLEF eHealth IE-related tasks (Suominen et al. 2013; Kelly et al. 2014; Goeuriot et al. 2015;
Névéol et al. 2016), the Semeval-2014 and Semeval-2015 Tasks “Analysis of Clinical Text” (Pradhan
et al. 2014; Elhadad et al. 2015), and the Semeval-2016 Task “Clinical TempEval” (Bethard et al.
2016). In these shared tasks, the goal is to competitively evaluate (among others) information
extraction tools that recognise mentions of various concepts of interest (e.g., mentions of diseases
and disorders) as appearing in discharge summaries, electrocardiogram reports, echocardiograph
reports, and radiology reports.

ranging from the lack of access to unannotated medical reports, to the lack of competence to annotate text according to
medical concepts) we could not attempt to annotate new data for the purpose of this study.
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2.2 Low-Quality Labels

As mentioned in the Introduction, in many fields where labelled data are used, obtaining high-
quality (i.e., accurate) labels is expensive, since it requires the work of trained human assessors
and of senior specialists who train and coordinate them. As a result, in many cases, one is willing
to trade the quality of the labels obtained for a sizable reduction in the costs incurred for obtaining
them. This has given rise to the notion of a silver label, that is, a label that is only probably accurate
(as opposed to a gold label, which is—or we hypothesize to be—certainly accurate), and to the
notion of a silver standard, that is, a labelled dataset where the labels are silver labels. Silver labels
may be obtained either by speeding up the manual annotation work or by having a highly accurate
automatic or semi-automatic process generate the labels (Kang et al. 2012; Rebholz-Schuhmann
et al. 2010). There are two main uses for silver labels, that is, (a) as labels for training data (Kang
et al. 2012) and (b) as labels for test data (Groza et al. 2013; Rebholz-Schuhmann et al. 2010). The
latter use has been studied more than the former, since it is not confined to supervised learning
environments; for instance, the TREC text retrieval evaluation campaign (Voorhees and Harman
2005) has been testing on silver standards since the early 1990s, since producing a gold standard
of the size adequate for testing, say, Web search engines, is prohibitive.

2.3 Low-Quality Training Data and Prediction Accuracy

While the limits of using silver standards as test data have been studied fairly extensively, the
literature on the effects of suboptimal training data quality on prediction accuracy is extremely
scarce, even within the machine-learning literature at large. An early such study is Rossin and Klein
(1999), which looks at these issues in the context of learning to predict prices of mutual funds from
economic indicators. Differently from us, the authors work with noise artificially inserted in the
training set and not with naturally occurring noise.7 From experiments run with a linear regression
model, they reach the bizarre conclusion that “the predictive accuracy (...) is better when errors
exist in training data than when training data are free of errors,” while the opposite conclusion
is (somehow more expectedly) reached from experiments run with a neural networks model. A
similar study, in which the context is predicting the average air temperature in distributed heating
systems, was carried out in Jassar et al. (2009); its results are not easy to interpret, since also the
test data (and not only the training data) used in the experiments are low quality. Yet another
study, in which the goal was predicting the production levels of palm oil via a neural network, is
Khamis et al. (2005); here, low training label quality is artificially generated by perturbing fixed
percentages of training labels. This makes the results not very relevant to our study, which is
instead concerned with naturally occurring label noise (in the form of labels attributed by a non-
authoritative annotator).

Saarikoski et al. (2015) study the effects of imperfect training data quality on text classification
accuracy. However, their notion of “data quality” is very different from ours. While in our work
labels are categorical (i.e., a token either has a tag or not), in their work labels are soft (i.e., a given
document may be labelled “irrelevant,” “marginally relevant,” “fairly relevant,” or “highly relevant”
to a given class), so, for example, an example “marginally relevant” to a given class counts as a low-
quality training example while an example “highly relevant” to the class counts as a high-quality
one. We avoid dealing with soft labels, since they are extremely rare in practice.

Kang et al. (2012) study the impact of using silver-labelled data, either alone or in conjunction
to gold-labelled data, for training a “text chunker” (a recognizer of syntactically meaningful

7By “artificial noise” we mean simulated noise, that is, noise that is inserted by the experimented by perturbing the data
for the sole purpose of testing in vitro the impact of noise on the process; by “naturally occurring noise,” we mean noise
which is not simulated, that is, is present in the original data.
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multi-word units in natural language processing); differently from us, their silver labels are
generated by an automatic process, while in our case they derive from the work of a human
(non-authoritative) coder.

In the context of a biomedical information extraction task,8 Haddow and Alex (2008) examined
the situation in which training data annotated by two different coders are available, and they found
that higher accuracy is obtained by using both versions at the same time than by attempting to
reconcile them or using just one of them. Their use case is different from ours, since in the case
we discuss we assume that only one set of annotations, those of the non-authoritative coder, are
available as training data. Note also that training data independently annotated by more than one
coder are rarely available in practice.

Closer to our application context, Esuli and Sebastiani (2013) have thoroughly studied the effect
of suboptimal training data quality in text classification. However, in their case the degradation
in the quality of the training data is obtained, for mere experimental purposes, via the insertion
of artificial noise, due to the fact that their datasets did not contain data annotated by more than
one coder. As a result, it is not clear how well the type of noise they introduce models naturally
occurring noise. See Berndt et al. (2015) for a further text classification study where artificial noise
is inserted in the training data to explore how the accuracy of the resulting classifiers varies as a
function of training data quality. Webber and Pickens (2013) also address the text classification task
(in the context of e-discovery from legal texts), but, differently from Esuli and Sebastiani (2013),
they work with naturally occurring noise; differently from the present work, the multiply-coded
training data they use were coded by one coder known to be an expert coder and another coder
known to be a junior coder. Our work instead (a) focuses on information extraction, and (2) does
not make any assumption on the relative level of coding expertise of the two coders (it tackles the
case of two coders with equal domain expertise, though).

2.4 Improving Training Data in Clinical IE

That training data quality is conducive to learning accurate models is intuitive. As a result, in
several contexts a lot of effort is put into ensuring that annotation generates high-quality (i.e.,
correct) labels; this includes, for example, providing clear annotation guidelines to the annotators,
conducting preliminary annotation exercises to align their understanding of the concepts whose
mentions are sought in the documents, and so on. A good summary of best practices and rigorous
methodologies for the construction of annotated corpora of clinical text can be found in Roberts
et al. (2009).

