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Preface

The 2nd International Workshop on Learning to Quantify (LQ 2022 – https:
//lq-2022.github.io/) was held in Grenoble, FR, on September 23, 2022,
as a satellite workshop of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD
2022). While the 1st edition of the workshop (LQ 2021 – https://cikmlq2021.
github.io/, which was instead co-located with the 30th ACM International
Conference on Information and Knowledge Management (CIKM 2021)) had
to be an entirely online event, LQ 2022 was a hybrid event, with presentations
given in-presence and both in-presence attendees and remote attendees.

The workshop was a half-day event, and consisted of a keynote talk by
Marco Saerens (Université Catholique de Louvain), presentations of four con-
tributed papers, and a final collective discussion on the open problems of
learning to quantify and on future initiatives.

The present volume contains the four contributed papers that were ac-
cepted for presentation at the workshop. Each of these papers was submitted
as a response to the call for papers, was reviewed by at least three members
of the international program committee, and was revised by the authors so
as to take into account the feedback provided by the reviewers. We hope
that the availability of the present volume will increase the interest in the
subject of quantification on the part of researchers and practitioners alike,
and will contribute to making quantification better known to potential users
of this technology and to researchers interested in advancing the field.

Juan José del Coz
Pablo González

Alejandro Moreo
Fabrizio Sebastiani
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Unification of Algorithms for
Quantification and Unfolding⋆

Mirko Bunse[0000−0002−5515−6278] (�) and Katharina Morik[0000−0003−1153−5986]

Artificial Intelligence Unit, TU Dortmund University, 44227 Dortmund, Germany
{firstname.lastname}@cs.tu-dortmund.de

Abstract. Quantification is the supervised learning task of predicting
the prevalence values of classes in a data sample. Physics literature knows
the same task under a different name: unfolding. However, the literature
on quantification and the literature on unfolding are largely disconnected
from each other, likely due to an interdisciplinary gap. We bridge this
gap by proposing a common framework that integrates algorithms from
both fields in a unified form. Instantiations of our framework differ from
each other in terms of the loss functions, the regularizers, and the feature
transformations they employ.

Keywords: Quantification · Unfolding · Classification · Experimental
physics · Machine learning.

1 Introduction

Many applications of supervised learning require a prediction of the distribution
of the target quantity, as exhibited by some data sample. In these applications,
predictions for individual data instances are only secondary; they are issued as
a means from which the distribution can be reconstructed. Examples of such
applications are text sentiment analyses [11], technical support log analyses [10],
social sciences [15], the reconstruction of energy spectra in astroparticle physics
[6], and several other areas.

Supervised learning for the prediction of target distributions is known as
quantification learning [10,12]. Within experimental physics, however, the same
problem is called unfolding [2,14,7] or deconvolution [6]. As of today, the lit-
erature from quantification research and the literature from unfolding research
are largely disconnected from each other, despite their substantial similarities in
terms of their problem statements and their solutions.

Contributions We propose a common framework for algorithms that stem from
quantification literature and from unfolding literature. This framework reveals
several similarities between existing methods from the two research fields. More-
over, it paves the way for strengthening interdisciplinary efforts on the subject.
Our presentation completes a similar unification attempt by Firat [9] in terms
⋆ This paper is a slightly modified resubmission of a recent publication by us [5]
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of i) taking unfolding algorithms into consideration and ii) giving formal proofs
about the correctness of our framework. Our reusable implementation of all
methods is available online.1

Sec. 2 details unfolding algorithms within our unifying framework. In Sec. 3,
we integrate algorithms from quantification literature. We summarize our find-
ings in Tab. 1 before Sec. 4 concludes.

2 Unfolding

A frequent objective in experimental physics is to estimate the spectrum of a
physical quantity that cannot be measured directly. In this case, the spectrum
needs to be reconstructed from correlated quantities which are measured instead.

To this end, assume that we can measure the distribution q(x⃗) = P(X = x⃗)
of some quantity X within a sample. Moreover, let the measurement process
be characterized through the conditional probabilities M(x⃗ | yc) = P(X = x⃗ |
Yc = y) of measuring some x⃗ ∈ X when the relevant quantity has the (possibly
continuous) value y ∈ Yc. The objective of any unfolding algorithm is then to
reconstruct the relevant distribution p(y) = P(Yc = y) from the distributions q
and M , according to the integral

q(x⃗) =

∫
Yc

M(x⃗ | y) · p(y) dy. (1)

The estimation of p(y) from data is enabled through the discretization of
Eq. 1. In case of a continuous target interval Yc = [a, b), we first need to map
each continuous label to a discrete class index Y = {1, . . . , C}. For instance, the
estimation of an energy spectrum requires a binning of the interval Yc into C
bins [3,7]. We proceed similarly with the feature space X ⊆ Rd, in mapping it to
a discrete feature representation f(x⃗) ∈ {1, . . . , F}, which is still to be defined
for each unfolding algorithm in particular.

The discretization of y and x⃗ gives rise to a straightforward representation
of distributions in terms of histograms. Consider a data sample D = {(x⃗i, yi) ∈
X × Y : 1 ≤ i ≤ N} in which the classes yi are not observed. Estimating the
quantities from Eq. 1 in terms of histograms

p⃗ =
1

N

N∑
i=1

δyi
, q⃗ =

1

N

N∑
i=1

δf(x⃗i), [δj ]k =

{
1 if j = k,

0 otherwise
(2)

leads to the system of linear equations

q⃗ = M · p⃗, (3)

where the transfer matrix M ∈ RC×F is estimated by counting and normalizing
the co-occurrences of labels y and transformed features f(x⃗) in a training set.
Advanced algorithms are required to estimate p⃗ because a direct solution M−1q⃗
is not guaranteed to exist.
1 https://github.com/mirkobunse/QUnfold.jl

https://github.com/mirkobunse/QUnfold.jl
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A Common Framework for Unfolding and Quantification Unfolding algorithms
solve Eq. 3 for p⃗, a histogram estimate of the (continuous) distribution p(y) from
Eq. 1. However, M is not invertible in general. A general regularized solution for
the unfolding / quantification problem, with a regularization strength τ ≥ 0, is

p⃗ ∗ = argmin
p⃗≥0 s.t. 1⊤p⃗=1

L(p⃗ ; q⃗,M) + τ · r(p⃗), (4)

where the loss function L : RC → R and the regularization function r : RC → R
are still to be defined for each particular unfolding / quantification method. The
constraints in Eq. 4 ensure that p⃗ ∗ represents a valid probability density. Our
framework extends the one by Firat [9] with regularization functions r(p⃗).

Adhering to this framework are the most important unfolding algorithms,
namely

Regularized Unfolding (RUN) [3,2] RUN models the likelihood of solutions
in terms of Poisson-distributed counts. Namely, we observe a histogram of
counts q̄ = N · q⃗ ∈ NF , each element of which is modelled as being Poisson-
distributed with the rate λi = [Mp̄]i. This modelling gives rise to the negative
log-likelihood function

LRUN(p⃗ ; q⃗,M) =

F∑
i=1

[Mp̄]i − q̄i ln[Mp̄]i, (5)

which RUN minimizes.
To ensure smooth solutions, RUN employs Tikhonov regularization. The
Tikhonov matrix T ∈ RC×C is defined such that

rRUN(p⃗) =
1

2
(T p⃗ )

2
=

1

2

C−1∑
i=2

([p⃗]i−1 − 2[p⃗]i + [p⃗]i+1)
2
. (6)

Unfolding via Singular Value Decomposition (SVD) [14] This method
employs the regularizer from Eq. 6 with a least squares loss

LSVD(p⃗ ; q⃗,M) =

∥∥∥∥ q⃗ −Mp⃗

w⃗

∥∥∥∥2
2

, (7)

which is weighted by a vector w⃗ ∈ RF . For instance, a Poisson model can be
realized through Poisson variances w⃗ =

√
q̄.

Iterative Bayesian Unfolding (IBU) [8,7] IBU revolves around an expec-
tation maximization approach. Starting from a prior p⃗ (0), it repeatedly up-
dates the estimate p⃗ (k) according to Bayes’ theorem

[p⃗ (k)]i =

F∑
j=1

[M ]ij [p⃗
(k−1)]i∑C

i′=1[M ]i′j [p⃗ (k−1)]i′
[q⃗]j . (8)
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IBU implements regularization in two ways. First, through early stopping
in combination with a smooth prior. For instance, starting from p⃗ (0) = 1

C
and stopping before Eq. 8 converges will maintain the smoothness of p⃗ (0) to
some degree. Second, the intermediate estimates p⃗ (k) are smoothed with a
low-order polynomial.

The above algorithms do not specify the feature transformation f(x⃗) ∈
{1, . . . , F} through which q⃗ and M are defined; they solely focus on the esti-
mation of p⃗ from any given q⃗ and M . In this sense, these algorithms are open to
any feature transformation. Physicists have proposed

– to bin a single feature that is well correlated with the target quantity [2],
– to cluster the features in order to map instances to cluster indices [6],
– or to optimally partition the feature space by means of decision trees [4]

in order to obtain histograms q⃗ which represent the data sample.

3 Quantification

In the following, we show that several algorithms from quantification literature
are indeed instances of the unified framework we have presented above. A sum-
mary of these findings is displayed in Tab. 1. We prove the correctness of our
unifying notation in the Appendix.

Table 1. Algorithms for unfolding and quantification within the framework of Eq. 4.

loss function L regularizer r feature transformation f

RUN [3,2]
∑d

i=1[Mp̄]i − q̄i ln[Mp̄]i
1
2
(T p⃗ )2 not specified / any

SVD [14]
∥∥∥ q⃗−Mp⃗

w⃗

∥∥∥2

2

1
2
(T p⃗ )2 not specified / any

IBU [8,7] expectation maximization smoothing not specified / any

ACC [10,15] ∥q⃗ −Mp⃗ ∥22 none δargmaxi[h(x⃗)]i

PACC [1] ∥q⃗ −Mp⃗ ∥22 none h(x⃗)

ReadMe [15] ∥q⃗ −Mp⃗ ∥22 none δx⃗=(X1,...,X2d
)

HDx [13] 1
d

∑d
i=1 HDi(q⃗, Mp⃗) none (δb(x⃗;1), . . . , δb(x⃗;d))

HDy [13] 1
d

∑d
i=1 HDi(q⃗, Mp⃗) none (δb(h(x⃗);1), . . . , δb(h(x⃗);C))

CC [10] none (assume M = I) none δargmaxi[h(x⃗)]i

PCC [1] none (assume M = I) none h(x⃗)
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Namely, our framework from Eq. 4 accommodates the following algorithms:

Adjusted Classify and Count (ACC) [10,15] Hopkins and King [15] pre-
sent a method that extends the binary adjustment by Forman [10] to multi-
class settings. Their extension represents a data sample as the counts of
classification outcomes argmaxi[h(x⃗)]i, as returned by a multi-class classifier
h : X → RC . In this case, M is simply the normalized confusion matrix of
h, as estimated on held-out training data. Hopkins and King [15] propose to
solve Eq. 3 via constrained least squares regression, hence

LACC(p⃗ ; q⃗,M) = ∥q⃗ −Mp⃗ ∥22 (9)

and no regularization is employed.
Others [17,16] have proposed to solve Eq. (3) through matrix inversion,

p⃗ inv = M−1q⃗.

However, there is no guarantee that M is indeed invertible. Therefore, p⃗ inv

might be undefined and the method by Hopkins and King [15] should be the
prefered multi-class version of ACC.

Probabilistic ACC (PACC) [1] This method employs the same adjustment
as ACC, hence the same loss. However, PACC averages soft classifications
h(x⃗) ∈ RC instead of counting the crisp outcomes argmaxi[h(x⃗)]i.

ReadMe [15] Building on the multi-class version of ACC, ReadMe employs
the loss function from Eq. 9. However, ReadMe transforms the features in
a unique way that is motivated in text mining. In this application area,
instances x⃗ are often represented as bags of words, i.e. by sparse indicator
vectors {0, 1}d for a vocabulary of size d. In ReadMe, q⃗ is a histogram over
all 2d possible incarnations Xi of these indicator vectors, i.e.

fReadMe(x⃗) = δx⃗=(X1,...,X2d
),

where [δa=(a1,...,an)]i =

{
1 if a = ai,

0 otherwise
.

(10)

Since such a representation is only feasible with small d, ReadMe produces
multiple estimates, each of which employs a different and small random
selection of words. Finally, all of these estimates are averaged.

HDx [13] In this method, each feature is separately binned and a data sample
is represented as a concatenation of all feature-wise histograms

f(x⃗) = (δb(x⃗;1), . . . , δb(x⃗;d)), (11)

where b(x⃗; i) is a binning function which maps the feature value [x⃗]i to the
corresponding bin index {1, . . . , Bi}.
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The loss is measured as the average of feature-wise Hellinger distances,

L(p⃗ ; M, q⃗) =
1

d

d∑
i=1

HDi(q⃗, Mp⃗), (12)

where HDi(q⃗, Mp⃗) =

√√√√√
∑i

k=1 Bk∑
j=1+

∑i−1
k=1 Bk

(√
[q⃗]j −

√
[Mp⃗]j

)2

. (13)

HDy [13] Originally, HDy has been proposed for binary quantification only.
However, we can easily extend the method to the multi-class setting. In this
setting, HDy replaces the separated binning of features b(x⃗, i) in HDx with a
separated binning of class-wise classifier outputs b(h(x⃗), i). All other aspects
of HDx are maintained.

