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Abstract
We discuss work in progress in the semi-automatic generation ofthematic lexicons by means ofterm categorization, a novel task
employing techniques from information retrieval (IR) and machine learning (ML). Specifically, we view the generation of such lexicons
as an iterative process of learning previously unknown associations between terms andthemes (i.e. disciplines, or fields of activity).
The process is iterative, in that it generates, for eachci in a setC = {c1, . . . , cm} of themes, a sequenceLi

0 ⊆ Li
1 ⊆ . . . ⊆ Li

n of
lexicons, bootstrapping from an initial lexiconLi

0 and a set of text corporaΘ = {θ0, . . . , θn−1} given as input. The method is inspired
by text categorization, the discipline concerned with labelling natural language texts with labels from a predefined set of themes, or
categories. However, while text categorization deals with documents represented as vectors in a space of terms, we formulate the task
of term categorization as one in which terms are (dually) represented as vectors in a space of documents, and in which terms (instead of
documents) are labelled with themes. As a learning device, we adoptboosting, since (a) it has demonstrated state-of-the-art effectiveness
in a variety of text categorization applications, and (b) it naturally allows for a form of “data cleaning”, thereby making the process of
generating a thematic lexicon an iteration of generate-and-test steps.

1. Introduction
The generation ofthematic lexicons (i.e. lexicons con-

sisting of specialized terms, all pertaining to a given theme
or discipline) is a task of increased applicative interest,
since such lexicons are of the utmost importance in a va-
riety of tasks pertaining to natural language processing and
information access.

One of these tasks is to support text search and other in-
formation retrieval applications in the context of thematic,
“vertical” portals (akavortals)1. Vortals are a recent phe-
nomenon in the World Wide Web, and have grown out of
the users’ needs for directories, services and information
resources that are both rich in information and specific to
their interests. This has led to Web sites that specialize in
aggregating market-specific, “vertical” content and infor-
mation. Actually, the evolution from the generic portals of
the previous generation (such as Yahoo!) to today’s verti-
cal portals is just natural, and is no different from the evo-
lution that the publishing industry has witnessed decades
ago with the creation of specialized magazines, targeting
specific categories of readers with specific needs. To read
about the newest developments in ski construction technol-
ogy, skiers read specialty magazines about skiing, and not
generic newspapers, and skiing magazines is also where ad-
vertisers striving to target skiers place their ads in order to
be the most effective. Vertical portals are the future of com-
merce and information seeking on the Internet, and support-
ing sophisticated information access capabilities by means

1See e.g.http://www.verticalportals.com/

of thematic lexical resources is thus of the utmost impor-
tance.

Unfortunately, the generation of thematic lexicons is
expensive, since it requires the intervention of specialized
manpower, i.e. lexicographers and domain experts work-
ing together. Besides being expensive, such a manual ap-
proach does not allow for fast response to rapidly emerging
needs. In an era of frantic technical progress new disci-
plines emerge quickly, while others disappear as quickly;
and in an era of evolving consumer needs, the same goes
for new market niches. There is thus a need of cheaper
and faster methods for answering application needs than
manual lexicon generation. Also, as noted in (Riloff and
Shepherd, 1999), the manual approach is prone to errors of
omission, in that a lexicographer may easily overlook in-
frequent, non-obvious terms that are nonetheless important
for many tasks.

Many applications also require that the lexicons be not
only thematic, but also tailored to the specific data tackled
in the application. For instance, in query expansion (auto-
matic (Peat and Willett, 1991) or interactive (Sebastiani,
1999)) for information retrieval systems addressing the-
matic document collections, terms synonymous or quasi-
synonymous to the query terms are added to the query in
order to retrieve more documents. In this case, the added
terms should occur in the document collection, otherwise
they are useless, and the relevant terms which occur in the
document collection should potentially be added. That is,
for this application the ideal thematic lexicon should con-
tain all and only the technical terms present in the document
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collection under consideration, and should thus be gener-
ated directly from this latter.