An alternative route to ensuring label quality in the training items is training data cleaning (Esuli
and Sebastiani 2009), whereby annotators are asked to check (and correct if needed) the labels of
training data with the support of an algorithm which prioritises these training items according
to how likely it is that the respective labels are wrong. In other words, while the techniques dis-
cussed in the previous paragraph try to ensure quality by affecting the annotation process, these
techniques are applied after annotation has taken place already. Variants of this basic approach
are corrActive learning (Nallapati et al. 2009) and reverse active learning (Nguyen and Patrick 2012),
in both of which the operations of checking label correctness and retraining the system are inter-
leaved in an iterative fashion.

When the quality of training data is not high and cannot be increased (e.g., due to the un-
availability of humanpower for checking label correctness), one can attempt to make up for low

8Biomedical IE is different from clinical IE, in that the latter (unlike the former) is usually characterized by idiosyncratic
abbreviations, ungrammatical sentences, and sloppy language in general. See Meystre et al. (2008, p. 129) for a discussion
of this point.
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quality by increasing quantity. Since labelled data are scarce or expensive to obtain, a vast array
of machine-learning techniques have been developed that try to leverage, for the training process,
additional data that have not explicitly been annotated for the task at hand. This has spawned
entire subfields of machine learning, such as transfer learning (Pan et al. 2012), transductive learn-

ing (Joachims 1999), and semi-supervised learning (Chapelle et al. 2006). Examples of these ap-
proaches in the clinical information extraction field are Wagholikar et al. (2013), which augments
an existing, “local” training set by means of a “foreign” one to make up for the fact that the exist-
ing training data are scarce, and Roberts et al. (2015), which proposes pooling training data from
different provenance by adding to the existing coarsely annotated data more finely annotated data.

3 METHODS

3.1 Basic Notation and Terminology

Let us fix some basic notation and terminology. Let X be a set of texts, where we view each text
x ∈ X as a sequence x = 〈x1, . . . ,x |x | 〉 of textual units (or simply t-units), such that odd-numbered
t-units are tokens (i.e., word occurrences) and even-numbered t-units are separators (i.e., sequences
of blanks and punctuation symbols) and such that xt1 occurs before xt2 in the text (noted xt1 � xt2 )
if and only if t1 ≤ t2. We dub |x| the length of the text. Let C = {c1, . . . , cm } be a predefined set
of concepts (a.k.a. tags or markables) or a tagset. We take information extraction (IE) to be the task
of determining, for each x ∈ X and for each cr ∈ C , a sequence yr = 〈yr 1, . . . ,yr |x | 〉 of labels yr t ∈
{cr , cr }, which indicates which t-units in the text are labelled with tag cr and which are not.

Note that a t-unit can be labelled with zero, one, or several concepts at the same time; our task is
thus an instance of multi-label IE. Following standard practice in multi-label supervised learning,
we will deal with each cr ∈ C independently of the other concepts in C; we will thus drop the r
subscript and, without loss of generality, deal with the binary task of determining, given text x

and concept c , a sequence y = 〈y1, . . . ,y |x | 〉 of labels yt ∈ {c, c}. While this “reduction to binary”
does not allow us to exploit potential dependencies among different concepts inC , it considerably
simplifies our treatment; the latter is the reason why the reduction to binary is the approach taken
in the vast majority of works in the multi-label IE literature.

T-units labelled with a concept c usually come in coherent sequences or “mentions.” Hereafter,
a mention σ of text x for concept c will be a pair (xt1 ,xt2 ) consisting of a start token xt1 and
an end token xt2 such that (i) xt1 � xt2 , (ii) all t-units xt1 � xt � xt2 are labelled with concept c ,
and (iii) the token that immediately precedes xt1 and the one that immediately follows xt2 are
not labelled with concept c . In general, a text x may contain zero, one, or several mentions for
concept c .

In the above definitions, we consider separators to be also the object of tagging in order for the
IE system to correctly identify consecutive mentions. For instance, given the expression “Barack
Obama, Hillary Clinton” the perfect IE system will attribute the PersonName tag to the tokens
“Barack,” “Obama,” “Hillary,” “Clinton” and to the separators (in this case, blank spaces) between
“Barack” and “Obama” and between “Hillary” and “Clinton” but not to the separator “, ” between
“Obama” and “Hillary.” If the IE system does so, then this means that it has correctly identified the
boundaries of the two mentions “Barack Obama” and “Hillary Clinton.”9

9Note that the above notation is not able to represent “discontiguous mentions,” that is, mentions containing gaps, and
“overlapping mentions,” that is, multiple mentions sharing one or more tokens. This is not a serious limitation for our
research, since the above notation can be easily extended to deal with both phenomena (e.g., by introducing unique mention
identifiers and having each t-unit be associated with zero, one, or several such identifiers) and since the dataset we use
for our experimentation contains neither discontinuous nor overlapping mentions. We prefer to keep the notation simple,
since the issue we focus on in this article (the consequences on extraction accuracy of suboptimal training data quality)
can be considered largely independent of the expressive power of the markup language.
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Fig. 1. A screenshot displaying a mammographic report automatically annotated according to the nine
concepts of interest. The screenshot depicts the interface of the GATE system, which the two human coders
have used for manually annotating the reports. Each of the nine colours corresponds to one of the concepts
of interest, and each contiguous region of text highlighted with a colour is a mention of the corresponding
concept.

3.2 Dataset

The dataset we have used to test the ideas discussed in the previous sections is the Umber-
toI(RadRep) dataset discussed in Esuli et al. (2013), consisting of a set of 500 free-text mammog-
raphy reports written (in Italian) by medical personnel of the Istituto di Radiologia of Policlinico
Umberto I, Roma, IT. The dataset is annotated according to nine concepts relevant to the field of
radiology and mammography: “Outcome of the BIRADS test” (BIR), “Technical Info” (ITE), “Indica-
tions obtained from the Exam” (IES), “Followup Therapies” (TFU), “Description of Enhancement”
(DEE), “Presence/Absence of Enhancements” (PAE), “Outcomes of Surgery” (ECH), “Prosthesis
Description” (DEP), and “Locoregional Lymph Nodes” (LLO). Note that we had no control on the
design of the concept set, on its range, and on its granularity, since the choice of the concepts was
entirely under the responsibility of Policlinico Umberto I. We thus take both the concept set and
the dataset as given.