(Probabilistic) Classify and Count (PCC/CC) [10,1] We also conceive these
non-adjusted methods, which simply return q⃗ as their estimates for p⃗, as in-
stances of our framework. Strictly speaking, CC and PCC do not require the
minimization of a loss function. More loosely speaking, however, their dis-
regard of M can be understood as the assumption of a perfect classifier, so
that M = I is the identity matrix. Under this assumption, the least squares
loss from Eq. 9 leads to the estimate p⃗CC = q⃗ and we can understand this
estimate as an instance of Eq. 4.

Regarding f(x⃗), CC employs the feature transformation of ACC and
PCC employs the feature transformation of PACC.

4 Conclusion and Outlook

We have presented the unfolding algorithms RUN, SVD, and IBU and the quan-
tification algorithms ACC, PACC, ReadMe, HDx, HDy, CC, and PCC within a
common framework. These algorithms differ in terms of the loss functions, the
regularizers, and the feature transformations they employ.

Our unification demonstrates the similarity between the problems that are
approached in unfolding and in quantification literature. Due to this similar-
ity, we conceive adaptations of quantification algorithms to physics problems as
a valuable endeavor for future work. Likewise, we suggest to adapt unfolding
algorithms to problems outside of physics.
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A Proofs

We now detail the mapping from the original algorithms to our unified notation,
to formally prove that our framework is consistent with the original proposals.

Regularized Unfolding (RUN) The loss function we present in Eq. 5 is a
verbatim statement by Blobel [2, Eqs. (2.29), and (2.26)]. The original al-
gorithm treats the elements of p⃗ as B-spline coefficients; however, a more
recent version by the same author [3] employs histograms, which are con-
sistent with our Eq. 2. Due to this change “the second derivative in bin j
is proportional to xj−1 − 2xj + xj+1” [3], where xi = [p⃗]i. This derivative
defines the regularization term from Eq. 6. □

Unfolding via Singular Value Decomposition (SVD) The loss function
we present in Eq. 7 and the regularization term from Eq. 6 are verbatim
statements by Hoecker and Kartvelishvili [14, Eqs. (29), (37), and (38)]. □

Iterative Bayesian Unfolding (IBU) D’Agostini [7, Eqs. (3), and (4)] esti-
mates [p⃗ (k)]i as

1

ϵi

nE∑
j=1

n(Ej) ·
P (Ej | Ci) · P0(Ci)∑nC

l=1 P (Ej | Cl) · P0(Cl)
,

where we identify our notation as F = nE , C = nC , Mij = P (Ej | Ci),
and [p⃗ (k−1)]i = P0(Ci). In the original algorithm, n(Ej) ∈ N is the count
observed in the j-th bin, i.e. n(Ej) = N · [q⃗]j . Moreover, ϵi > 0 is an ac-
ceptance factor, which models the probability that an existing instance of
class i is indeed part of the sample—and not hidden due to measurement
complications. Setting ϵi = N , we obtain [q⃗]j =

n(Ej)
ϵi

, which is consistent
with our Eq. 8.
For regularization, D’Agostini [7] proposes to “smooth the results of the
unfolding before feeding them in the next step”, for instance “by a polynomial
fit of 3rd degree” or by another low-order polynomial. □

Adjusted Classify and Count (ACC) Hopkins and King [15, Eq. (4)] mar-
ginalize over the true labels D ∈ {1, . . . , J} to yield the distribution of class
predictions D̂,

P (D̂ = j) =

J∑
j′=1

P (D̂ = j | D = j′)P (D = j).

The authors note that “this expression represents a set of J equations [. . . ]
that can be solved for the J elements in P (D)”. Accordingly, we identify our
notation as p⃗ = P (D), q⃗ = P (D̂), and M = P (D̂ | D) in their presentation.
To solve this set of equations, the authors propose a “standard constrained
least squares to ensure that elements of P (D) are each in [0,1] and collectively
sum up to 1”. This proposal defines the least squares loss from Eq. 9 and
matches our constraints in Eq. 4. □
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Note that Hopkins and King have developed their method independently
of Forman’s binary ACC. However, the basis of their work is precisely the
adjustment by Forman [10, Eq. (1)], as can be seen in Hopkins and King [15,
Eq. (3)]. Therefore, we call their method “multi-class ACC”.
The other multi-class extension of ACC, p⃗ inv, is presented in McLachlan [16,
Eq. (2.3.4)] and in Vucetic and Obradovic [17, Eq. (3)].

Probabilistic ACC (PACC) The essential proposal by Bella et al. [1] is to re-
place hard classifications argmaxi[h(x⃗)]i with probabilistic ones h(x⃗) ∈ RC ;
their adjustment is the same as in binary ACC. By applying this proposal
to multi-class ACC [15], we obtain a multi-class PACC which employs the
loss from Eq. 9. □

ReadMe Building on their multi-class design of ACC, Hopkins and King [15,
Eq. (6)] set up a matrix equation P (S) = P (S | D)P (D), which maps to our
notation as q⃗ = P (S) ∈ R2d , M = P (S | D) ∈ R2d×C , and p⃗ = P (D) ∈ RC .
The authors note that “P (S) is the probability of each of the 2K possible
word stem profiles” with K = d being the number of word stems. To estimate
this probability, “we merely compute the proportion of documents observed
with each pattern of word profiles”. This computation leads to a histogram

q⃗ =
1

N

N∑
i=1

δx⃗i=(X1,...,X2d
),

which is consistent with our Eqs. 2 and 10. □
HDx González-Castro et al. [13, Eq. (9)] minimize the average of feature-wise

Hellinger distances, as we have stated in Eq. 12. They present the distance
with respect to a single feature j, binned into b bins, as√√√√ b∑

i=1

(√
|Vj,i|
|V |

−

√
|Uj,i|
|U |

)2

,

where |U | is the total number of instances and |Uj,i| is the number of in-
stances whose feature j is mapped to the i-th bin [13, Eq. (10)]. |V | and
|Vj,i| are the numbers of instances that are to be expected under class preva-
lence values p⃗, hence

|Vj,i|
|V |

= [Mp⃗]i+
∑j−1

k=1 Bk
,

where
∑j−1

k=1 Bk is the offset of the histogram of feature j within our con-
catenation of feature-wise histograms. Using the product Mp⃗ at this point is
consistent with the binary conception that is proposed by González-Castro
et al. [13, Eq. (12)]. □

HDy The original HDy [13, Eqs. (13) and (14)] only addresses binary quantifi-
cation. For this case, however, the only change with respect to HDx is that
HDy employs soft classifier outputs h(x⃗) instead of features x⃗. A straight-
forward extension to the multi-class setting is therefore to bin the class-wise
outputs [h(x⃗)]i separately, as HDx does in case of features and as we propose
in our presentation of HDy. □
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(Probabilistic) Classify and Count (PCC/CC) Let M = I. Recognize
that the global minimum of the least squares loss,

min
p⃗

∥q⃗ −Mp⃗ ∥22 = 0,

is now attained if and only if p⃗ = q⃗. Therefore, under the assumption M = I,
the unique minimizer of the least squares loss is q⃗. In this sense, PCC and
CC are proper instances of our framework. □
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Abstract. We show that in the context of classification the property of
source and target distributions to be related by covariate shift may be
lost if the information content captured in the covariates is reduced, for
instance by dropping components or mapping into a lower-dimensional
or finite space. As a consequence, under covariate shift simple approaches
to class prior estimation in the style of classify and count with or without
adjustment are infeasible. We prove that transformations of the covari-
ates that preserve the covariate shift property are necessarily sufficient
in the statistical sense for the full set of covariates. A probing algorithm
as alternative approach to class prior estimation under covariate shift is
proposed.
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1 Introduction

Class prior estimation (also known as quantification, class distribution estima-
tion, prevalence estimation etc.) may be considered one of the tasks referred to
under the general term domain adaptation.

Domain adaptation means adapting algorithms designed for a source (train-
ing) dataset (also distribution or domain) to a target (test) dataset. The source
and target distributions may be different, a phenomenon which is called dataset
shift. In this paper, attention is restricted to ‘unsupervised’ domain adaptation.
This term refers on the one hand to the situation where under the source dis-
tribution all events and realisations of random variables – including the target
(label) variable – are observable such that in principle the whole distribution can
be estimated. On the other hand under the target distribution only the marginal
distribution of the covariates (features) can be observed, via realisations of the
covariates. The target distribution class labels cannot be observed at all or only
with delay.

Moreno-Torres et al. [21] proposed the following popular taxonomy of types
of dataset shift:

– Covariate shift: Source and target posterior class probabilities are the same
but source and target covariate distributions may be different.
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– Prior probability shift (label shift [20], global drift [14]): Source and target
class-conditional covariate distributions are the same but source and target
prior class probabilities may be different.

– Concept shift: Source and target covariate distributions are the same but
source and target posterior class probabilities may be different, or source
and target prior class probabilities are the same but source and target class-
conditional covariate distributions may be different.

– Other shift: Any dataset shift not captured by the previous types.

Covariate shift and prior probability shift are described in constructive terms.
Based on their defining properties source and target distributions are fully spec-
ified. For this reason, a host of focussed literature is available for these two types
of dataset shift. In contrast, it is hardly possible to make specific statements
about the two other types of shift such that the literature on these types is
much more diverse and hard to capture.

In this paper we focus on covariate shift and a classification setting. We
choose a measure-theoretic approach that is particularly suitable for this context
as it facilitates a rigorous joint treatment of continuous and discrete random
variables, or covariates and class labels more specifically. We work in the same
binary classification setting as Ben-David et al. [3] and Johansson et al. [16].
Like Ben-David et al. and Johansson et al., we focus on the binary case but the
results are easily generalised to the multi-class case.

Prior probability shift is robust in the following sense: If the set of covariates
is transformed in a way that reduces the information reflected by them (e.g. by
dropping components or mapping into a lower-dimensional or finite space) then
the resulting source and target joint distributions of covariates and labels are still
related by prior probability shift. As a consequence, simple approaches to class
prior estimation under prior probability shift can be designed which avoid the
need to estimate the full class-conditional covariate distributions.1 The primary
example for such an approach is the ‘confusion matrix method’ (Gart and Buck
[9]; Saerens et al. [23]; ‘adjusted count’ in Forman [8]).

We show by examples and by theoretical analysis that such robustness is not
displayed by covariate shift. Under the condition that the target distribution is
absolutely continuous with respect to the source distribution, we prove that a set
of covariates passes on the covariate shift property if and only if the transformed
set of covariates is ‘sufficient’ in the sense of Adragni and Cook [1] and Tasche
[26] for the untransformed set under the source distribution. The result refines an
observation of Johansson et al. [16] who found that covariate shift was inherited
“only if” the transformation was invertible.

An important consequence of this finding is that in general for class prior esti-
mation under covariate shift, simplification in the sense of reducing the complex-
ity of the covariate set is not a viable path because the covariate shift property
of identical posterior class probabilities between source and target distributions

1 The simplification may come at a cost of increased variance of the estimator (Tasche
[27]).
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might get lost. We point to a potential alternative approach, based on the so-
called ‘probing’ method of Langford and Zadrozny [19].

The plan of this paper is as follows: We introduce the assumptions and the
notation for this paper in Section 2. In Section 3 we give examples of how loss of
information may affect the covariate shift property. The main result (Theorem 1
of this paper) is presented in Section 4 while Section 5 provides some comments
on the result. A proposal for applying ‘probing’ to class prior estimation is made
in Section 6. The paper concludes with a short summary in Section 7.

2 Assumptions and Notation

In this paper, we work only at population (distribution) level as this level is
appropriate for the design of estimators and predictors as well as the study of
their fundamental properties. A detailed treatment of the intricacies of sample
properties is not needed.

We follow the example of Scott [24] who introduced consistent concepts and
notation for appropriately dealing with the classification setting we need. As the
concept of information plays a more important role in this paper than in Scott’s,
we dive somewhat deeper into the measure-theoretic details of the setting than
Scott.

2.1 Setting for Binary Classification in the Presence of Dataset
Shift

We introduce a measure-theoretic setting, expanding the setting of Scott [24] and
adapting the approach of Holzmann and Eulert [15] and Tasche [26]. Phrasing the
context in measure theory terms is particularly efficient when random variables
with continuous and discrete distributions are studied together like in the case
of binary or multi-class classification. Moreover, the measure-theoretic notion
of σ-algebras allows for the convenient description of differences in available
information.

We use the following population-level description of the binary classification
problem in terms of measure theory. See standard textbooks on probability the-
ory like Billingsley [4] or Klenke [17] for formal definitions and background of
the notions introduced in Assumption 1.