1.1. Our proposal
In this paper we propose a methodology for the semi-

automatic generation of thematic lexicons from a corpus
of texts. This methodology relies onterm categorization,
a novel task that employs a combination of techniques
from information retrieval (IR) and machine learning (ML).
Specifically, we view the generation of such lexicons as an
iterative process of learning previously unknown associa-
tions between terms andthemes (i.e. disciplines, or fields
of activity)2. The process is iterative, in that it gener-
ates, for eachci in a setC = {c1, . . . , cm} of predefined
themes, a sequenceLi

0 ⊆ Li
1 ⊆ . . . ⊆ Li

n of lexicons,
bootstrapping from a lexiconLi

0 given as input. Associa-
tions between terms and themes are learnt from a sequence
Θ = {θ0, . . . , θn−1} of sets of documents (hereafter called
corpora); this allows to enlarge the lexicon as new corpora
from which to learn become available. At iterationy, the
process builds the lexiconsLy+1 = {L1

y+1, . . . , L
m
y+1} for

all the themesC = {c1, . . . , cm} in parallel, from the same
corpusθy. The only requirement onθy is that at least some
of the terms in each of the lexicons inLy = {L1

y, . . . , L
m
y }

should occur in it (if none among the terms in a lexiconLj
y

occurs inθy, then no new term is added toLj
y in iteration

y).
The method we propose is inspired bytext categoriza-

tion, the activity of automatically building, by means of
machine learning techniques,automatic text classifiers, i.e.
programs capable of labelling natural language texts with
(zero, one, or several) thematic categories from a prede-
fined setC = {c1, . . . , cm} (Sebastiani, 2002). The con-
struction of an automatic text classifier requires the avail-
ability of a corpusψ = {〈d1, C1〉, . . . , 〈dh, Ch〉} of pre-
classified documents, where a pair〈dj , Cj〉 indicates that
documentdj belongs to all and only the categories in
Cj ⊆ C. A general inductive process (called thelearner)
automatically builds a classifier for the setC by learn-
ing the characteristics ofC from a training set Tr =
{〈d1, C1〉, . . . , 〈dg, Cg〉} ⊂ ψ of documents. Once a classi-
fier has been built, its effectiveness (i.e. its capability to take
the right categorization decisions) may be tested by apply-
ing it to thetest set Te = {〈dg+1, Cg+1〉, . . . , 〈dh, Ch〉} =
ψ−Tr and checking the degree of correspondence between
the decisions of the automatic classifier and those encoded
in the corpus.

While the purpose of text categorization is that of classi-
fying documents represented as vectors in a space of terms,
the purpose of term categorization, as we formulate it, is
(dually) that of classifying terms represented as vectors in
a space of documents. In this task terms are thus items
that may belong, and must thus be assigned, to (zero, one,

2We want to point out that our use of the word “term” is some-
how different from the one often used in natural language pro-
cessing and terminology extraction (Kageura and Umino, 1996),
where it often denotes asequence of lexical units expressing a
concept of the domain of interest. Here we use this word in a neu-
tral sense, i.e. without making any commitment as to its consisting
of a single word or a sequence of words.

or several) themes belonging to a predefined set. In other
words, starting from a setΓi

y of preclassified terms, a new
set of termsΓi

y+1 is classified, and the terms inΓi
y+1 which

are deemed to belong toci are added toLi
y to yieldLi

y+1.
The setΓi

y is composed of lexiconLi
y, acting as the set of

“positive examples”, plus a set of terms known not to be-
long toci, acting as the set of “negative examples”.

For input to the learning device and to the term classi-
fiers that this will eventually build, we use “bag of docu-
ments” representations for terms (Salton and McGill, 1983,
pages 78–81), dual to the “bag of terms” representations
commonly used in text categorization.

As the learning device we adopt
ADABOOST.MHKR (Sebastiani et al., 2000), a more
efficient variant of the ADABOOST.MHR algorithm pro-
posed in (Schapire and Singer, 2000). Both algorithms are
an implementation ofboosting, a method for supervised
learning which has successfully been applied to many
different domains and which has proven one of the best
performers in text categorization applications so far.
Boosting is based on the idea of relying on the collective
judgment of a committee of classifiers that are trained
sequentially; in training thek-th classifier special emphasis
is placed on the correct categorization of the training
examples which have proven harder for (i.e. have been
misclassified more frequently by) the previously trained
classifiers.