Mentions of these concepts are present in the reports according to fairly irregular patterns. In
particular, a given concept (a) need not be instantiated in all reports and (b) may be instantiated
more than once (i.e., by more than one mention) in the same report. Mentions instantiating differ-
ent concepts may overlap, and the order of presentation of the different concepts varies across the
reports. On average, there are 0.87 mentions for each concept in a given report, and the average
mention length is 17.33 words (plus 16.33 separators).

Figure 1 displays a sample mammographic report automatically annotated according to the
nine concepts of interest. This figure shows that this task is fairly different from many other
concept extraction tasks in clinical IE, such as the extraction of drug names, drug dosages, names
of pathologies, or their symptoms. Here, the spans to be annotated are longer (often taking up
two or more sentences) and are characterized by a more irregular surface form (the mentions
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Table 1. The Distribution of Annotations across Concepts, at Token and Mention Level, for Each Coder

DEE IES ITE ECH LLO TFU DEP BIR PAE Total

Tokens annotated by Coder1 4819 1529 7410 237 1811 1672 585 466 1723 18529

Tokens annotated by Coder2 7351 1723 7630 1329 2544 2670 1127 448 3495 24822

Mentions annotated by Coder1 204 140 190 51 164 149 19 128 344 1045

Mentions annotated by Coder2 282 145 188 102 193 171 26 103 399 1210

may consist of sequences of full sentences but also of fragments of sentences or of a fragment of
a sentence followed by a full sentence followed by another fragment of a sentence).

The reports were annotated by two equally expert radiologists, Coder1 and Coder2; 191 reports
were annotated by Coder1 only, 190 reports were annotated by Coder2 only, and 119 reports were
annotated independently by Coder1 and Coder2. From now on, we will call these sets 1-only,
2-only, and Both, respectively; Both(1) will identify the Both set as annotated by Coder1, and
Both(2) will identify the Both set as annotated by Coder2. The annotation activity was preceded
by an alignment phase, in which Coder1 and Coder2 jointly annotated 20 reports (not included in
this dataset) to align their understanding of the meaning of the concepts.

Table 1 reports the distribution of annotations across concepts, at token and mention level, for
the two coders; see Esuli et al. (2013, Section 4.2) for a more detailed description of the Umber-
toI(RadRep) dataset that includes additional stats.10

3.3 Learning Algorithms

As the learning algorithms, we have tested both linear-chain conditional random fields (LC-CRFs)
(Lafferty et al. 2001; Sutton and McCallum 2007, 2012), in Charles Sutton’s GRMM implemen-
tation,11 and hidden Markov support vector machines (HM-SVMs) (Altun et al. 2003), in Thorsten
Joachims’s SVMhmm implementation.12 Both are supervised learning algorithms explicitly
devised for sequence labelling, that is, for learning to label (i.e., to annotate) items that naturally
occur in sequences and such that the label of an item may depend on the features and/or on the
labels of other items that precede or follow it in the sequence (which is indeed the case for the
tokens in a text).13 LC-CRFs are members of the class of graphical models, a family of probability
distributions that factorize according to an underlying graph (Wainwright and Jordan 2008); see
Sutton and McCallum (2012) for a full mathematical explanation of LC-CRFs. HM-SVMs are an
instantiation of “SVMs for structured output prediction” (SVMstruct ) (Tsochantaridis et al. 2005)
for the sequence labelling task and have already been used in clinical information extraction (see,

10No other dataset is used in this article, since we were not able to locate a dataset of annotated clinical texts that (a)
contains a sizeable amount of reports independently annotated by two coders c1 and c2 and (b) is publicly available.
Note that also the dataset on which we have carried out our experiments has, unfortunately, not been made available by
Policlinico Umberto I.
11http://mallet.cs.umass.edu/grmm/.
12http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html.
13Note that only tokens, and not separators, are explicitly labelled. The reason is that both LC-CRFs and HM-SVMs actually
use the so-called IOB labelling scheme, according to which, for each concept cr ∈ C , a token can be labelled as Br (the
beginning token of a mention of cr ), Ir (a token which is inside a mention of cr but is not its beginning token), and Or

(a token that is outside any mention of cr ). As a result, a separator is (implicitly) labelled with concept cr if and only if
it precedes a token labelled with Ir . We may think of the notation of Section 3.1 as an abstract markup language, and of
the IOB notation as a concrete markup language, in the sense that the notation of Section 3.1 is easier to understand (and
will also make the evaluation measure discussed in Section 3.4.1 easier to understand) while IOB is actually used by the
learning algorithms. The two notations are equivalent in expressive power.

ACM Journal of Data and Information Quality, Vol. 9, No. 1, Article 1. Publication date: September 2017.

http://mallet.cs.umass.edu/grmm/
http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html


1:10 D. Marcheggiani and F. Sebastiani

e.g., Tang et al. (2012) and Zhang et al. (2014)). In HM-SVMs the learning procedure is based on
a large-margin approach typical of SVMs, which, differently from LC-CRFs, can learn non-linear
discriminant functions via kernel functions.

Both learners need each token xt to be represented by a vector xt of features.14 In this work,
we have used a set of features that includes one feature representing the word of which the token
is an instance, one feature representing its stem, one feature representing its part of speech, eight
features representing its prefixes and suffixes (the first and the last n characters of the token, with
n = 1, 2, 3, 4), one feature representing information on token capitalization (i.e., whether the token
is all uppercase, all lowercase, first letter uppercase, or mixed case), and four “positional” features
(Esuli et al. 2013, Section 3.3) that indicate in which half, third, 4fourth, or fifth, respectively, of
the text the token occurs.