Assumption 1 (Ω,A) is a measurable space. The source distribution P and the
target distribution Q are probability measures on (Ω,A). An event A1 ∈ A with
0 < P [A1] < 1 and a sub-σ-algebra H ⊂ A with A1 /∈ H are fixed. A0 = Ω \ A1

is the complementary event of A1 in Ω.

In the literature, P is also called ‘training distribution’ while Q is also referred
to as ‘test distribution’.

Interpretation. The elements ω of Ω are objects (or instances) with class
(label) and covariate (feature) attributes. ω ∈ A1 means that ω belongs to class
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1 (or the positive class). ω ∈ A0 means that ω belongs to class 0 (or the negative
class).

The σ-algebra A of events M ∈ A is a collection of subsets M of Ω with the
property that they can be assigned probabilities P [M ] and Q[M ] in a logically
consistent way. In the literature, thanks to their role of reflecting the available
information, σ-algebras are sometimes also called information set (Holzmann
and Eulert [15]). In the following, we use both terms exchangeably.

Binary classification problem. The sub-σ-algebra H ⊂ A contains the events
which are observable at the time when the class label of an object ω has to be
predicted. Since A1 /∈ H, then the class of an object may not yet be known. It
can only be predicted on the basis of the events H ∈ H which are assumed to
reflect the features of the object.

Dataset shift. We denote by HA the minimal sub-σ-algebra of A containing
both H and σ({A1}) = {∅, A1, A0, Ω}, i.e. HA = σ

(
H∪σ({A1})

)
. The σ-algebra

HA can be represented as

HA =
{
(A1 ∩H1) ∪ (A0 ∩H0) : H1, H0 ∈ H

}
. (1)

A standard assumption in machine learning is that source and target distribution
are the same, i.e. P = Q. The situation where P [M ] ̸= Q[M ] holds for at least
one M ∈ HA is called dataset shift (Moreno-Torres et al. [21], Definition 1).

Class prior estimation. Under dataset shift as defined above, typically the
prior probabilities P [A1] of the positive class in the source distribution (assumed
to be observable) and Q[A1] in the target distribution (assumed to be unknown
or known with delay only) are different. Class prior estimation in the binary
classification context of Assumption 1 is the task to estimate Q[A1], based on
observations from P (the entire source distribution) and from2 Q|H (the target
distribution of the covariates, also called features).

Notation. Denote by 1M the indicator function of an event M , i.e. 1M (ω) = 1
if ω ∈ M and 1M (ω) = 0 if ω /∈ M .

If X is a real-valued random variable on a probability space (Ω,F , P ) and
G ⊂ F is a sub-σ-algebra of F , then a random variable Ψ is called expectation
of X conditional on G (see, e.g., Definition 8.11 of Klenke [17]) if it has the
following two properties:
(i) Ψ is G-measurable.
(ii) For all events G ∈ G it holds that EP [1G X] = EP [1G Ψ ].

In the following, we use the usual shorthand notation Ψ = EP [X | G]. In the
case of an indicator function of an event F ∈ F , the conditional expectation
EP [1F | G] is called probability of F conditional on G and denoted by P [F | G].

2.2 Reconciliation of Machine Learning and Measure Theory
Settings

The setting of Assumption 1 is similar to a standard setting for binary classifi-
cation in the machine learning and pattern recognition literature (see e.g. Scott
[24] or Devroye et al. [7]):
2 Q|H stands for the measure Q with domain restricted to H.
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Typically a random vector (X,Y ) is studied, where X stands for the covari-
ates of an object and Y stands for its class. X is assumed to take values in a
feature space X (often X = Rd) while Y takes either the value 0 (or −1) or the
value 1 (for the positive class).

Standard formulation of the binary classification problem: Predict the value
of Y from X or make an informed decision on the occurence or non-occurrence
of the event Y = 1 despite only being able to observe the values of X.

This is captured by the measure-theoretic setting of Assumption 1: Assume
that X and Y map Ω into X and {0, 1} respectively. Choose H = σ(X) (the
smallest sub-σ-algebra of A such that X is measurable) and A1 = {Y = 1} =
{ω ∈ Ω : Y (ω) = 1}.

In many machine learning papers, the image (or pushforward) measure of
P (or Q if it refers to the target distribution) under the mapping (X,Y ) (see
Definition 1.98 of Klenke [17]) is denoted by p(x, y).

Often no probability space is specified but only samples (x1, y1), . . . , (xn, yn)
of realisations of (X,Y ) from the source distribution and xn+1, . . . , xn+m of real-
isations of X from the target distribution are assumed to be given. This context
is sometimes called ‘unsupervised domain adaptation’. Usually the samples are
assumed to have been generated through i.i.d. drawings from some population
distributions which may be identified with (Ω,A, P ) and (Ω,A, Q) as described
above.

2.3 More on Dataset Shift

Arguably, the two most important special cases of dataset shift are the following,
in the terms introduced in Assumption 1:

– Covariate shift (Moreno-Torres et al. [21], Definition 3; Storkey [25], Sec-
tion 5):
In this case, P |H ̸= Q|H holds but P [A1 |H] = Q[A1 |H], i.e. the posterior
probabilities under P and Q are the same but the covariate distributions
may be different.

– Prior probability shift (Moreno-Torres et al. [21], Definition 2; Storkey [25],
Section 6):
In this case, we have P [A1] ̸= Q[A1] but P [H |Ai] = Q[H |Ai], i ∈ {0, 1}, for
all H ∈ H, i.e. the class-conditional covariate source and target distributions
are the same but the unconditional class prior probabilities may be different.

Covariate shift and prior probability shift are similar in the sense that in both
cases one of the conditional distributions (of A1 conditional on H and of H
conditional on σ({A1}) respectively) are invariant between P and Q, and at
least one pair of the marginal distributions (of H and σ({A1}) respectively) are
different.

Thanks to the invariance assumptions on the conditional distributions in
prior probability shift and in covariate shift, these two types of dataset shift
are relatively easily amenable to mathematical treatment and, therefore, have
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received considerable attention by researchers. See e.g. Quiñonero-Candela et
al. [22] for covariate shift and Caelen [5] for prior probability shift, as well as the
references therein.

Note that the definition of dataset shift in Section 2.1 explicitly mentions
an associated set of covariates (features, represented through the sub-σ-algebra
H). In Section 3, we are going to look closer at the question whether or not
the covariate shift property is preserved in the relationship between source and
target distribution if the amount of information reflected by the set of covariates
is reduced. Formally, the question is phrased as follows:

Under Assumption 1, if G ⊂ H is another sub-σ-algebra of A, does then
P [A1 |H] = Q[A1 |H] imply P [A1 | G] = Q[A1 | G]?

3 Covariate Shift is Fragile

In theory, class prior estimation under covariate shift is straightforward. Assume
that the source distribution P and the target distribution Q are related through
covariate shift as defined in Section 2.3. Then by the law of total probability
and the fact that P [A1 |H] = Q[A1 |H], the prior class probability Q[A1] of the
positive class can be represented as

Q[A1] = EQ

[
P [A1 |H]

]
. (2)

As mentioned in Section 2.1, both P [A1 |H] and Q[A1 |H] typically are observ-
able at the time when Q[A1] is to be estimated such that Q[A1] in principle can
be calculated by means of (2). In the literature on class prior estimation, the
approach based on (2) is known as ‘probability estimation & average (P & A)’
(Bella et al. [2]) or ‘probabilistic classify & count (PCC)’ (González et al. [11]).

Unfortunately, (2) may not work well in practice:

– Card and Smith [6] observed that poor calibration of the estimates of the
posterior class probabilities would entail poor results for the PCC prior prob-
ability estimates.

– At a more fundamental level, Storkey ([25], Section 5.1) pointed out that
the probability masses of the covariates might be quite differently located
under the source and target distributions. As a consequence, an estimate of
P [A1 |H] made under the source distribution P might turn out to be rather
biased in those regions of the covariate space to which the target distribu-
tion Q attributes most mass. This problem can be mitigated by ‘importance
weighting’ which, however, may significantly complicate the estimation pro-
cedure.

Due to these issues, it is tempting to try to avoid the potentially difficult estima-
tion of the posterior class probability P [A1 |H] which is conditioned on the full
covariate information set H, by mimicking the simplification achieved through
the confusion matrix method (Saerens et al. [23]; also called ‘adjusted count’ in
Forman [8]) under prior probability shift.
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Adapting the confusion matrix method to covariate shift would work as fol-
lows: Fix some hard (i.e. taking either the value 0 or the value 1) classifier which
is a function of the covariates and therefore H-measurable. We can identify the
classifier with an event H ∈ H which specifies the range of the covariates on
which a positive class label is predicted. If the source distribution P and the
target distribution Q are related by covariate shift for the simple information
set G = {∅, H,Ω \H,Ω} ⊂ H then the following special case of (2) applies:

Q[A1]
?
= Q[H]P [A1 |H] + (1−Q[H])P [A1 | (Ω \H)]. (3)

Eq. (3) appears to suggest a simple and efficient approach to class prior esti-
mation under covariate shift which avoids the potentially difficult problem to
estimate P [A1 |H] for the more complex information set H.

But can we always find a classifier (observable event) H such that the fol-
lowing condition for covariate shift with respect to G = {∅, H,Ω \H,Ω} and, as
a consequence, also (3) hold true?

Q[A1 |H] = P [A1 |H] and Q[A1 | (Ω \H)] = P [A1 | (Ω \H)]. (4)

The question mark in (3) is meant to suggest that the answer is ‘no’. This is
illustrated with the following example.

Example 1. We revisit the binormal model with equal variances as an example
that fits into the setting of Assumption 1. The source distribution P is defined by

specifying the marginal distribution of Y =

{
1, on A1

0, on A0

, with P[A1] = p ∈ (0, 1),

and defining the class-conditional distributions of the covariate X given Y as
normal distributions with equal variances:

P [X ∈ · |A1] = N (ν, σ2) and P [X ∈ · |A0] = N (µ, σ2). (5)

In (5), we assume that µ < ν and σ > 0. The unconditional distribution of X
then is a mixture with weight p of the two normal distributions.

The posterior class probability P [A1 |H] for H = σ(X) in this setting is
given by P [A1 |H] =

(
1 + exp(aX + b)

)−1, with a = µ−ν
σ2 < 0 and b = ν2−µ2

2σ2 +

log
(

1−p
p

)
. For the target distribution Q, we only specify the marginal distribu-

tion of the covariate X as another normal distribution with mean EQ[X] = τ
and variance varQ[X] = σ2+p (1−p) (µ−ν)2 such that the variance of X under
Q matches the variance of X under P .
Under covariate shift, then by (2) it holds for the target prior class probability
Q[A1] that

Q[A1] = EQ

[(
1 + exp(aX + b)

)−1
]
. (6)

To illustrate the effect of simplification as suggested by (3), we define a family
of classifiers Hx = {X > x} for thresholds x ∈ R.
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Fig. 1. Illustration of Example 1, with parameters µ = 0, ν = 1.5, σ = 1, p = 0.3
and τ = 2.5 for the normal distributions and the mixture parameter p of the source
distribution. Simplification of the covariate information set causes the covariate shift
property to be lost as demonstrated by the failure to hit the true target prior Q[A1]
with the simplified estimates according to (3).

Figure 1 shows the true target prior class probability Q[A1] according to (6)
(constant, dashed line) and, for moving threshold x, ‘pseudo’ priors according to
(3) (solid curve). As the pseudo priors do not match the true prior, the covariate
shift property (4) must be violated for all information sets

Gx = {∅, Hx, Ω \Hx, Ω} ⊂ H = σ(X).

This is due to the loss of information compared to the full information set H
associated with the covariate X. ⊓⊔

On the basis of Example 1, we can conclude that under Assumption 1, if G ⊂ H
is another sub-σ-algebra of A, then P [A1 |H] = Q[A1 |H] does not always imply
P [A1 | G] = Q[A1 | G], i.e. the covariate property may get lost if the amount of
information represented by the covariates is reduced.

Information loss and subsequent loss of the covariate shift property can also
be the consequence of deploying ‘domain-invariant representations’ (Johansson
et al. [16], Section 4.1).

4 Covariate Shift and Statistical Sufficiency

In the following we will identify sufficient and necessary conditions for simpli-
fications of covariate shift like (4) to hold. We will see that indeed it is almost
impossible for (4) to be true if the information set H of Assumption 1 is large
compared to the information set G on which (4) is based.
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Definition 1. Under Assumption 1, denote by CA(P,H) the set of all proba-
bility measures Q on (Ω,A) such that P and Q are related by covariate shift,
i.e.

CA(P,H) =
{
Q probability measure on (Ω,A) : P [A1 |H] = Q[A1 |H]

}
.

Denote by C∗
A(P,H) the set of all probability measures Q on (Ω,A) such that P

and Q are related by covariate shift and Q is absolutely continuous3 with respect
to P on H, i.e.

C∗
A(P,H) =

{
Q ∈ CA(P,H) : Q|H ≪ P |H

}
.