We have chosen a boosting approach not only because
of its state-of-the-art effectiveness, but also because it natu-
rally allows for a form of “data cleaning”, which is useful in
case a lexicographer wants to check the results and edit the
newly generated lexicon. That is, in our term categorization
context it allows the lexicographer to easily inspect the clas-
sified terms for possible misclassifications, since at each it-
erationy the algorithm, apart from generating the new lex-
icon Li

y+1, ranks the terms inLi
y in terms of their “hard-

ness”, i.e. how successful have been the generated classi-
fiers at correctly recognizing their label. Since the highest
ranked terms are the ones with the highest probability of
having been misclassified in the previous iteration (Abney
et al., 1999), the lexicographer can examine this list start-
ing from the top and stopping where desired, removing the
misclassified examples. The process of generating a the-
matic lexicon then becomes an iteration of generate-and-
test steps.

This paper is organized as follows. In Section 2. we
describe how we represent terms by means of a “bag of
documents” representation.. For reasons of space we do
not describe ADABOOST.MHKR, the boosting algorithm
we employ for term classification; see the extended paper
for details (Lavelli et al., 2002). Section 3.1. discusses how
to combine the indexing tools introduced in Section 2. with
the boosting algorithm, and describes the role of the lex-
icographer in the iterative generate-and-test cycle. Sec-
tion 3.2. describes the results of our preliminary experi-
ments. In Section 4. we review related work on the auto-
mated generation of lexical resources, and spell out the dif-
ferences between our and existing approaches. Section 5.
concludes, pointing to avenues for improvement.
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2. Representing terms in a space of
documents

2.1. Text indexing
In text categorization applications, the process of build-

ing internal representations of texts is calledtext indexing.
In text indexing, a documentdj is usually represented as a
vector of termweights �dj = 〈w1j , . . . , wrj〉, wherer is the
cardinality of thedictionary and0 ≤ wkj ≤ 1 represents,
loosely speaking, the contribution oftk to the specification
of the semantics ofdj . Usually, the dictionary is equated
with the set ofterms that occur at least once in at leastα
documents ofTr (with α a predefined threshold, typically
ranging between 1 and 5).

Different approaches to text indexing may result from
different choices (i) as to what a term is and (ii) as to how
term weights should be computed. A frequent choice for (i)
is to use single words (minus stop words, which are usually
removed prior to indexing) or their stems, although some
researchers additionally consider noun phrases (Lewis,
1992) or “bigrams” (Caropreso et al., 2001). Different
“weighting” functions may be used for tackling issue (ii),
either of a probabilistic or of a statistical nature; a frequent
choice is thenormalized tfidf function (see e.g. (Salton
and Buckley, 1988)), which provides the inspiration for our
“term indexing” methodology spelled out in Section 2.2..

2.2. Abstract indexing and term indexing
Text indexing may be viewed as a particular instance

of abstract indexing, a task in which abstract objects are
represented by means of abstract features, and whose un-
derlying metaphor is, by and large, that the semantics of an
object corresponds to thebag of features that “occur” in it3.
In order to illustrate abstract indexing, let us define atoken
τ to be a specific occurrence of a given featuref(τ) in a
given objecto(τ), letT be the set of all tokens occurring in
any of a set of objectsO, and letF be the set of features
of which the tokens inT are instances. Let us define the
feature frequency ff(fk, oj) of a featurefk in an objectoj

as

ff(fk, oj) = |{τ ∈ T | f(τ) = fk ∧ o(τ) = oj}| (1)

We next define theinverted object frequency iof(fk) of a
featurefk as

iof(fk) = (2)

= log
|O|

|{oj ∈ O | ∃τ ∈ T : f(τ) = fk ∧ o(τ) = oj}|
and theweight w(fk, oj) of featurefk in objectoj as

wkj = w(fk, oj) = (3)

=
ff(fk, oj) · iof(fk)√∑|F |

s=1(ff(fs, oj) · iof(fs))2

3“Bag” is used here in its set-theoretic meaning, as a synonym
of multiset, i.e. a set in which the same element may occur several
times. In text indexing, adopting a “bag of words” model means
assuming that the number of times that a given word occurs in
the same document is semantically significant. “Set of words”
models, in which this number is assumed not significant, are thus
particular instances of bag of words models.