3.4 Evaluation Measures

3.4.1 Classification Accuracy. As a measure of classification accuracy we use, similarly to Esuli
et al. (2013), the token-and-separator variant (proposed in Esuli and Sebastiani (2010)) of the well-
known F1 measure, according to which an information extraction system is evaluated on an event
space consisting of all the t-units in the text. In other words, each t-unit xt contributes to the
calculation of the F1 measure, in the sense that each t-unit xt (rather than each mention, as in
the traditional “segmentation F-score” model (Suzuki et al. 2006)) counts as a true positive, true
negative, false positive, or false negative for a given concept cr , depending on whether xt be-
longs to cr or not in the predicted annotation and in the true annotation. This model has the
advantage that it credits a system for partial success (i.e., degree of overlap between a predicted
mention and a true mention for the same concept) and that it penalizes both overannotation and
underannotation.

As is well known, F1 is the harmonic mean of precision (π = T P
T P+F N

) and recall (ρ = T P
T P+F P

) and
is defined as

F1 =
2πρ

π + ρ
=

2 · T P
T P+F N

· T P
T P+F P

T P
T P+F N

+ T P
T P+F P

=
2TP

2TP + FP + FN
, (1)

whereTP , FP , and FN stand for the numbers of true positives, false positives, and false negatives,
respectively. It is easy to observe that F1 is equivalent toTP divided by the arithmetic mean of the
actual positives and the predicted positives (or, alternatively, the product of π and ρ divided by
their arithmetic mean). Note that F1 is undefined when TP = FP = FN = 0; in this case, we take
F1 to equal 1, since the system has correctly annotated all t-units as negative.

We compute F1 across the entire test set, that is, we generate a single contingency table by
putting together all t-units in the test set, irrespective of the document to which they belong. We
then compute both microaveraged F1 (denoted by F

μ
1 ) and macroaveraged F1 (FM

1 ). F μ
1 is obtained

by (i) computing the concept-specific valuesTPr , FPr , and FNr ; (ii) obtainingTP as the sum of the
TPr ’s (same for FP and FN ); and then (iii) applying Equation (1). FM

1 is obtained by first computing
the concept-specific F1 values and then averaging them across the cr ’s.

3.4.2 Intercoder Agreement. Intercoder agreement (ICA), or the lack thereof (intercoder disagree-

ment), has been widely studied for over a century (see, e.g., Krippendorff (2004) for an introduc-
tion). As a phenomenon, disagreement among coders naturally occurs when units of content need
to be annotated by humans according to their semantics (i.e., when the occurrences of specific
concepts need to be recognized within these units of content). Such disagreement derives from

14Note that only tokens, and not separators, are explicitly represented in vectorial form, the reasons being the same as
those already discussed in Footnote 13.
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the fact that semantic content is a highly subjective notion: different coders might disagree with
each other as to what the semantics of, say, a given piece of text is, and it is even the case that the
same coder might at times disagree with him- or herself (i.e., return different codes when coding
the same unit of content at different times).

ICA may be measured by the relative frequency of the units of content on which coders agree,
usually normalized by the probability of chance agreement. Many metrics for ICA have been pro-
posed over the years, “Cohen’s kappa” probably being the most famous and widely used (“Scott’s
pi” and “Krippendorff’s alpha” are others); sometimes (see, e.g., Chapman and Dowling (2006) and
Esuli et al. (2013)) functions that were not explicitly developed for measuring ICA (such as F1, that
was developed for measuring binary classification accuracy) are used. The levels of ICA that are
recorded in actual experiments vary a lot across experiments, types of content, and types of con-
cepts that are to be recognized in the units of content under investigation. This extreme variance
depends on factors such as “annotation domain, number of categories in a coding scheme, number
of annotators in a project, whether annotators received training, the intensity of annotator train-
ing, the annotation purpose, and the method used for the calculation of percentage agreements”
(Bayerl and Paul 2011). The actual meaning of the concepts the coders are asked to recognize is
a factor of special importance, to the extent that a concept on which very low levels of ICA are
reached may be deemed, because of this very fact, ill defined.

For measuring intercoder agreement, we use Cohen’s kappa (noted κ), defined as

κ =
P (A) − P (E)

1 − P (E)
(2)

=
(P (p = t = c ) + P (p = t = c )) − (P (p = c )P (t = c ) + P (p = c )P (t = c ))

1 − (P (p = c )P (t = c ) + P (p = c )P (t = c ))

=

T P+T N
n
− ((T P+F P

n
) (T P+F N

n
) + ( F N+T N

n
) ( F P+T N

n
))

1 − ((T P+F P
n

) (T P+F N
n

) + ( F N+T N
n

) ( F P+T N
n

)),

where P (A) denotes the probability (i.e., relative frequency) of agreement, P (E) denotes the prob-
ability of chance agreement, and n is the total number of examples (see (Artstein and Poesio 2008;
Di Eugenio and Glass 2004) for details); here, we use the shorthand p = c (respectively, t = c) to
mean that the predicted label (respectively, true label) is c (analogously for c). We opt for kappa
since it is the most widely known, and best understood, measure of ICA. For Cohen’s kappa, too,
we work at the t-unit level, that is, for each t-unit xt we record whether the two coders agree on
whether xt is labelled or not with the concept c of interest.

Incidentally, note that (as observed in Esuli and Sebastiani (2010)) we can compute Cohen’s
kappa only thanks to the fact that (as discussed in Section 3.4.1) we conduct our evaluation at the
t-unit level (rather at the mention level).15 Those who conduct their evaluation at the mention
level (e.g., Chapman and Dowling (2006)) find that they are unable to do so, since to be defined
kappa needs the notion of a true negative to be also defined, and this is undefined at the mention
level. Evaluation at the mention level thus prevents the use of kappa and other ICA measures that
require the notion of a true negative to be defined.

3.5 Statistical Significance

To check whether differences in accuracy between different settings are statistically significant, we
will use the approximate randomization test (ART) (Chinchor et al. 1993). In this test, the difference

15This would be possible also if we considered a text as a sequence of tokens (thus disregarding separators) and conducted
the evaluation at the token level only. That is, the key aspect that allows the computation of Cohen’s kappa is that atomic
units of text, that do not overlap with each other, are used.
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is considered statistically significant if the resulting p value is <0.05. Two advantages of the ART
are that

(1) unlike the t-test, the ART does not require the data to be normally distributed;
(2) unlike the Wilcoxon signed-rank test, the ART can be applied to multivariate non-linear

evaluation measures, such as F1 (Yeh 2000).