The following example illustrates the definition of CA(P,H) in some simple spe-
cial cases.

Example 2. Consider the following three special cases for H:

(i) If A1 ∈ H then we have that H ⊃ σ({A}) and

CA(P,H) = {All probability measures on (Ω,A)},

because in this case it holds that P [A1 |H] = 1A1 = Q[A1 |H].
(ii) If A1 and H are independent under P and Q, it follows that

P [A1 |H] = P [A1] and Q[A1 |H] = Q[A1].

Hence we have Q ∈ CA(P,H) if and only if P [A1] = Q[A1].
(iii) If H = {∅, Ω} we are in a special case of (ii). This implies

CA(P,H) =
{
Q probability measure on (Ω,A) : P [A1] = Q[A1]

}
. ⊓⊔

Note that in case (i) of Example 2, P [A1] ̸= Q[A1] is possible.

Remark 1. The set CA(P,H) contains all probability measures Q with the prop-
erty that there is an event ΩQ ∈ H such that Q[ΩQ] = 1 and P [ΩQ] = 0, i.e.
Q and P are mutually singular. Although in this case there is an H-measurable
random variable Ψ that is both a version of P [A1 |H] and of Q[A1 |H], it is
impossible to completely learn Ψ from the source distribution P because no
instances ω ∈ ΩQ can be sampled under P due to P [ΩQ] = 0. Hence the distri-
butions Q which are singular to P are not of great theoretical interest. CA(P,H)
may also contain probability measures Q with both absolutely continuous and
singular components (with respect to P ). In this case, it is not possible to com-
pletely learn Ψ from P either. Therefore, in the following the focus is on the
distributions Q that are absolutely continuous with respect to P . ⊓⊔
3 Q is absolutely continuous with respect to P on H (expressed symbolically as
Q|H ≪ P |H) if P [N ] = 0 for N ∈ H implies Q[N ] = 0. By the Radon-Nikodym the-
orem (Klenke [17], Corollary 7.34) then there exists an H-measurable non-negative
function h such that Q[H] = EP [h1H ] for all H ∈ H. The function h is called density
of Q with respect to P .
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At first glance, one might guess that the tower property of conditional ex-
pectations (Klenke [17], Theorem 8.14) implies CA(P,H) ⊂ CA(P,G) if G is a
sub-σ-algebra of H. However, the following example shows that this is not true
in general.

Example 3. Assume that H = σ(F ∪ G) for sub-σ-algebras F , G of A, with
A1 /∈ H. Assume further that G and σ

(
σ({A1}) ∪ F

)
are independent under P

and Q. Then it follows that P [A1 |H] = P [A1 | F ] and Q[A1 |H] = Q[A1 | F ].
Hence we have Q ∈ CA(P,H) if and only if Q ∈ CA(P,F). By case (ii)

of Example 2, we have Q ∈ CA(P,G) if and only if P [A1] = Q[A1]. Hence, if
there is a Q ∈ CA(P,F) with P [A1] ̸= Q[A1], we have an example showing that
CA(P,H) ̸⊂ CA(P,G) may happen despite G ⊂ H. ⊓⊔

Example 3 demonstrates that the covariate shift property may get lost if com-
ponents of the covariates are dropped. We continue with presenting sufficient
criteria for covariate shift (Lemma 1) and inheritance of covariate shift (Propo-
sition 1 below).

Lemma 1. Under Assumption 1, assume further that Q is absolutely continuous
with respect to P on HA and that there is an H-measurable density h of Q|HA

with respect to P |HA. Then it follows that Q ∈ C∗
A(P,H).

Proof. Fix any H ∈ H. Then we obtain that

EQ

[
1H P [A1 |H]

]
= EP

[
h1H P [A1 |H]

]
= EP

[
EP [h1A1∩H |H]

]
= EP [h1A1∩H ] = Q[A1 ∩H].

This implies P [A1 |H] = Q[A1 |H]. ⊓⊔

We are now going to point out connections between the notion of covariate
shift and the following two concepts that have been considered in the literature
in other contexts:

– Covariate shift with posterior drift (Scott [24]): Under Assumption 1, dataset
shift between P and Q is more specifically called covariate shift with posterior
drift if there is an increasing function f : [0, 1] → R such that it holds that

Q[A1 |H] = f
(
P [A1 |H]

)
. (7)

– Sufficiency [7,1,26]: Under Assumption 1, if G ⊂ H is another sub-σ-algebra
of A then G is called (statistically) sufficient for H with respect to A1 if
P [A1 | G] = P [A1 |H] holds true.

Proposition 1. Under Assumption 1, let P and Q be related by covariate shift
with posterior drift such that (7) holds for an increasing function f . Assume that
G is sufficient for H with respect to A1 under the source distribution P and that
Q is absolutely continuous with respect to P on H. Then Q[A1 | G] = f

(
P [A1 | G]

)
follows.
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Proof. Let h ≥ 0 be a density of Q with respect to P on H. Then, in particular,
h is H-measurable. For any G ∈ G, we therefore obtain

EQ

[
1G f

(
P [A1 | G]

)]
= EP

[
h1G f

(
P [A1 | G]

)]
= EP

[
h1G f

(
P [A1 |H]

)]
= EQ

[
1G f

(
P [A1 |H]

)]
= EQ

[
1G Q[A1 |H]

]
= Q[A1 ∩G].

This implies the assertion. ⊓⊔

Based on Lemma 1 and Proposition 1, we are in a position to prove the main
result of this paper. It states that an information subset inherits the covariate
shift property from its information superset for all absolutely continuous target
distributions if and only if the subset is statistically sufficient for the superset
with respect to the positive class label under the source distribution.

Theorem 1. Under Assumption 1, let G ⊂ H be another sub-σ-algebra of A.
Then G is sufficient for H with respect to A1 under the source distribution P if
and only if C∗

A(P,H) ⊂ C∗
A(P,G) holds true.

Proof. The ‘only if’ part of the assertion is implied by Proposition 1. By the
definition of conditional probability, for the ‘if’ part we have to show that for
each H ∈ H it holds that P [A1 ∩H] = EP

[
1H P [A1 | G]

]
. This is obvious for H

with P [H] = 0. Hence fix an event H ∈ H and assume P [H] > 0.
Define the probability measure QH on (Ω,A) as P conditional on H, i.e.

QH [M ] = P [M |H] =
P [M ∩H]

P [H]
, for all M ∈ A.

This QH is absolutely continuous with respect to P on A ⊃ HA, with H-
measurable density 1H

P [H] . Hence, by Lemma 1 we obtain QH ∈ C∗
A(P,H). By as-

sumption, this implies QH ∈ C∗
A(P,G), and in particular P [A1 | G] = QH [A1 | G].

From this, it follows that

EP

[
1H P [A1 | G]

]
= P [H]EQH

[
P [A1 | G]

]
= P [H]EQH

[
QH [A1 | G]

]
= P [H]QH [A1] = P [A1 ∩H].

This completes the proof. ⊓⊔

5 Discussion of Theorem 1

Can sufficiency of G for H with respect to A1 be characterised in other ways
than just requiring P [A1 | G] = P [A1 |H]?

– As observed by Devroye et al. [7] (Section 32), if G = σ(T ) is generated by
some random variable T , then G is sufficient for H if and only if there exists
a measurable function g such that P [A1 |H] = g(T ).
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– Primary examples for such T are transformations T = f(P [A1 |H]) of the
posterior class probability which may emerge as scoring classifiers optimising
the area under the Receiver Operating Characteristic (ROC) or the area
under the Brier curve (Tasche [26], Section 5.3). The process to reengineer
P [A1 |H] from T is called ‘calibration’ (see Kull et al. [18] and the references
therein).

Johansson et al. [16] wrote in Section 4.1: “One interpretation . . . is that co-
variate shift ([their] Assumption 1) need not hold with respect to the representa-
tion Z = ϕ(X), even if it does with respect to X. With ϕ−1(z) = {x : ϕ(x) = z},

pt(Y | z) =

∫
x∈ϕ−1(z)

pt(Y |x) pt(x) dx∫
x∈ϕ−1(z)

pt(x) dx
̸= ps(Y | z). (8)

Equality holds for general ps, pt only if ϕ is invertible.” According to Section 2
of Johansson et al., ps and pt stand for the densities of the covariate X on the
‘source domain’ and ‘target domain’ respectively. By Theorem 1, with G = σ(Z),
actually covariate shift holds under the transformation ϕ if G is sufficient for
H = σ(X) (in the setting of Johansson et al.). Sufficiency of G is implied by
invertibility of ϕ. Hence, Theorem 1 is a more general statement than the one
by Johansson et al. [16].4

Under Assumption 1, a mapping (representation) T : (Ω,H) → (ΩT ,HT )
which is HT -H-measurable is said to have ‘invariant components’ (Gong et
al. [10]) if its distributions under the source and target distributions are the
same, i.e. if

P [T ∈ M ] = Q[T ∈ M ], for all M ∈ HT . (9)

As H reflects the covariates, T can be interpreted as a transformation of the
covariates that makes their distributions undistinguishable under the source and
target distributions. As Gong et al. [10] noted, (9) alone does not imply that the
posterior probabilities under source and target distributions are the same or at
least similar. He et al. [12] therefore defined the notion of ‘domain invariance’
by

P [A1 |σ(T )] = P [A1 |H], Q[A1 |σ(T )] = Q[A1 |H], and (10a)
P [Ai ∩ {T ∈ M}] = Q[Ai ∩ {T ∈ M}], i ∈ {0, 1},M ∈ HT . (10b)

He et al. [12] then observed that (10a) and (10b) together imply covariate shift
with respect to the information set H, i.e. P [A1 |H] = Q[A1 |H].5 In a sense, the
observation by He et al. can be considered complementary to Theorem 1 because

4 The derivation of (8) in [16] is somewhat sloppy. In Section 2.3 of [16], the assumption
is made for Z = ϕ(X) that ‘p(Z)’ is a density. This implies

∫
x∈ϕ−1(z)

pt(x) dx = 0

which means that the denominator of the fraction in (8) is zero.
5 Actually, (10b) implies covariate shift with respect to σ(T ). From this, together with

(10a), follows covariate shift with respect to H. Hence the assumption of (10b) could
be replaced by the weaker assumption of having covariate shift with respect to σ(T ).
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Theorem 1 is about passing on covariate shift from a larger information set to
a smaller one while the observation by He et al. is a statement about covariate
shift on a smaller information set implying covariate shift on a larger one.

In unsupervised domain adaptation, the case of source and target distribu-
tions where part or all of the support of the target distribution is not covered
by the support of the source distribution is of great interest [3,16]. In that case,
the target distribution is at least partially singular to the source distribution.
Has Theorem 1 any relevance for this situation? Arguably, representations of
the covariates which do not work even in the plain-vanilla environment of target
distributions which are absolutely continuous with respect to the source distri-
bution, are rather questionable. Hence Theorem 1 may be considered useful for
providing a kind of ‘fatal flaw’ test for representations.

There are situations when covariate shift for a given sub-σ-algebra G can
be forced. The most important example of such a situation is sample selection
(Hein [13], ‘Class-Conditional Independent Selection’). Theorem 1 may not be
relevant then.

However, if the rationale for the assumption of covariate shift is based on
causality considerations (like e.g. in Storkey [25]), the set of covariates associated
to the information set H in the definition of covariate shift might turn out to
be quite large, rendering tedious the task of estimating the posterior P [A1 |H].
Theorem 1 provides the condition under which the size (or dimension) of the set
of covariates may be reduced without destroying the invariance of the posterior
class probabilities between the source and arbitrary target distributions. This
condition does not require any special properties of the target distributions Q
but the harmless requirement of being absolutely continuous with respect to the
source distribution P . Note however that Theorem 1 leaves open the possibility
that the covariate shift property is inherited by a non-sufficient sub-σ-algebra
for some (but not all) specific target distributions.

If the set of covariates generating H contains at least one real-valued covari-
ate which has a Lebesgue-density and is not independent of A1, then there is
no sufficient four-elements sub-σ-algebra G such that (4) holds. For sufficieny
would imply that the range of the posterior class probability P [A1 |H] consists
of two values only – which is wrong for probabilities conditional on continuous
random variables. Hence by Theorem 1 no radically simple approach to class
prior estimation like (3) that would be applicable under all possible shifts of the
covariate distribution is available in this case.

6 Probing for class prior estimation under covariate shift

To the author’s best knowledge, there is basically one approach to class prior
estimation on the target dataset under covariate shift: Estimate the posterior
probability of the positive class as a function of the covariates on the source
dataset and then calculate its average on the target dataset, see (2). Card and
Smith [6] discuss two variants of this approach, one of them with and the other
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without proper calibration of the posterior probabilities – hence the concept in
principle is the same in both variants.

Under prior probability shift, the simple ‘confusion matrix method’ can be
deployed to achieve consistent class prior estimates [9,23]. As seen in Sections 3
and 4, no similarly simple approach based on merely making use of one classifier’s
output works under covariate shift. However, averaging the counting results of
a large ensemble of classifiers trained for a variety of cost-sensitive classification
problems would work (‘probing’: Langford and Zadrozny [19]; Tasche [26]).