We may consider thew(fk, oj) function of Equation (3) as
anabstract indexing function; that is, different instances of
this function are obtained by specifying different choices
for the set of objectsO and set of featuresF .

The well-known text indexing functiontfidf , men-
tioned in Section 2.1., is obtained by equatingO with the
training set of documents andF with the dictionary;T , the
set of occurrences of elements ofF in the elements ofO,
thus becomes the set of term occurrences.

Dually, a term indexing function may be obtained by
switching the roles ofF andO, i.e. equatingF with the
training set of documents andO with the dictionary;T , the
set of occurrences of elements ofF in the elements ofO, is
thus again the set of term occurrences (Schäuble and Knaus,
1992; Sheridan et al., 1997).

It is interesting to discuss the kind of intuitions that
Equations (1), (2) and (3) embody in the dual cases of text
indexing and term indexing:

• Equation (1) suggests that when a feature occurs mul-
tiple times in an object, the feature characterizes the
object to a higher degree. In text indexing, this indi-
cates that the more often a term occurs in a document,
the more it is representative of its content. In term in-
dexing, this indicates that the more often a term occurs
in a document, the more the document is representa-
tive of the content of the term.

• Equation (2) suggests that the fewer the objects a fea-
ture occurs in, the more representative it is of the con-
tent of the objects in which it occurs. In text indexing,
this means that terms that occur in too many docu-
ments are not very useful for identifying the content
of documents. In term indexing, this means that the
more terms a document contains (i.e. the longer it is),
the less useful it is for characterizing the semantics of
a term it contains.

• The intuition (“length normalization”) that supports
Equation (3) is that weights computed by means of
ff(fk, oj) · iof(fk) need to be normalized in order
to prevent “longer objects” (i.e. ones in which many
features occur) to emerge (e.g. to be scored higher in
document-document similarity computations) just be-
cause of their length and not because of their content.
In text indexing, this means that longer documents
need to be deemphasized. In term indexing, this means
instead that terms that occur in many documents need
to be deemphasized4.

It is also interesting to note that any program or data struc-
ture that implementstfidf for text indexing may be used
straightaway, with no modification, for term indexing: one
needs only to feed the program with the terms in place of
the documents and viceversa.

4Incidentally, it is interesting to note that in switching from
text indexing to term indexing, Equations (2) and (3) switch their
roles: the intuition that terms occurring in many documents should
be deemphasized is implemented in Equation (2) in text index-
ing and Equation (3) in term indexing, while the intuition that
longer documents need to be deemphasized is implemented in
Equation (3) in text indexing and Equation (2) in term indexing.
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3. Generating thematic lexicons by
bootstrapping and learning

3.1. Operational methodology

We are now ready to describe the overall process that
we will follow for the generation of thematic lexicons. The
process is iterative: we here describe they-th iteration. We
start from a set of thematic lexiconsLy = {L1

y, . . . , L
m
y },

one for each theme inC = {c1, . . . , cm}, and from a cor-
pusθy. We index the terms that occur inθy by means of
the term indexing technique described in Section 2.2.; this
yields, for each termtk, a representation consisting of a
vector of weighted documents, the length of the vector be-
ing r = |θy|.

By usingLy = {L1
y, . . . , L

m
y } as a training set, we then

generatem classifiersΦy = {Φ1
y, . . . ,Φ

m
y } by applying the

ADABOOST.MHKR algorithm. While generating the clas-
sifiers, ADABOOST.MHKR also produces, for each theme
ci, a ranking of the terms inLi

y in terms of how hard it
was for the generated classifiers to classify them correctly,
which basically corresponds to their probability of being
misclassified examples. The lexicographer can then, if de-
sired, inspectLy and remove the misclassified examples,
if any (possibly rerunning, especially if these latter were a
substantial number, ADABOOST.MHKR on the “cleaned”
version ofLy). At this point, the terms occurring inθy

that ADABOOST.MHKR has classified underci are added
(possibly, after being checked by the lexicographer) toLi

y,
yieldingLi

y+1. Iterationy + 1 can then take place, and the
process is repeated again.