3.6 Experimental Protocol

In Esuli et al. (2013), experiments on the UmbertoI(RadRep) dataset were run using either 1-only
and/or 2-only (i.e., the portions of the data that only one coder had annotated) as training data
and Both(1) and/or Both(2) (i.e., the portion of the data that both coders had annotated, in both
versions) as test data.

In this article, we switch the roles of training set and test set, that is, use Both(1) or Both(2) as
training set (since for the purpose of this article we need training data with multiple, alternative
annotations) and 1-only or 2-only as test set. Specifically, we run two batches of experiments,
Batch1 and Batch2. In Batch1 Coder1 plays the role of the authoritative coder (Cα ) and Coder2
plays the role of the non-authoritative coder (Cβ ), while in Batch2 Coder2 plays the role ofCα and
Coder1 plays the role of Cβ .16

Each of the two batches of experiments is composed of the following:

(1) An experiment using the authoritative setting, that is, both training and test data are anno-
tated byCα . This means training on Both(1) and testing on 1-only (Batch1) and training
on Both(2) and testing on 2-only (Batch2).

(2) An experiment using the non-authoritative setting, that is, training data annotated byCβ

and test data annotated by Cα . This means training on Both(2) and testing on 1-only
(Batch1) and training on Both(1) and testing on 2-only (Batch2).

(3) Experiments using the partially authoritative setting, that is, test data annotated by Cα ,
and training data annotated in part by Cβ (λ% of the training documents, chosen at ran-
dom) and in part byCα (the remaining (100 − λ)% of the training documents). We call λ the
corruption ratio of the training set; λ = 0 obviously corresponds to the fully authoritative
setting while λ = 100 corresponds to the non-authoritative setting.

We run experiments for each λ ∈ {10, 20, . . . , 80, 90} by monotonically adding, for in-
creasing values of λ, new randomly chosen elements (10% at a time) to the set of training
documents annotated byCβ . Since the choice of training data annotated byCβ is random,
we repeat the experiment 10 times for each value of λ ∈ {10, 20, . . . , 80, 90}, each time with
a different random such choice.

For each of the above train-and test experiments, we compute the intercoder agreement
κ (Tr , corrλ (Tr )) between the non-corrupted version of the training set Tr and the (partially or
fully) corrupted version corrλ (Tr ) for a given value of λ. We then take the average among the 10
values ofκ (Tr , corrλ (Tr )) deriving from the 10 different experiments run for a given value of λ and

16The very fact that, in our experiments, we treat the two coders equally (e.g., Batch 1 and Batch 2 experiments use the
very same protocol, and we give identical importance to their results) can be seen as using (i) the information that the two
are equally expert radiologists and (ii) the lack of information on their relative expertise as coders (i.e., in the absence of
information to the contrary, we assume them to have the same level of coding expertise). Had we had information that
one was a more experienced radiologist than the other, or that one was a more experienced coder than the other, we might
have treated the two batches differently (e.g., if we knew that Coder1 had substantially more coding expertise than Coder2,
we would probably only consider the experiments in Batch 1, since it makes sense to have the more experienced coder be
the one by whose judgment we must abide, that is, the one who annotates the test set).
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Table 2. Extraction Accuracy for the Authoritative Setting (λ = 0) and Non-authoritative Setting
(λ = 100), for the LC-CRFs and HM-SVMs Learners, and for Both Batches of Experiments (and for the
Average across the Two Batches), Along with the Resulting Intercoder Agreement Values Expressed as

κ (λ)

LC-CRFs HM-SVMs

λ κ (λ) F
μ
1 FM

1 F
μ
1 FM

1

Batch1
0 1.000 0.783 0.674 0.820 0.693

100 0.742 0.765 (−2.35%) 0.668 (−0.90%) 0.786 (−4.33%) 0.688 (−0.73%)

Batch2
0 1.000 0.808 0.752 0.817 0.754

100 0.742 0.733 (−10.23%) 0.654 (−14.98%) 0.733 (−11.46%) 0.625 (−20.64%)

Average
0 1.000 0.795 0.713 0.819 0.724

100 0.742 0.749 (−6.14%) 0.661 (−7.87%) 0.760 (−7.76%) 0.657 (−10.20%)

Percentages indicate the loss in extraction accuracy resulting from moving from λ = 0 to λ = 100; F
μ

1 and F M
1 are as

defined at the end of Section 3.4.1.

denote it as κ (λ); this value indicates the average intercoder agreement that derives by “corrupt-
ing” λ% of the documents in the training set, that is, by using for them the annotations performed
by the non-authoritative coder.

For each of the above train-and test experiments, we also compute the extraction accuracy (via
both F

μ
1 and FM

1 ) and the relative loss in extraction accuracy that results from the given corruption
ratio.

The experiments outlined above are discussed in Sections 4.1.1 to 4.2.1. In Section 4.2.2, we
discuss a further experiment carried out via k-fold cross-validation exclusively on Both(1) and
Both(2), that is, using an experimental setting in which all data, although few, are doubly anno-
tated; this eliminates any bias in the results that might potentially derive from 1-only and 2-only
containing different documents.

4 RESULTS

Table 2 reports extraction accuracy figures for the authoritative and non-authoritative settings,
for both learners, both batches of experiments, and along with the resulting intercoder agreement
values. Figure 2 illustrates the results of our experiments by plotting F1 as a function of the corrup-
tion ratio λ, using LC-CRFs and HM-SVMs as the learning algorithm, respectively; for each value
of λ, the corresponding level of intercoder agreement κ (λ) (as averaged across the two batches)
is also indicated. Figure 3 plots instead precision and recall as a function of λ for the LC-CRFs
experiments, while Figure 4 does the same for the HM-SVMs experiments.

4.1 The Authoritative Setting

We start the presentation of our results with a discussion of phenomena that can already be de-
tected at the level of the authoritative setting, that is, with training set and test set completely
annotated by the same person. This will set the stage for the discussion of what can instead be
observed at the level of the non-authoritative and of the partially authoritative settings, which are
the main focus of this article.