Sketch of class prior estimation with probing. Define the cost-sensitive
(weighted) classification loss (with 0 ≤ t ≤ 1) in the setting of Assumption 1:

L(H, t) = (1− t)P [A1 ∩ (Ω \H)] + t P [A0 ∩H], H ∈ H.

The probing algorithm adapted to class prior estimation then can be described
as follows:

1) Choose an appropriately ‘dense’ set 0 = t0 < t1 < t2 < . . . < tn < 1.
2) For each ti, i = 1, . . . , n, find – with possibly different approaches – a nearly

optimal minimising classifier6 H(ti) of L(H, ti), H ∈ H.
3) Let Z =

∑n
i=1(ti − ti−1)1H(ti).

4) For all j with L({Z > tj}, tj) < L(H(tj), tj), replace H(tj) with {Z > tj}.
5) Repeat steps 3) and 4) until L({Z > tj}, tj) ≥ L(H(tj), tj) for all j.
6) Calculate q̂ =

∑n
i=1(ti− ti−1)Q[H(ti)] as estimate of the positive class prior

probability Q[A1] under the target distribution.

7 Conclusions

We have shown that covariate shift is a fragile notion, in the sense that the
invariance of the posterior class probabilities between source and target distri-
butions may be lost if the set of covariates on which the posterior probabilities
are conditioned is diminished. This observation implies that under covariate shift
simple estimators of the target prior class probabilities are infeasible if they are
designed in the style of the confusion matrix method (adjusted count) which is
a popular quantifier under prior probability shift.

Valid methods for class prior estimation under covariate shift are the careful
estimation of the posterior class probabilities conditioned on the full set or a
sufficient subset of the covariates, combined with subsequently averaging them
on the target dataset (probabilistic classify & count). The application of prob-
ing as described in Section 6 could also prove useful for class prior estimation
under covariate shift. So far, probing for class prior estimation has not yet been
thoroughly tested. This could be a subject for future research.

6 As before, we identify a set with its indicator function that gives the value 1 on the
set and the value 0 on its complement.
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Abstract. Product catalogs represent the backbone of e-commerce web-
sites. Given these catalogs’ constant evolution, we need to closely monitor
the quality of their product information. Identifying defective product
information, however, often requires human auditing, which makes cat-
alog monitoring expensive. In this article, we investigate approaches for
tracking weighted rates over time, here defined as the fraction of cus-
tomer attention that goes to items with a particular defect. We focus
on these metrics, given that to improve customer trust we need to min-
imize their exposure to listings with defective information. We assume
that the gold standard for detecting defects comes from human auditors,
but to avoid collecting audits at each point in time, we leverage existing
machine learning classifiers. However, simply replacing human auditor
decisions with automated predictions generally leads to large biases in
the estimated weighted rates. We instead leverage classifiers while obtain-
ing approximately unbiased and low variance estimators of the weighted
rate of interest. We rely on being able to evaluate the quality of the
classifier using audits at a baseline time, and then extrapolate its perfor-
mance to the target times. We perform extensive simulation studies to
stress-test our proposed estimation approaches under a variety of scenar-
ios representative of our use cases. Our proposed estimation approach is
related to the task of quantification in machine learning, and so we draw
connections throughout the document.

Keywords: Quantification · Prior probability shift · Label shift.

1 Introduction

Product catalogs are the backbone of e-commerce websites, as they provide the
information that is presented to customers. Maintaining customer trust requires
identifying defects in product information, which usually needs human inspec-
tion for detection. For instance, product information on Amazon.com is consol-
idated from contributions by individual sellers [1]. These consolidated product
attributes frequently contain defects, such as inconsistencies or erroneous values
due to honest mistakes by sellers, system errors, and bad actors who intention-
ally introduce corrupted information. This causes detrimental performance of a
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variety of customer-facing applications; for instance, displaying such imperfect
information to customers erodes their trust.

Given the scale of e-commerce product catalogs, it is nearly impossible to
manually inspect all of their information. An important task in ensuring high
catalog quality involves monitoring quality metrics. This monitoring is often done
through careful human inspection of random samples of product entries collected
periodically. Even with carefully designed samples, when business goals require
tight control of these metrics at high frequency, monitoring through human au-
diting becomes extremely expensive. This creates the need for automated proce-
dures that allow to monitor quality metrics while maintaining strong guarantees
on their accuracy.

In this article, we investigate a methodology for estimating weighted rates
in a semi-automated way. The reason for using weighted rates in our use cases
is that not all products are equally important for customers. Given a signal
of customer engagement with each product, we are interested in monitoring the
fraction of such signal among products with a defect. For instance, we might want
to track the fraction of customer visits to product pages that contain erroneous
information; from a customer-centric point of view, this is a more important
metric to monitor and aim to reduce than the simple fraction of catalog products
with erroneous information.

For our use cases there typically exist machine learning classifiers in produc-
tion for detecting defects. These classifiers tend to be complex and are trained
on audited data collected over time. Given that retraining such classifiers for the
sake of metric measurement is burdensome and not cost-efficient, we propose to
use them in their existing form to predict defects. However, it is well known that
simply replacing human auditor decisions with classifier predictions generally
leads to large biases in the estimated metrics [9, 12, 6, 7]. To leverage existing
classifiers while obtaining approximately unbiased and low variance estimators,
we rely on being able to evaluate the quality of the classifier using audits at a
baseline time. We then assume that the performance of the classifier in terms
of its true and false positive rates can be extrapolated to the target time. Our
methodology constitutes an extension of techniques proposed for the machine
learning task of quantification, reviewed next.

1.1 Quantification

Forman [7] introduced the quantification task to address the following problem:
how can we use labeled training data from a baseline population to estimate the
proportion of a class in a target population where we only have unlabeled data.
This task is related to the fundamental problem of estimating a proportion using
an imperfect diagnostic tool, studied earlier in epidemiology [9, 12], in the con-
text of mechanical sorting devices [11], among others [10]. A seemingly obvious
solution to the quantification task is to train a classifier on the labeled data, use
it to predict the class for the unlabeled data, and then simply summarize the
proportion of class predictions. This approach, known as classify and count [6,
7], is known to perform poorly, as it is generally guaranteed to be biased, except
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for a few restrictive conditions [8, 10]. Forman [6, 7] recognized this, and pro-
posed alternative approaches for estimation, including an adjusted classify and
count (ACC) approach that is guaranteed to work well under certain conditions;
we will refer back to this method later in this article. Interestingly, the ACC
approach had also been derived earlier by other authors [9, 12, 11], which shows
the ubiquity of the quantification problem.

Forman [7, 8] also introduced cost-quantification, as the task of estimating
total costs for each class using class predictions by imperfect classifiers. This
task seems to have received less attention in the literature; for instance, a 2017
review [10] only included the proposed solutions by Forman [7] in 2006, and
to the best of our knowledge no further advances have been proposed for cost-
quantification since then, despite many advances for the simpler quantification
task [13–15]. The automated estimation of weighted rates, as in this paper, is
closely related to cost-quantification, given that if we can estimate the total of
a class, we can also estimate the fraction it represents with respect to the total
cost across classes. The methods that we propose in this article therefore also
contribute to cost-quantification solutions. Our contribution consists in showing
that an analog of the ACC approach is valid for estimating weighted rates under
two assumptions that allow to extrapolate and simplify the true and false pos-
itive rates of the classifier. We also investigate approaches for dealing with the
classifiers’ thresholds that lead to weighted rate estimators with low variance,
and compare approaches for constructing confidence intervals.

2 Methodology

We shall think of a product catalog at a time t as a collection of features on
Nt products. A product i has a known non-negative measure of importance for
customers, or weight, at time t denoted Wit. Let Yit denote the defect indicator
for product i at time t, 1 if defective, 0 otherwise. This indicator Yit is unknown
and determining its true value requires human auditing.

Estimation target: Formally, our goal is to estimate the weighted rate Rt

at a time t:

Rt =
NtX

i=1

WitYit

. NtX

i=1

Wit. (1)

We assume that we do not have audited data from the catalog at time t,
and so we rely on the existence of a classifier to predict the status Yit of a
product i. Let h(·) denote a generic classifier that takes in a feature vector Xit

of product i at time t, and outputs a predicted status Ŷit for product i, that
is, Ŷit = h(Xit) 2 {0, 1}. The classifier h(·), for instance, can be obtained from
thresholding a score at a cutpoint c, say h(Xit) = I[g(Xit) > c], where I(·) is the
indicator function and g(·) may represent a score obtained from a model or from
some complicated procedure. For now we assume that h(·) is fixed, but later we
compare approaches to handle classification thresholds.

We also rely on having an audited sample at a baseline time, which we use to
estimate the true and false positive rates of the classifier at that baseline time. In
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practice, we implement measurement cycles that start with collection of audits
to evaluate the performance of the classifier, and then use that information to
produce automated estimates for the remainder of the cycle; see Appendix A at
https://bit.ly/3wJK5Mj for a more detailed description.

2.1 The Proposed Weighted Rate Estimator

To derive the proposed estimator of the weighted rate, we first do a slight rewrit-
ing of the estimation target. To this end, let (W,Y, Ŷ ) be a random vector that
takes with probability 1/Nt each of the catalog values at time t, {(Wit, Yit, Ŷit)}Nt

i=1.
With this formulation, our estimation target can be equivalently written as

Rt =

PNt

i=1 WitYitPNt

i=1 Wit

=
(1/Nt)

PNt

i=1 WitYit

(1/Nt)
PNt

i=1 Wit

=
Et(WY )

Et(W )
,

where Et(·) denotes the expected value using the values of the catalog at time t.
The quantity that we would obtain from simply using the predictions Ŷit

instead of the true values Yit is here denoted as Rraw
t , and it is given by

Rraw
t =

PNt

i=1 WitŶitPNt

i=1 Wit

=
Et(WŶ )

Et(W )
,

which generally will differ from the target Rt. Our strategy to derive the pro-
posed weighted rate estimator requires connecting Rt and Rraw

t through the
classification performance of h(·). First, note that we assume the weights Wit to
be known, and therefore Et(W ) to be known, allowing us to focus on connecting
Et(WY ) with Et(WŶ ). Note that, by the law of total expectation, we can write

Et(WY ) = Et[W Pt(Y = 1 | W )], (2)

Et(WŶ ) = Et[W Pt(Ŷ = 1 | W )].

Also, by the law of total probability,

Pt(Ŷ = 1 | W ) =p1|1,t(W ) Pt(Y = 1 | W ) + p1|0,t(W ) [1� Pt(Y = 1 | W )],
(3)

where p1|a,t(W ) = Pt(Ŷ = 1 | Y = a,W ) denotes the true positive rate (TPR)
for a = 1, and the false positive rate (FPR) for a = 0, as a function of the
weights at time t. From equation (3), we can establish the relationship

Pt(Y = 1 | W ) =
Pt(Ŷ = 1 | W )� p1|0,t(W )

p1|1,t(W )� p1|0,t(W )
, (4)

which resembles the basis for the ACC estimator of simple proportions [6], al-
though here it appears conditional on a value W of the weights. Replacing equa-
tion (4) into (2) above, we obtain the identity

Et(WY ) = Et

"
W

Pt(Ŷ = 1 | W )� p1|0,t(W )

p1|1,t(W )� p1|0,t(W )

#
. (5)
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Creating an estimator based on this expression is not straightforward. Firstly,
estimating the TPR and FPR functions, p1|1,t(W ) and p1|0,t(W ), for the catalog
at time t would require collecting audited data at time t, which defeats the
purpose of automating the estimation approach. The validity of our proposed
estimator therefore relies on being able to extrapolate the performance of the
classifier from a baseline time to the target time t.

Extrapolation assumption (EA): The TPR and FPR at the time of in-
terest t are the same as at the baseline time.

Additionally, although not strictly required, we also work under an extra
assumption to favor a simple estimator.

Simplifying assumption (SA): The TPR and FPR are constant as a func-
tion of the weights.

We discuss the plausibility of these assumptions in detail in Section 2.2. The
EA can be written as P0(Ŷ = 1 | Y = a,W ) = Pt(Ŷ = 1 | Y = a,W ), for
a = 0, 1. Under the EA, we can ignore the time subindex and simply write
p1|a(W ) = P (Ŷ = 1 | Y = a,W ), for a = 0, 1. Then, the SA can be written
as p1|a(W ) = p1|a(W

0) for any two values of the weights W and W 0, where
a = 0, 1. Under the SA we can simplify the notation and write p1|1 = p1|1(W )
and p1|0 = p1|0(W ).