Note that an alternative approach is to involve the lex-
icographer only after the last iteration, and not after each
iteration. For instance, Riloff and Shepherd (Riloff and
Shepherd, 1999) perform several iterations, at each of
which they add to the training set (without human inter-
vention) the new items that have been attributed to the cate-
gory with the highest confidence. After the last iteration,
a lexicographer inspects the list of added terms and de-
cides which one to remove, if any. This latter approach
has the advantage of requiring the intervention of the lexi-
cographer only once, but has the disadvantage that spurious
terms added to lexicon at early iterations can cause, if not
promptly removed, new spurious ones to be added in the
next iterations, thereby generating a domino effect.

3.2. Experimental methodology

The process we have described in Section 3.1. is the one
that we would apply in an operational setting. In an experi-
mental setting, instead, we are also interested in evaluating
the effectiveness of our approach on a benchmark. The dif-
ference with the process outlined in Section 3.1. is that at
the beginning of the process the lexiconLy is split into a
training set and a test set; the classifiers are learnt from the
training set, and are then tested on the test set by check-
ing how good they are at extracting the terms in the test set
from the corpusθy. Of course, in order to guarantee a fair
evaluation, the terms that never occur inθy are removed
from the test set, since there is no way that the algorithm
(or any other algorithm that extracts terms from a corpus)
could possibly guess them.

Category expert judgments
ci YES NO

classifier YES TPi FPi

judgments NO FNi TNi

Table 1: The contingency table for categoryci. Here,FPi

(false positives wrt ci) is the number of test terms incor-
rectly classified underci; TNi (true negatives wrt ci), TPi

(true positives wrt ci) andFNi (false negatives wrt ci) are
defined accordingly.

We will comply with standard text categorization prac-
tice in evaluating term categorization effectiveness by a
combination ofprecision (π), the percentage of positive
categorization decisions that turn out to be correct, andre-
call (ρ), the percentage of positive, correct categorization
decisions that are actually taken. Since most classifiers can
be tuned to emphasize one at the expense of the other, only
combinations of the two are usually considered significant.
Following common practice, as a measure combining the
two we will adopt their harmonic mean, i.e.F1 = 2πρ

π+ρ .
Effectiveness will be computed with reference to the con-
tingency table illustrated in Table 1. When effectiveness is
computed for several categories, the results for individual
categories must be averaged in some way; we will do this
both bymicroaveraging (“categories count proportionally
to the number of their positive training examples”), i.e.

πµ =
TP

TP + FP
=

∑m
i=1 TPi∑|C|

i=1(TPi + FPi)

ρµ =
TP

TP + FN
=

∑m
i=1 TPi∑m

i=1(TPi + FNi)

and bymacroaveraging (“all categories count the same”),
i.e.

πM =
∑|C|

i=1 πi

m
ρM =

∑m
i=1 ρi

m

Here, “µ” and “M” indicate microaveraging and macroav-
eraging, respectively, while the other symbols are as de-
fined in Table 1. Microaveraging rewards classifiers that be-
have well onfrequent categories (i.e. categories with many
positive test examples), while classifiers that perform well
also on infrequent categories are emphasized by macroav-
eraging. Whether one or the other should be adopted obvi-
ously depends on the application.

3.3. Our experimental setting

We now describe the resources we have used in our ex-
periments.

3.3.1. The corpora
As the corporaΘ = {θ1, . . . , θn}, we have used various

subsets of theReuters Corpus Volume I (RCVI), a cor-
pus of documents recently made available by Reuters5 for
text categorization experimentation and consisting of about
810,000 news stories. Note that, although the texts of RCVI

5http://www.reuters.com/
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are labelled by thematic categories, we have not made use
of such labels (not it would have made much sense to use
them, given that these categories are different from the ones
we are working with); the reasons we have chosen this cor-
pus instead of other corpora of unlabelled texts are inessen-
tial.

3.3.2. The lexicons
As the thematic lexicons we have used subsets of an

extension ofWordNet, that we now describe.
WordNet (Fellbaum, 1998) is a large, widely available,

non-thematic, monolingual, machine-readable dictionary in
which sets of synonymous words are grouped into synonym
sets (orsynsets) organized into a directed acyclic graph. In
this work, we will always refer toWordNet version 1.6.