4.1.1 Macroaveraged Values Are Lower Than Microaveraged Ones. A first fact to be observed
is that macroaveraged (FM

1 ) results are always lower than the corresponding microaveraged
(F μ

1 ) results. This is unsurprising and conforms to a well-known pattern. In fact, microaveraged
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Fig. 2. Microaveraged F1 (left) and macroaveraged F1 (right) on the UmbertoI(RadRep) dataset as a function
of the fraction λ of the training set that is annotated byCβ instead ofCα (“corruption ratio”), using LC-CRFs

(top) and HM-SVMs (bottom) as learning algorithms. The dashed line represents the experiments in Batch1,
the dotted line represents those in Batch2, and the solid one represents the average between the two batches.
The vertical bars indicate, for each λ ∈ {10, 20, . . . , 80, 90}, the standard deviation across the 10 runs deriving
from the 10 random choices of corrλ (Tr ).

effectiveness scores are heavily influenced by the accuracy obtained on the concepts most frequent
in the test set (i.e., on the ones that label many test t-units); for these concepts, accuracy tends to
be higher, since these concepts also tend to be more frequent in the training set, which means that
microaveraged effectiveness scores tend to be higher, too. Conversely, in macroaveraged effec-
tiveness measures, each concept counts the same, which means that the low-frequency concepts
(which tend to be the low-performing ones too) have as much of an impact as the high-frequency
ones; this means that macroaveraged effectiveness scores tend to be lower. See Debole and
Sebastiani (2005, pp. 591–593) for a thorough discussion of this point in a text classification context.

4.1.2 HM-SVMs Outperform LC-CRFs. A second fact that emerges is that HM-SVMs outper-
form LC-CRFs, on both batches, both settings (authoritative and non-authoritative), and for both
evaluation measures (F μ

1 and FM
1 ); for example, on the authoritative setting, and as an average

across the two batches, HM-SVMs obtain F
μ
1 = 0.819 (while LC-CRFs obtain 0.795) and FM

1 = 0.724
(while LC-CRFs obtain 0.713). Aside from their different levels of effectiveness, the two learners
behave in a qualitatively similar way as a function of λ, as evident from a comparison of Figures 3
and 4. However, we will not dwell on this fact any further, since the relative performance of the
learning algorithms is not the main focus of the present study; as will be evident in the discussion
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Fig. 3. Microaveraged (left) and macroaveraged (right) precision (top) and recall (bottom) on the Umber-
toI(RadRep) dataset as a function of the fraction λ of the training set that is annotated by Cβ instead of Cα

(“corruption ratio”), using LC-CRFs as a learning algorithm.

that follows, most insights obtained from the LC-CRFs experiments are qualitatively confirmed by
the HM-SVMs experiments and vice versa.

4.1.3 Coder1 Generates Less Accuracy Than Coder2. A third fact that may be noted (from Ta-
ble 2) is that, for λ = 0, there is a substantive difference in accuracy values between the two coders,
with Coder2 usually generating higher accuracy than Coder1. This fact can be especially ap-
preciated at the macroaveraged level (where for LC-CRFs we have FM

1 = 0.674 for Coder1 and
FM

1 = 0.752 for Coder2, and for HM-SVMs we have FM
1 = 0.693 for Coder1 and FM

1 = 0.754 for
Coder2), while the difference is less clear-cut at the microaveraged level (where for LC-CRFs we
have FM

1 = .0.783 for Coder1 and FM
1 = 0.808 for Coder2 and for HM-SVMs we have FM

1 = 0.820
for Coder1 and FM

1 = 0.817 for Coder2); this indicates that the codes where Coder2 especially
shines are the low-frequency ones.

Why do the two coders bring about this difference in accuracy? Possible explanations might
be that the documents in 2-only are “easier” to code automatically than those in 1-only or that
the distributions of Both(1) and 1-only are less similar to each other than the distributions of
Both(2) and 2-only. However, both hypotheses will be ruled out by the experiments discussed in
Section 4.2.2. There are instead two other possible explanations for this fact that our experiments
will not rule out; we describe them in the next paragraphs.

The first possible explanation is that Coder2 might simply be more self-consistent in his or her
annotation style than Coder1. To check whether this hypothesis is plausible, we have performed
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Fig. 4. Microaveraged (left) and macroaveraged (right) precision (top) and recall (bottom) on the Umber-
toI(RadRep) dataset as a function of the fraction λ of the training set that is annotated by Cβ instead of Cα

(“corruption ratio”), using HM-SVMs as a learning algorithm.

four k-fold cross-validation (k-FCV) experiments (on Both(1) and Both(2) and for LC-CRFs and
HM-SVMs, in all combinations) using k = 20. Focusing on the documents in Both, thus leaving
aside all documents that are not doubly annotated, allows us to rule out possible explanations
having to do with the difference among the test documents contained in 1-only and 2-only.
Intuitively, a higher accuracy value resulting from a k-FCV test might indicate a higher level of
self-consistency, since if the same coding style is consistently used to label a dataset, a system tends
to encounter in the testing phase the same labelling patterns it has encountered in the training
phase, which is conducive to higher accuracy. Of course, the results of such a test are difficult to
interpret if the goal is to assess the self-consistency of a coder in absolute terms (since we do not
know what values of F1 correspond to what levels of self-consistency), but they are not if the goal
is simply to establish which of the two is the more self-consistent, since the two experiments are
run on the same documents.

The results of our two k-FCV experiments are reported in Table 3. From this table, we can see
that the accuracy on Both(2) is substantially higher than the one obtained on Both(1). This might
indicate that Coder2 is indeed more self-consistent than Coder1, which might be an explanation
of the higher levels of accuracy obtained on the dataset annotated, for both training and test, by
Coder2.