Given the EA and SA, expression (5) simplifies as

Et(WY ) = Et

"
W

Pt(Ŷ = 1 | W )� p1|0
p1|1 � p1|0

#
=

Et(WŶ )� p1|0Et(W )

p1|1 � p1|0
,

and we obtain

Rt =
Et(WY )

Et(W )
=

Et(WŶ )/Et(W )� p1|0
p1|1 � p1|0

=
Rraw

t � p1|0
p1|1 � p1|0

. (6)

Interestingly, this has the same form as the ACC estimator for simple proportions
[9, 12, 6, 7], except that here Rt and Rraw

t are weighted rates.
Given expression (6), we propose to estimate the weighted rate as

R̂t =
R̂raw

t � p̂1|0
p̂1|1 � p̂1|0

, (7)

where R̂raw
t is estimated from a very large random sample from the catalog at

time t, or preferably R̂raw
t is taken exactly as Rraw

t , if computational resources
allow. The estimated TPR and FPR, p̂1|1 and p̂1|0, are obtained from the au-
dited data from baseline. The appropriate estimators for each of these quantities
depend on the sampling scheme [16], but as long as they are consistent, the con-
sistency of R̂t is guaranteed by the continuous mapping theorem [19] because
the true value Rt = (Rraw

t � p1|0)/(p1|1 � p1|0) is a continuous function of Rraw
t ,

p1|1, and p1|0. This argument serves as the proof of the following result.

Theorem 1 (statistical consistency). Under EA and SA, assume that R̂raw
t ,

p̂1|1, and p̂1|0 are statistically consistent estimators for Rraw
t , the TPR, and the
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FPR, respectively. Then, the proposed estimator R̂t is statistically consistent for
the target rate Rt.

Statistical consistency of our estimator is an important property, as it guar-
antees that as the sample sizes increase, the estimator converges in probability
to the true value that we want to estimate [19]. In particular, it implies that
our estimator is approximately unbiased for large sample sizes. Working with
statistically consistent estimators R̂raw

t , p̂1|1, and p̂1|0 is relatively standard; for
instance, with simple random samples S0 of size n0 at baseline, and St of size
nt � n0 at time t, the following estimators are consistent:

R̂raw
t =

X

i2St

WitŶit

. X

i2St

Wit; p̂1|a =
X

i2S0

Ŷi0I(Yi0 = a)
. X

i2S0

I(Yi0 = a), a = 0, 1.

More intricate estimators will be needed under more complex sampling schemes,
but those details go beyond the scope of this paper. The proposed estimator R̂t

heavily relies on the assumptions EA and SA, which we discuss next.

2.2 Discussion of Assumptions

To examine the plausibility of the assumptions EA and SA, let us expand the
TPR and FPR in terms of the classifier h(·) and the product’s features X,

Pt(Ŷ = 1 | Y = a,W ) =

Z
Pt(Ŷ = 1 | x, Y = a,W )ft(x | Y = a,W )dx,

where Pt(Ŷ = 1 | x, Y = a,W ) = I[h(x) = 1] since the automated procedure
h(·) only uses the features X as input, and ft(x | Y = a,W ) represents the
distribution of the features X at time t among products with Y = a and weight
W . We can see that Pt(Ŷ = 1 | Y = a,W ) might depend on the time t and the
product weight W only if the distribution of the features X changes from time 0
to t and for different values of the product’s weight W among the two groups of
products with and without the characteristic of interest. This leads to sufficient
conditions for the assumptions above.

Sufficient condition for extrapolation assumption: The distributions
of the features X among products with and without the characteristic of interest,
and for the different values of importance, are the same at time 0 and at time t,
that is, ft(x | Y = a,W ) = f0(x | Y = a,W ).

This is a conditional version of what is sometimes referred to as the prior
probability shift assumption [5, 18]. To examine this sufficient condition, let us
say that Y = 1 indicates that a product contains a defect in a specific attribute.
In such case, this condition says that the distribution of the features used to
predict defects, among products that are defective Y = 1 and that have a specific
importance W , is the same at baseline and at time t. In other words, we expect
to see the same indications of defects at baseline and at time t among defective
products that have the same importance. A similar interpretation would apply
among non-defective products.
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Sufficient condition for simplifying assumption: The distributions of
the features X among products with and without the characteristic of interest
Y are the same regardless of the importance of the products, that is, f(x | Y =
a,W ) = f(x | Y = a).

Continuing with the example of defects, this condition says that the distribu-
tion of the features used to predict defects among defective products is the same
regardless of how popular the product is. Namely, we expect to see the same in-
dicators of defects among defective products, regardless of how important they
are. A similar interpretation would apply among non-defective products.

The EA is a fundamental assumption that allows us to borrow information
from the audited sample at baseline to obtain an estimate for follow-up times.
We need this assumption to extrapolate the performance of the classifier h(·).
On the other hand, the SA is not strictly necessary, as in principle we can use
the audited data at baseline to build models of the probabilities Pt(Ŷ = 1 | Y =
a,W ) and obtain a more flexible estimator; we discuss this further in Section 4.
Nevertheless, the SA allows us to obtain an initial simple estimator on which we
can build and improve upon.

2.3 Dealing with Classifier Thresholds

The proposed estimator (7) of the weighted rate was derived assuming that
the classifier h(·) is fixed, however, the classifier might be obtained as h(x) =
I[g(x) > c], that is, it depends on thresholding a score g(x). We study two ap-
proaches for handling the cutpoint c, although we assume that the score function
g(x) is fixed, as in our use cases where it is already trained at the baseline time.

Variance Minimization Given a threshold c, we can use the classifier h(x) =
I[g(x) > c] to obtain an estimate R̂t = (R̂raw

t � p̂1|0)/(p̂1|1 � p̂1|0), where each
of R̂raw

t , p̂1|1 and p̂1|0 are implicitly functions of the threshold c. Given the
classifier h(x), we can obtain an analytical approximation of the variance of R̂t,
as shown in Appendix B at https://bit.ly/3wJK5Mj. We denote the estimated
variance given threshold c as Vc. The variance minimization approach simply
takes a grid of u threshold values, c1, . . . , cu, computes the estimated variance
given each threshold, V1, . . . , Vu, and selects the threshold c⇤ that minimizes
the estimated variance. The final weighted rate estimator is computed from the
classifier h(x) = I[g(x) > c⇤].

Variance minimization has been implemented for quantification before, for
instance [17] used it within a mixture model approach to quantification.

Median Sweep Forman [7] studied different strategies for choosing classifica-
tion thresholds to obtain reliable estimation of the prevalence of a class, and
found that the approach known as median sweep was the best in terms of lead-
ing to the lowest bias. These results were replicated recently [15], and therefore
we implement median sweep along with our proposed weighted rate estimator.
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Median sweep consists in computing the estimates R̂t,1, . . . , R̂t,u according to
the threshold values in a grid c1, . . . , cu, and returning the median estimate. This
approach is theoretically justified, given that each of the estimators R̂t,1, . . . , R̂t,u

corresponding to a fixed grid c1, . . . , cu is guaranteed to be statistically consis-
tent, as shown in Theorem 1, and thereby asymptotically unbiased, as long as
R̂raw

t , p̂1|0 and p̂1|1 are estimated in a statistically consistent way. Under such
reasonable conditions, the median of these individual estimators inherits the
statistical consistency and asymptotic unbiasedness.

We also explore the performance of a trimmed median sweep approach by
Forman [7], who proposed to use median sweep after discarding estimates from
thresholds that lead to |p̂1|1 � p̂1|0| < 0.25, in order to provide more stability to
the ACC estimator.

2.4 Confidence Intervals

We also propose approaches to build confidence intervals, using analytical meth-
ods and the bootstrap [4].

Analytic Confidence Interval Given an estimator R̂t = (R̂raw
t � p̂1|0)/(p̂1|1�

p̂1|0) obtained from a specific classifier h(·), for instance obtained from a specific
threshold, we can use the analytical variance formula derived in Appendix B
(at https://bit.ly/3wJK5Mj) to obtain an estimate of the variance cvar(R̂t),
and form a confidence interval based on the asymptotic normality of R̂t. A
100(1�↵)% confidence interval, with ↵ 2 (0, 1), is given by R̂t±z1�↵/2

p
cvar(R̂t),

where z1�↵/2 is the 1 � ↵/2 quantile of a standard normal distribution, say
z0.975 = 1.96 for a 95% confidence interval. Despite the simplicity of this interval,
its actual coverage might be lower than 95%, given that the analytic variance
formula cvar(R̂t) is obtained from an asymptotic analysis that might be less
accurate for small samples. Furthermore, if the threshold to obtain R̂t comes
from a threshold selection procedure subject to randomness from the sampling,
such as the variance minimization approach presented above, then the estimated
variance cvar(R̂t) might underestimate the true variance of R̂t, and the analytical
confidence interval might not actually have the promised coverage.

Using an analytical confidence interval along with the estimators obtained
from the median sweep approach is more challenging, given that deriving the
analytical variance of the median of correlated estimators is complex. Instead,
we turn our attention to the bootstrap [4] as a flexible way of obtaining estimates
of variances and confidence intervals.

Bootstrap Confidence Intervals The basis of the bootstrap [4] is to take
samples with replacement from the original sample, of the same size as the orig-
inal sample, and for each of these new samples repeat the estimation procedure.
For instance, if we denote R̂†(b)

t the estimate obtained via variance minimization
or median sweep from a bootstrap sample b, then we can use the bootstrap
estimates obtained from B independent bootstrap samples, R̂†(1)

t , . . . , R̂†(B)
t ,
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to compute confidence intervals in two ways. First, we can simply find the
↵/2 and 1 � ↵/2 quantiles of the bootstrap estimates, and take those as the
bounds of the 100(1 � ↵)% confidence interval; we refer to this as the boot-
strap quantile approach. A second approach is to compute the variance of the
bootstrap estimates, cvarboot(R̂†

t ), and use it to construct confidence intervals as
R̂†

t ± z1�↵/2

p
cvarboot(R̂†

t ), where R̂†
t is the estimate obtained via variance min-

imization or median sweep from the original sample; we refer to this as the
bootstrap standard error approach. Given that in the estimator R̂t = (R̂raw

t �
p̂1|0)/(p̂1|1� p̂1|0), we assume that the variability from R̂raw

t is negligible in com-
parison to the variability from p̂1|1 and p̂1|0, we only apply the bootstrap to the
audited sample collected at baseline.

In the next section we compare the actual coverage of the five confidence
intervals detailed here: for variance minimization we compute the analytical
approach in addition to the two bootstrap approaches, whereas for median sweep
we compare the two bootstrap confidence intervals.

3 Performance Comparison

3.1 Existing Estimators

Weighted rates of the form Rt =
PNt

i=1 WitYit/
PNt

i=1 Wit can be estimated using
techniques for cost-quantification, as mentioned in Section 1.1: since in our use
cases the weights Wit are known, we only need to estimate the total

PNt

i=1 WitYit.
To the best of our knowledge, the existing approaches for cost-quantification are
due to Forman [7, 8, 10]. Here we consider two of those.

First, the classify and total (CT) approach simply replaces Yit with Ŷit, and
so this estimator leads to our R̂raw

t ; we consider this estimator to show the
reader how biased this approach can be. Second, the grossed-up total approach
takes the CT estimator and multiplies it by the ratio r̂acct /r̂cct , where r̂cct =PNt

i=1 Ŷit/Nt is the classify and count estimator for the simple rate rt, and r̂acct =
(r̂cct � p̂1|0)/(p̂1|1 � p̂1|0) is its adjusted version. The resulting estimator for the
weighted rate is R̂gut

t = R̂raw
t r̂acct /r̂cct . This approach is derived from a rule of

three, that is, assuming that these ratios are equal:
PNt

i=1 WitYit/
PNt

i=1 WitŶit =PNt

i=1 Yit/
PNt

i=1 Ŷit.
The remaining approaches proposed by Forman [7, 8] for cost-quantification

rely on the following idea. The total weight in the positive class can be writ-
ten as

PNt

i=1 WitYit = µ+
t Ntrt, where rt =

PNt

i=1 Yit/Nt is the simple rate and
µ+
t =

PNt

i=1 WitYit/
PNt

i=1 Yit is the mean weight among the positive class. If
we know or have a good estimate of µ+

t , then we can simply use quantification
techniques to estimate rt, and then estimate the total cost as µ+

t Ntr̂t. In the
applications studied by Forman [7, 8], it was reasonable to assume that µ+

t did
not change over time, and so it could be estimated from the audited data at
baseline. However, programs to improve data quality of e-commerce catalogs of-
ten target products with the largest weights, which directly impacts the value of
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µ+
t over time. Because of this, we do not consider these approaches, as assuming

that µ+
t is constant is unreasonable in our use cases.

3.2 Simulation Design

To compare the performance of the proposed and existing estimation approaches,
we opt for conducting extensive simulation studies where we generate synthetic
catalogs under a variety of scenarios that reflect characteristics of our use cases.
We opt for this approach, given that we want to obtain an estimation strategy
that can be reliably deployed across different circumstances, and a simulation
study allows us to control the characteristics of the scenarios that we want
to explore. Furthermore, given that we are restricted from publishing results
obtained on datasets from our organization, creating synthetic scenarios that
reflect characteristics of our use cases seems like a good compromise. We generate
synthetic catalogs of size Nt = 106, and each simulation run involves one catalog
for a baseline time t = 0 and one for a follow-up time t > 0. The exact details of
their construction are given in Appendix C at https://bit.ly/3wJK5Mj, but
here we present a brief description.

For baseline, a catalog is generated with a proportion of defective items, r0 =
0.1, 0.2, 0.3. We then generate product weights using distributions obtained from
actual numbers of visits to product pages in the Amazon.com website during a
fixed time period and for a specific category of products. This is done such
that the weighted rate R0 is a specific fraction d of the proportion of defective
products r0. Given that for many of our use cases we expect defects to be more
prevalent among products with lower weights, we expect R0 < r0. In particular,
we take R0 = d r0 for d = 1/4, 1/2, 3/4. We generate synthetic product features
to predict defects so that we obtain different levels of classification difficulty, here
characterized by the true and false positive rates of the classifier; we consider
three scenarios by fixing TPR=0.5, 0.7, 0.9 and FPR=0.05, which reflect a range
of use cases, from cases where classifiers are in their infancy and do no yet reach
high accuracy, to cases where mature classifiers have been developed and reach
relatively high accuracy.

To generate the catalog at time t > 0, we fix different values of the percent
change � = 100(Rt�R0)/R0 of the weighted rate from time 0 to t > 0; we take
� = �50%,�25%,+25%,+50% to cover a range of relatively large changes.
The different combinations of � and R0 considered here lead to a wide range
of scenarios for the weighted rate Rt going from 1.25% to 33.75%, which is
representative of the rates that we observe in our use cases.

Given a pair of synthetic catalogs for baseline and for time t > 0, we repeat
1000 times the estimation process of the weighted rate Rt with each of the
competing estimation approaches. For all approaches, we start with sampling
with replacement n0 products from the baseline catalog, and record their ground
truth values Yi0 (analog to auditing), along with their weights Wi0 and model
scores g(Xi0). We explore three sampling scenarios with n0 = 500, 1000, 2000.
In this simulation study we do not consider sampling from the catalog at time t,
as we use the exact Rraw

t in computing the estimator (7), given that Rraw
t only
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depends on the classifier predictions Ŷit = I[g(Xit) > c], which do not involve
auditing resources. If this is not tenable in practice, we need to estimate Rraw

t

using a large sample such that its induced variability is negligible in comparison
with the baseline sample.

3.3 Results

Estimators’ Bias and Variance For each of the catalog scenarios described
above, we summarize the performance of the different estimation approaches in
terms of their bias and standard deviation. In Figures 1a and 1b we present the
bias results for sample size n0 = 1000 and for baseline weighted rates such that
R0 = r0/2; the results for other n0 and relationships between R0 and r0 are
similar to the results presented here, in terms of leading to the same conclusions
on which estimation approach is best. We also omit results for TPR=70%, as
the performance is in between that of TPR=50% and TPR=90%. The vertical
axis in the panels of Figures 1a and 1b show the estimation bias as a percentage
of the true value Rt.

In Figure 1a we present the results for the classify and total, and the grossed-
up total approaches [7, 8], which in some scenarios lead to relative bias of up to
350% and 90% respectively. The bias obtained from these approaches is too large
to consider them reliable, and so we do not further study them.

In Figure 1b, we present the bias results for our proposed approaches, that
is, estimator (7) along with median sweep (MS) or variance minimization (VM)
to handle the classification threshold. The performance of the trimmed MS ap-
proach is virtually the same as the basic MS, so we omit it. To illustrate the
results, consider the top left panel in Figure 1b, which shows a relative bias for
the VM approach of almost 20% when the initial (baseline) weighted rate is 5%
and the change is -50%, that is, when the weighted rate that we want to estimate
at time t is 2.5%. In such case, a 20% relative bias means that the VM approach
is on average returning 3% instead of 2.5%. While this is a small bias overall,
the MS approach has relative biases of less than around 6% across all scenarios
considered here. Undoubtedly, MS leads to a more reliable estimation approach
in terms of bias, although the performance of the VM approach comes in close.

We can also see from comparing the rows of panels in Figure 1b that working
with a high quality classifier (TPR=90%) generally leads to lower biases, espe-
cially when the weighted rates are small. Figure 1b also indicates that it is easier
to unbiasedly estimate larger weighted rates. Another striking conclusion from
looking at the first row of Figure 1b is that even with a very low quality classifier
(TPR=50%) we can still obtain estimation approaches with relatively small bias,
an encouraging sign of the reliability of the proposed estimation approaches for
different use cases.

A reliable estimator should also have a small variance. In Figure 2 we present
the standard deviation of the proposed estimation approaches under the same
conditions presented for Figure 1b. We find that in most scenarios both VM and
MS lead to nearly the same standard deviation, but VM can sometimes lead
to higher estimation variance. This result seems counter-intuitive, given that
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(b) Proposed methods.

Fig. 1: Relative bias of classifier-based weighted rate estimation approaches. Note
the different scales of the vertical axes.

by design VM should lead to the lowest variance. However, VM here uses an
analytic approximation to the actual variance of the estimator based on large
samples, which leads to an approach that does not actually reduce the estimation
variance for small samples. Additionally, a factor that might contribute to the
good performance of MS is that, in a sense it corresponds to an ensemble of
classifiers, one per threshold in our grid, which are working together to estimate
Rt; ensemble methods are known to both reduce bias and variance of learning
algorithms [3].

Confidence Intervals’ Coverage and Length We now present the perfor-
mance of the five methods to build confidence intervals described in Section 2.4.
If a procedure to construct confidence intervals truly leads to a confidence level
of 100(1� ↵)%, that means that if we were to repeat the measurement process
(starting from random sampling) many times, then 100(1� ↵)% of those times
the observed confidence interval would contain the true value of the parameter.
Unfortunately, some confidence interval procedures might be misleading if their
actual coverage is different from their nominal one. To ensure that a confidence
interval procedure is reliable, it is customary to conduct a simulation study where
we repeat the measurement process many times under a fixed set of conditions,
and compute the actual coverage or confidence of the confidence intervals by
computing the proportion of times that the intervals contain the true value of
the parameter of interest. A confidence interval procedure is reliable if the actual
coverage is around the nominal one.

In Figure 3 we present the actual coverage of the five confidence interval pro-
cedures described in Section 2.4. Undoubtedly, the bootstrap quantile confidence
interval obtained from the median sweep procedure is the most reliable of these
five approaches, given that its actual coverage is nearly the nominal 95%. In
fact, the performance of the four bootstrap-based confidence intervals is gener-
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Fig. 2: Standard deviation of proposed weighted rate estimation approaches.

ally reasonable. The worst performance overall is obtained from the confidence
interval based on the analytic approximate variance of the estimator obtained
from the variance minimization approach. This might occur due to the analytic
variance formula not accounting for the variability that comes from the threshold
selection, which in turn leads to lower actual coverage of the analytic confidence
interval.

Finally, an important property of a good confidence interval procedure is that
it does not lead to unnecessarily wide confidence intervals. In this simulation
study we also computed the average length of the confidence intervals obtained
under each approach, and found that the average lengths are very similar for all
approaches across all scenarios. In the interest of space, we do not present plots
with these results.

Given these results, our final recommendation is to use median sweep to deal
with the thresholds in the classifiers, and to use bootstrap quantile confidence
intervals to quantify the uncertainty in the estimation.

4 Discussion and Extensions

Our proposed estimation approach, using median sweep to deal with the thresh-
olds of the classifiers and bootstrap confidence intervals to quantify estimation
uncertainty, is currently being implemented in our organization to produce esti-
mates of weighted rates for several types of catalog defects. Our implementation
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Fig. 3: Actual coverage of nominal 95% confidence intervals (CIs). CIs based
on variance minimization: grey dotted lines: analytic confidence interval; grey
dashed lines: bootstrap standard error; grey solid lines: boostrap quantiles. CIs
based on median sweep: black dashed lines: bootstrap standard error; black solid
lines: boostrap quantiles.

consists of measurement cycles, which are marked by baseline times, when we
collect audited data, and followed up by automated estimation.

Intuitively, for follow-up times close to the baseline time of the cycles, the
proposed estimation approach should be reliable, given that the extrapolation
assumption (EA) should approximately hold. As we move farther away from the
baseline, the EA might become more questionable. In our use cases, we plan
to start from short measurement cycles, say monthly periods, and based on the
audited data test the hypothesis of whether the TPR and FPR are the same
at the beginning of the cycles. If we repeatedly fail to reject the hypothesis, we
expand the measurement cycles, as this indicates that the EA holds for longer
in that particular use case.

Regarding the simplifying assumption (SA) used to derive our proposed es-
timator, it says that the TPR and FPR do not depend on the product weights.
This seems initially reasonable, given that the classifiers that we work with use
product features exclusively, and not measures of engagement of customers with
the products. Nevertheless, the SA can be examined using audited data, for in-
stance by regressing the predicted indicators of defects on the weights, separately
for audited products with and without the defect. For use cases when there is
evidence of an association, a simple solution is to stratify the estimation domain
based on weight intervals, proceed with the estimation as described here sepa-
rately within each stratum, and aggregate the per-stratum estimates to obtain an



Semi-Automated Estimation of Weighted Rates 41

overall estimate of the weighted rate, where the aggregation is done weighting the
strata by their relative share of the products’ weights. This stratified approach
requires the SA to hold within stratum, which is more tenable. Intuitively, in the
extreme case where there is one stratum per weight value the assumption holds
exactly. However, while estimation based on a very fine stratification will allevi-
ate the bias induced by violating SA, it will lead to a large estimation variance.
Selecting the right stratification then involves a bias-variance tradeoff which will
change depending on the use case.
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Abstract. Adjusted Classify and Count (ACC) is one of the most widely
acknowledged methods for quantification, the supervised learning task of
predicting the class prevalences in a data sample. While ACC stems from
binary quantification, where only two classes are considered, several dif-
ferent multi-class extensions have been proposed. In this work, we com-
pare four existing multi-class extensions, both conceptually and empir-
ically. Moreover, we propose a novel multi-class extension that employs
an un-constrained least squares optimization with the aid of a soft-max
layer. Our empirical results on a recent benchmark data set demonstrate
that numerical optimization techniques for multi-class ACC, like our pro-
posed method, outperform analytic solutions.

Keywords: Quantification · Multi-class classification · Constrained op-
timization · Unconstrained optimization

1 Introduction

Quantification [8] is the task of predicting the prevalence of each class in a data
sample. This supervised learning task is in contrast to “standard” classification
learning, where predictions for individual data items, and not for a sample of
items, are desired to be accurate. Applications of quantification arise in text
sentiment analyses [9], in the social sciences [11], in astroparticle physics [4], and
in several other areas.

One of the most widely acknowledged methods for quantification is the Ad-
justed Classify and Count (ACC) technique [8], which was initially proposed for
binary quantification in particular. For the multi-class setting, there are at least
four different extensions to binary ACC: one-versus-all decomposition [8], matrix
inversion [12, 17], pseudo-inversion [14], and constrained least squares [3, 7, 11].
ACC has desireable properties, such as Fisher consistency [16] and computa-
tional efficiency.

In this work, we discuss the four existing alternatives and we propose a novel
multi-class ACC extension. Our proposal employs un-constrained least squares
with the aid of a soft-max layer. We compare the five multi-class extensions
empirically on a gold-standard benchmark from the LeQua2022 competition [6].
Our reusable implementation is available online.1

1 https://github.com/mirkobunse/QUnfold.jl

https://github.com/mirkobunse/QUnfold.jl
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Sec. 2 introduces binary ACC and Sec. 3 presents the multi-class extensions.
Our experiments are discussed in Sec. 4 before we conclude in Sec. 5.

2 Adjusted Classify and Count in Binary Quantification

In the following, we revisit four fundamental methods for binary quantification,
where predictions ŷi ∈ {−1,+1} take one of two values. In the binary setting,
the goal is to predict the prevalence of the positive class, P(Y = +1), in a sample
with N data items. We start with the un-adjusted methods before we detail the
adjustment rule that yields consistent quantifiers.

First, the (un-adjusted) Classify and Count (CC) method [8] estimates the
prevalence P(Y = +1) from predictions that are issued for each individual data
item in a sample, i.e.

p(CC) =
1

N

N∑
i=1

1ŷi=+1 . (1)

At this point, the crisp predictions ŷi can be replaced with estimates of
the posterior probabilities [2], which several classification methods return as an
indicator of uncertainty. This proposal leads to the (un-adjusted) Probabilistic
Classify and Count (PCC) estimate

p(PCC) =
1

N

N∑
i=1

P̂
(
Ŷ = +1 | X = x⃗i

)
. (2)

CC and PCC are easily extended to multi-class settings, where each compo-
nent [p⃗]i of a vector p⃗ ∈ RC estimates the prevalence of one class i ∈ {1, . . . , C},
as according to Eq. 1 or Eq. 2.