The second possible explanation is that, since Coder2 annotates more tokens and more men-
tions as belonging to the concept of interest, this has the effect of generating more training data,
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Table 3. Results of the 20-fold Cross-validation Tests on
Both(1) and Both(2) for LC-CRFs and HM-SVMs

LC-CRFs HM-SVMs

F
μ
1 FM

1 F
μ
1 FM

1

Both(1) 0.829 0.735 0.842 0.737

Both(2) 0.838 0.771 0.850 0.787

and this usually entails higher accuracy. In fact, as is evident from Table 1, Coder2 annotates, as
instances of the concepts of interest, more mentions (+15.7%) and also more tokens per mention
(+15.6%) than Coder1; relative to each other, Coder1 is thus an underannotator while Coder2 is an
overannotator.17 Indeed, the results of the k-FCV experiments reported in the previous paragraph
are entirely consistent with this second explanation, too.

Deciding which of the two explanations is the most plausible is not easy. To do this, we should
selectively remove, from Coder2’s annotations, a number of mentions and tokens such that the
remaining ones are equal in number to Coder1’s; at this point, if Coder2 still generates high accu-
racy than Coder1, then superior self-consistency (and not higher amounts of training data) is the
explanation for the observed phenomenon. But it is evident that this selective removal cannot be
performed without introducing bias against Coder2.18 Therefore, we will not attempt to precisely
determine the exact reason why Coder2 generates higher accuracy than Coder1; luckily enough,
this will not negatively impact the analysis we will carry out in the next sections.

4.2 The Partially Authoritative and the Non-Authoritative Settings

We now discuss the results of our experiments using the partially authoritative and the non-
authoritative settings. These settings are the ones in which the quality of training data is sub-
optimal and are thus the main focus of this article.

4.2.1 Overannotation and Underannotation. The most interesting fact we may observe in the
partially authoritative and the non-authoritative settings is that accuracy as a function of the cor-
ruption ratio varies much less for Batch1 than for Batch2, since for the latter we witness a much
more substantial drop in going from λ = 0 to λ = 100. We conjecture that this may be due to the
fact, noted in the previous paragraph, that Coder1 is an underannotator and Coder2 is an overan-
notator; the rest of this subsection will be devoted to explaining the rationale of this conjecture.

Since, as noted in Section 1, learning algorithms learn to replicate the subjective annotation
style of their supervisors, a system trained on data annotated by an overannotator will itself tend to
overannotate; conversely, a system trained by an underannotator will itself tend to underannotate.
Overannotation results in more true positives and more false positives. The plots in Figures 3 and
4 show that when, as a consequence of increased values of λ, the number of training documents
annotated by an overannotator increases (as is the case of Batch1), precision suffers somehow

17Note that in this article, we use the term “underannotator” not in an absolute sense but in a relative sense, that is, we do not
mean that this person annotates too little but that he or she annotates less than the other person. Same for “overannotator.”
18To bring Coder2’s annotations down to the number and size of Coder1’s, it is not clear which mentions we should
remove, and it is not clear which tokens we should remove from the remaining mentions. If we removed random mentions,
and random tokens from the remaining mentions, then it is almost certain that the remaining set of mentions would not
resemble anything coherent. For instance, assume that the same sentence occurs in two different documents and that
Coder2 has (coherently) annotated both sentences under concept cr ; if we remove one of the two annotations but not
the other, then we introduce inconsistency in what would otherwise be a consistent set of annotations. Same if the two
sentences annotated in the two documents are not identical but just similar in meaning.
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Table 4. Results of the Approximate Randomization Test,
Measuring the Statistical Significance of the Difference

between the Accuracy of the System Trained at λ = 0 and
the Accuracy of the System Trained at λ = 100

LC-CRFs HM-SVMs

F
μ
1 FM

1 F
μ
1 FM

1

Batch1 0.0859 0.6207 0.0001 0.5040

Batch2 0.0001 0.0001 0.0001 0.0001

Results are reported for both learners (LC-CRFs and HM-SVMs), both
batches, and both evaluation measures (F

μ

1 and F M
1 ).

(due to the fact that, along with more true positives, there are also more false positives), but this
is compensated by an increase in recall (due to an increased number of true positives); as a result,
as shown in Figure 2 (and in Table 2 too), the drop in F1 resulting from moving to λ = 0 to λ = 100
is very limited. Figures 3 and 4 instead show that when, as a consequence of increased values of
λ, the number of training documents annotated by an underannotator increases (as is the case for
Batch2), recall drops substantially (due to the decreased number of true positives), and this drop is
not compensated by the stability of precision (which is due to the combined effect of a decrease in
true positives and a decrease in false positives); as a result, as shown in Figure 2 (see also Table 2),
the drop in F1 resulting from moving to λ = 0 to λ = 100 is much more substantial than for Batch1.

The results of our statistical significance tests, carried out via the approximate randomization
test described in Section 3.5, are reported in Table 4. These results essentially confirm the obser-
vations above, that is, that in Batch1 the drop in performance resulting from having the training set

annotated by the non-authoritative coder (instead of the authoritative one) is not statistically signif-

icant, while (with the exception of the F
μ
1 results for HM-SVMs) it is statistically significant for

Batch2.

4.2.2 Fivefold Cross-Validation Experiments. The experiments we have discussed in Section
4.2.1 might be considered problematic, because the differences in the performance obtained on
1-only and 2-only could in principle be attributed to the fact that 1-only and 2-only contain
different documents.

To address this potential concern, we have run another set of experiments in which we do away
with the documents in 1-only and 2-only and focus on the documents in Both. More specifically,
we have run a fivefold cross-validation (5FCV) experiment by (a) splitting Both(1) in five folds
Both(1)1, . . . , Both(1)5 of equal size, and (b) running, for each of the Both(1)i , one experiment
in which Both(1)i is the test set and either

⋃
j�iBoth(1)j or

⋃
j�iBoth(2)j is the training set.

Below we refer to this experiment as Batch1; we also run a Batch2 experiment, in which we split
in five folds Both(2) instead of Both(1) and then proceed analogously to Batch1.

This experimental setting is conceptually identical to the one we have discussed in the previous
sections, the only difference being the fact that the dataset used here entirely consists of doubly
annotated documents. This latter experimental setting has advantages and disadvantages with
respect to the one we had used previously. The advantage is that we know that any difference
in accuracy between the two trained systems is a result of the annotations on which the systems
were trained and not of the test documents; the disadvantage is that the dataset on which the
experiment is performed is, overall, smaller (191 documents instead of 500).