Unfortunately, it is well-acknowledged that CC and PCC are susceptible to
prior probability shift [8, 16], due to imperfections of the underlying classifier.
In particular, Eqs. 1 and 2 will systematically over- or under-estimate the true
class prevalences if these prevalences deviate from the ones that are used during
the training of the classifier. In quantification, these prevalences are typically
not known a priori, so that prior probability shift must be expected. Therefore,
CC and PCC are not appropriate solutions for the quantification problem.

In binary quantification, we can correct this deficiency through an adjustment
rule. This rule leads to the Adjusted Classify and Count (ACC) method [8], one
of the most widely acknowledged techniques for handling prior probability shift
in quantification. Binary ACC estimates P(Y = +1) as

p(ACC) =
p(CC) − FPR

TPR− FPR
, (3)

where FPR = P(Ŷ = +1 | Y = −1) is the false positive rate of the underlying
classifier and TPR = P(Ŷ = +1 | Y = +1) is the true positive rate. Both of
these rates need to be estimated on hold-out data that is not used during the
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training of the classifier; otherwise, overfitting of p(ACC) is likely. If the number of
falsely positive predicted instances and the number of falsely negative predicted
instances are equal, one can return p(CC) without making an adjustment.

The adjustment rule from Eq. 3 can also be applied to p(PCC) instead of
p(CC). In this case, the adjustment rule yields the Probabilistic Adjusted Classify
and Count (PACC) method [2].

Binary ACC and PACC have desireable properties. Most importantly, they
are Fisher consistent estimators of P(Y = +1) even under prior probability
shift [16]. Moreover, they are computationally efficient: a prediction requires
only a single pass over the data sample to compute p(CC) or p(PCC); so does the
computation of FPR and TPR during training. Hence, multi-class extensions to
the binary ACC and PACC are promising topics for quantification research.

3 Multi-Class Extensions of Adjusted Classify and Count

In multi-class quantification with C > 2 classes, the goal is to estimate a vector
p⃗ ∈ P of class prevalences, where the set of feasible solutions

P =

{
p⃗ ∈ RC : [p⃗ ]i ≥ 0 ∀ 1 ≤ i ≤ C ∧ 1 =

C∑
i=1

[p⃗ ]i

}
(4)

is the unit simplex. All solutions within this set are valid probability densities.
In the following, we detail four existing multi-class extensions of ACC. We

further propose one additional extension, an un-constrained least squares esti-
mate which employs a soft-max layer.

Tab. 1 displays a summary of the conceptual properties of these extensions.
In this table, we emphasize that each row respectively extends its preceeding row
only in terms of a single aspect. Therefore, we recognize all of these methods as
being “true” ACC extensions, rather than being independent methods.

Table 1. Adjustments in multi-class ACC extensions.

adjustment basis loss function constraints optimization

one-vs-rest (Eq. 5) TPRi, FPRi — — —
inverse (Eq. 8) M — — —
pseudo-inverse (Eq. 9) M least squares min. norm —
constrained (Eq. 10) M least squares P constrained
soft-max (Eq. 11) M least squares P unconstrained

3.1 One Versus Rest Decomposition

The most straightforward extension of binary ACC decomposes the multi-class
quantification problem into C one-versus-rest tasks [8]. Each of these tasks re-
quires a binary quantification of one class versus all others. Hence, we can use the
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binary adjustment rule from Eq. 3 in each of the tasks separately. The resulting
estimate is p⃗ (one−vs−rest) ∈ RC , where

[p⃗ (one−vs−rest)]i =
[p⃗ (CC)]i − FPRi

TPRi − FPRi
(5)

is the i-th component of p⃗ (one−vs−rest). Here, [p⃗ (CC)]i is the CC estimate for the
i-th class. Moreover, TPRi and FPRi are the true positive rate and the false
positive rate when class i is classified against all other classes.

Like in binary ACC, the estimate from Eq. 5 requires clipping to ensure that
each component is between 0 and 1. Moreover, this estimate requires normaliza-
tion to ensure that the sum of all components is one. Unfortunately, these ad-hoc
corrections can lead to estimation errors if the data sets are not sufficiently large
to accurately estimate [p⃗ (CC)]i, TPRi, and FPRi.

3.2 Matrix Inversion

A multi-class classifier can confuse each pair of classes with a non-zero prob-
ability. The confusion matrix M ∈ RC×C of a classifier comprises all of these
probabilities in the matrix cells

[M ]ij = P
(
Ŷ = i | Y = j

)
. (6)

The matrix of ground-truth confusion probabilities, which are typically unknown,
defines the CC outcome

p⃗ (CC) = M · p⃗, (7)

from the ground-truth prevalence vector p⃗ ∈ P. Consequently, we can recover
an estimate of the true p⃗ with an estimate of the confusion matrix M .

The most straightforward attempt in this direction [12, 17] is to invert an
estimate of M to yield the prevalence estimate

p⃗ (inverse) = M−1 · p⃗ (CC). (8)

For instance, this matrix inversion estimate is implemented in the current
release2 of QuaPy [13]. Since QuaPy is likely the most complete and usable
software package for quantification, this choice has established p⃗ (inverse) as the
“quasi-standard” multi-class extension of ACC and PACC.

However, the inverse of an estimated M is not guaranteed to exist. In this
case, the estimator is undefined. QuaPy deals with this issue by falling back to
the un-adjusted p⃗ (CC) and p⃗ (PCC) if M is not invertible.

3.3 Pseudo-Inversion

A robust alternative to matrix inversion replaces the actual inverse M−1 with
the Moore-Penrose pseudo-inverse M†. This replacement leads to the estimate

p⃗ (pseudo−inverse) = M† · p⃗ (CC), (9)
2 QuaPy, v0.1.6: https://github.com/HLT-ISTI/QuaPy/releases/tag/0.1.6

https://github.com/HLT-ISTI/QuaPy/releases/tag/0.1.6
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which is always defined because M† is always guaranteed to exist. Moreover,
M† is equal to M−1 if M−1 exists. Hence, the replacement does not reduce the
quality of the estimate. It gains robustness because no fallback to an un-adjusted
p⃗ (CC) or p⃗ (PCC) is necessary if M is not invertible.

The pseudo-inverse estimator is proven to be a least-squares estimate of the
true p⃗, which is constrained to the minimum norm estimate [14, Th. 4.1]. This
constraint has the advantage that p⃗ (pseudo−inverse) is unique. However, a mini-
mum norm constraint lacks motivation from a practical perspective; in fact, the
constraint is unrelated to the actual feasible set P from Eq. 4.

3.4 Constrained Least Squares

Both inversion techniques p⃗ (inverse) and p⃗ (pseudo−inverse) suffer from not being
constrained to the feasible set P from Eq. 4. In fact, both techniques tend to
produce estimates that i) do not sum to one and ii) have components that
are less than zero. This deficiency is typically addressed through clipping and
normalization, an ad-hoc correction that can lead to estimation errors.

A more appropriate approach is presented by Hopkins and King [11]. They
propose a constrained optimization task

p⃗ (constrained) = argmin
p⃗∈P

∥∥ p⃗ (CC) −M · p⃗
∥∥2
2
, (10)

which explicitly constrains the estimate to the space P of valid probabilities.
Within this space, the most accurate estimate according to the L2 norm is
searched for. Hence, p⃗ (constrained) employs the same loss function as the esti-
mate p⃗ (pseudo−inverse), but uses a more appropriate set of constraints.

Unfortunately, Hopkins and King [11] do not propose a specific algorithm
to solve Eq. 10. While an analytical solution exists for the unit sum constraint
1 =

∑C
i=1[p⃗ ]i [1, Chap. 1.4], we are not aware of an analytic solution that

considers the inequality constraints [p⃗ ]i ≥ 0 ∀ 1 ≤ i ≤ C from Eq. 4.
Consequently, the optimization of Eq. 10 requires numerical optimization

techniques. In our implementation, we employ a primal-dual interior-point al-
gorithm with a filter line search [18]. However, other numerical methods are
conceivable at this point. For instance, Firat [7] employs a sequential quadratic
programming technique [19, Chap. 18] to solve Eq. 10. We leave a comparison
of numerical optimization techniques in quantification to future work.

3.5 Unconstrained Least Squares with a Soft-Max Layer

We now propose a novel multi-class extension of binary ACC. The goal of our
proposal is to rephrase the optimization task from Eq. 10 to achieve an un-
constrained optimization task which produces valid probability densities despite
being unconstrained. The desire to optimize without constraints is rooted in our
subjective perception that unconstrained optimization is an easier problem than
constrained optimization. Hence, we hope for less noise in the gradients that are
computed during the optimization process.
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We obtain an unconstrained optimization task through a soft-max layer,
which is a derivable operation that transforms latent variables into probability
densities. We maintain the least squares loss function from Eq. 10. Our multi-
class ACC is defined over latent variables l⃗ ∈ RC , as

p⃗ (soft−max) = softmax(⃗l ∗),

l⃗ ∗ = argmin
l⃗∈RC

∥∥ p⃗ (CC) −M · softmax(⃗l)
∥∥2
2
+ λ ·

∥∥⃗l∥∥2
2
,

[softmax(⃗l)]i =
exp([⃗l]i)∑C
j=1 exp([⃗l]j)

,

(11)

where λ · ∥⃗l∥22 is a regularization term that ensures all exp([⃗l]i) to be finite within
floating point precision. This regularization term is only a technical detail: it
affects the latent variables l⃗, but not the estimate p⃗ (soft−max), which is always
in P due to the soft-max layer. In our experiments, we fix λ = 10−6.

4 Experiments

In the following, we intend to uncover the merits and the disadvantages of the
above multi-class extensions of ACC and PACC. To this end, we evaluate their
performance on the public data set [5] of the LeQua2022 competition [6]. Our
reusable Julia implementation of methods and experiments is available online.1

The LeQua2022 dataset is designed to constitute a gold-standard bench-
mark, both for binary text quantification and for multi-class text quantification.
The multi-class problem in this competition features 28 classes, 20 000 training
items and 1 000 validation samples. Each of the validation samples consists of
1 000 data items that are drawn according to varying class prevalences. We em-
ploy the vectorial representation of the data and a logistic regression classifier,
which obtained the highest performance on this representation during the com-
petition [15]. We optimize the regularization parameter of this classifier on the
validation set and over the grid {10−3, 10−2, 10−1, 100, 101}, to obtain the best
performance for each quantification method. The selection of the best regular-
ization parameter is either in terms of the absolute error (AE) or in terms of the
relative absolute error (RAE). We report the results, in terms of both metrics,
on the test set.

All multi-class extensions of ACC require the estimation of the confusion
matrix M (or at least the rates TPRi and FPRi) on hold-out data. In order
to use all labeled data for classifier training and for the adjustments, we use a
bagging ensemble of size 100. We estimate M , TPRi, and FPRi on the out-of-bag
predictions of this ensemble.

During the hyper-parameter optimization on the validation set, almost all
methods succeeded in producing estimates for the class prevalences. An exception
to this outcome is the matrix inversion from Eq. 8 in ACC. This method failed
to produce prevalence estimates for the values 10−3 and 10−2 of the classifier’s
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regularization parameter because these values led to confusion matrices M that
were not invertible.

Table 2. Test set performance of the different multi-class adjustments, for ACC and
PACC and in terms of AE and RAE. The performance of the best adjustment in each
setting is printed in boldface.

adjustment
ACC PACC

AE RAE AE RAE

un-adjusted (Eq. 1 / Eq. 2) 0.0254 2.5532 0.0246 2.6771

one-vs-rest (Eq. 5) 0.0262 4.1484 0.0262 4.1484

inverse (Eq. 8) 0.0222 1.7224 0.0195 1.5288

pseudo-inverse (Eq. 9) 0.0177 1.7224 0.0195 1.5288

constrained (Eq. 10) 0.0158 1.2826 0.0123 0.9908

soft-max (Eq. 11) 0.0130 1.2633 0.0106 1.0886

Discussion The results from Tab. 2 demonstrate that the different multi-class
adjustments exhibit quite different performances, in general. The lowest errors
are achieved by the constrained estimator from Eq. 10 (in terms of RAE in
PACC) and by our unconstrained soft-max estimator from Eq. 11 (in terms of
all other configurations). The margins of improvement over all other adjustments
are considerable: for instance, the constrained PACC achieves an RAE that is
38% smaller than the RAE of the pseudo-inverse PACC (last column, 0.9669 vs
1.5536); our soft-max PACC achieves an AE that is 46% smaller than the AE of
the pseudo-inverse PACC (third column, 0.0106 vs 0.0197).

5 Conclusions and Outlook

We have discussed five different multi-class extensions of the binary adjustment
that is employed in ACC and PACC. One of these extensions is an original
proposal by us; this proposal employs a soft-max layer to circumvent the con-
straints that are otherwise required to obtain valid solutions in a numerical
optimization process. Our proposal and an existing constrained least squares
adjustment [3, 7, 11] deliver the most competitive performances.

Future work should compare different optimization techniques [19] to solve
the constrained optimization task and our unconstrained soft-max proposal. Our
“trick” of using a soft-max layer in quantification is also applicable to other
methods, like ReadMe [11] and HDx / HDy [10], where it should be evaluated.
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