The results are displayed in Figures 5, 6, and 7, which are the 5FCV analogues of Figures 2, 3,
and 4, respectively. As revealed by a visual inspection of these figures, these 5FCV experiments
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Fig. 5. Microaveraged F1 (left) and macroaveraged F1 (right) on the UmbertoI(RadRep)(191) dataset as a
function of the fraction λ of the training set that is annotated byCβ instead ofCα (“corruption ratio”), using

LC-CRFs (top) and HM-SVMs (bottom) as learning algorithms. The dashed line represents the experiments
in Batch1, the dotted line represents those in Batch2, and the solid one represents the average between the
two batches. The vertical bars indicate, for each λ ∈ {10, 20, . . . , 80, 90}, the standard deviation across the 10
runs deriving from the 10 random choices of corrλ (Tr ).

confirm the results of the previous experiments, in that each pair of plots (consisting of one of
the 12 plots in Figures 2, 3, and 4 and its analogue in Figures 5, 6, and 7) qualitatively exhibit the
same behaviour. For instance, in the bottom right plot of Figure 2 and in the bottom right plot of
Figure 5, both representing the trends of FM

1 in the HM-SVMs experiments, effectiveness is higher
for Batch1 than for Batch2 for λ = 0, is the other way around for λ = 100, and the two batches
reach the same effectiveness around λ = 50. All the 12 pairs of plots (with the possible exception
of the top left plots of Figures 2 and 5, representing the trends of F μ

1 in the LC-CRFs experiments
and whose similarity is less marked) exhibit such qualitative similarity, which essentially confirms
the conclusions we had drawn in the preceding sections.

4.2.3 Caveats. The experiments discussed in this article do not allow us to reach hard conclu-
sions about the robustness of information extraction systems to imperfect training data quality,
for several reasons:

(1) The results obtained should be confirmed by additional experiments carried out on other
datasets; unfortunately, as noted in Footnote 10, we have not been able to locate any
dataset that has the required characteristics (that is, contains a sizeable amount of doubly
annotated documents) and is also publicly available.
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Fig. 6. Microaveraged (left) and macroaveraged (right) precision (top) and recall (bottom) on the Umber-
toI(RadRep)(191) dataset as a function of the fraction λ of the training set that is annotated by Cβ instead

of Cα (“corruption ratio”), using LC-CRFs as a learning algorithm.

(2) The dataset used here is representative of only a specific type of imperfect training data
quality, that is, the one deriving from the fact that the training data were annotated by a
coder different (albeit with equal domain expertise) from the one who annotated the test
set. Other types do exist, however, as noted in the Introduction.

(3) Even the results reported here are somehow contradictory, since a statistically significant
drop in performance was observed in Batch1 while no such statistically significant drop
was observed in Batch2.

However, one interesting fact that has emerged from the present study (and that will need to be
confirmed by additional experiments, should other datasets become available) is that, as argued in
detail in Section 4.2.1, the lack of a statistically significant drop in performance observed in Batch2
seems to be due to the fact that the non-authoritative coder who annotated the training set had an
overannotating behaviour. This might suggest (emphasis meaning that prudence should be exer-
cised) that, should there be a need for having a training set annotated by someone different from
the authoritative coder, underannotation should be discouraged much more than overannotation.

5 CONCLUSIONS

Few researchers have investigated the loss in accuracy that occurs when a supervised learning
algorithm is fed with training data of suboptimal quality. We have done this for the first time in the
case of information extraction systems (trained via supervised learning) as applied to the detection
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Fig. 7. Microaveraged (left) and macroaveraged (right) precision (top) and recall (bottom) on the Umber-
toI(RadRep)(191) dataset as a function of the fraction λ of the training set that is annotated by Cβ instead

of Cα (“corruption ratio”), using HM-SVMs as a learning algorithm.

of mentions of concepts of interest in medical notes. Specifically, we have tested to what extent
extraction accuracy suffers when the person who has annotated the test data (the “authoritative
coder”), whom we must assume to be the person to whose judgment we conform irrespectively
of his or her level of (coding or domain) expertise, is different from the person who has labelled
the training data (the “non-authoritative coder”). Our experimental results, that we have obtained
on a dataset of 500 mammography reports annotated at the token (word) level according to nine
concepts of interest by two coders equally expert in the subject matter, are somehow surprising,
since they indicate that the resulting drop in accuracy is not always statistically significant. In our
experiments, no statistically significant drop was observed when the non-authoritative coder had a
tendency to overannotate, while a substantial, statistically significant drop was observed when the
non-authoritative coder was an underannotator; however, experiments on additional doubly (or
even multiply) annotated datasets will be needed to confirm or disconfirm these initial findings.
Since labelling cost is an important issue in the generation of training data (with senior coders
costing much more than junior ones, and with internal coders costing much more than “mechanical
turkers”), results of this kind may give important indications as to the cost-effectiveness of having
non-authoritative coders (typically, low-cost annotation workers) label the training data.

This article is a first attempt to investigate the impact of less-than-sterling training data quality
on the accuracy of medical concept extraction systems, and more work is needed to validate the
conjectures that we have made based on our experimental results. One limit of this study is that it
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only concerns coders who are equally expert in the subject matter (radiology, in our case); it would
be interesting to carry out analogous studies tackling the situation in which the two coders have
different levels of domain expertise (typically, with the coder who annotates the training data being
less expert than the one who annotates the test data), since this situation may well be represen-
tative of a realistic scenario. Unfortunately, carrying out such a study requires a correspondingly
annotated dataset, which would need to be annotated on purpose by medical personnel.

As repeatedly mentioned in this article, a further, related limit of the present work is the fact that
only one dataset was used for the experiments. This was due to the unfortunate lack of publicly
available medical datasets that contain (at least a subset of) textual records independently labelled
by two different coders (Coder1 and Coder2); datasets with these characteristics have been used
in the past in published research but are not made available to the rest of the scientific commu-
nity (see also Footnote 10). We hope that the increasing importance of text mining applications in
clinical practice, and the importance of shared datasets for fostering advances in this field, will gen-
erate a new kind of awareness on the need to make the existing datasets available to the scientific
community.
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