In WordNet only a few synsets are labelled with the-
matic categories, mainly contained in the glosses. This
limitation is overcome inWordNetDomains, an extension
of WordNet described in (Magnini and Cavaglià, 2000)
in which each synset has been labelled with one or more
from a set of 164 thematic categories, calleddomains6. The
164 domains ofWordNetDomains are a subset of the cat-
egories belonging to the classification scheme of Dewey
Decimal Classification (DDC (Mai Chan et al., 1996)); ex-
ample domains are ZOOLOGY, SPORT, and BASKETBALL .

These 164 domains have been chosen from the much
larger set of DDC categories since they are the most pop-
ular labels used in dictionaries for sense discrimination
purposes. Domains have long been used in lexicography
(where they are sometimes calledsubject field codes (Proc-
ter, 1978)) to mark technical usages of words. Although
they convey useful information for sense discrimination,
they typically tag only a small portion of a dictionary.
WordNetDomains extends instead the coverage of domain
labels to an entire, existing lexical database, i.e.WordNet.

A domain may include synsets of different syntactic
categories: for instance, the MEDICINE domain groups
together senses fromNouns, such asdoctor#1 (the
first among several senses of the word “doctor”) and
hospital#1, and fromVerbs, such asoperate#7. A
domain may include senses from differentWordNet sub-
hierarchies. For example, SPORT contains senses such
as athlete#1, which descends fromlife form#1;
game equipment#1, from physical object#1;
sport#1, from act#2; andplaying field#1, from
location#1. Note that domains may group senses of
the same word into thematic clusters, with the side effect of
reducing word polysemy inWordNet.

The annotation methodology used in (Magnini and
Cavaglìa, 2000) for creatingWordNetDomains was
mainly manual, and based on lexico-semantic criteria
which take advantage from the already existing concep-
tual relations inWordNet. First, a small number of
high level synsets were manually annotated with their cor-
rect domains. Then, an automatic procedure exploiting
some of theWordNet relations (i.e. hyponymy, troponymy,

6From the point of view of our term categorization task, the
fact that more than one domain may be attached to the same synset
means that ours is amulti-label categorization task (Sebastiani,
2002, Section 2.2).

meronymy, antonymy and pertain-to) was used in order
to extend these assignments to all the synsets reachable
through inheritance. For example, this procedure automat-
ically marked the synset{beak, bill, neb, nib}
with the code ZOOLOGY, starting from the fact that the
synset{bird} was itself tagged with ZOOLOGY, and
following a “part-of” relation (one of the meronymic re-
lations present inWordNet). In some cases the inher-
itance procedure had to be manually blocked, inserting
an “exception” in order to prevent a wrong propagation.
For instance, if blocking had not been used, the term
barber chair#1, being a “part-of”barbershop#1,
which is annotated with COMMERCE, would have inherited
COMMERCE, which is unsuitable.

For the purpose of the experiments reported in this pa-
per, we have used a simplified variant ofWordNetDo-
mains, calledWordNetDomains(42). This was obtained
from WordNetDomains by considering only 42 highly rel-
evant labels, and tagging by a given domainci also the
synsets that, inWordNetDomains, were tagged by the do-
mains immediately related toci in a hierarchical sense (that
is, the parent domain ofci and all the children domains
of ci). For instance, the domain SPORT is retained into
WordNetDomains(42), and labels both the synsets that
it originally labelled inWordNetDomains, plus the ones
that inWordNetDomains were labelled under its children
categories (e.g. VOLLEY, BASKETBALL , . . . ) orunder its
parent category (FREE-TIME). Since FREE-TIME has an-
other child (PLAY ) which is also retained inWordNetDo-
mains(42), the synsets originally labelled by FREE-TIME

will now be labelled also by PLAY , and will thus have mul-
tiple labels. However, that a synset may have multiple la-
bels is true in general, i.e. these labels need not have any
particular relation in the hierarchy.

This restriction to the 42 most significant categories al-
lows to obtain a good compromise between the conflicting
needs of avoiding data sparseness and preventing the loss of
relevant semantic information. These 42 categories belong
to 5 groups, where the categories in a given group are all the
children of the sameWordNetDomains category, which is
however not retained intoWordNetDomains(42); for ex-
ample, one group is formed by SPORT and PLAY , which
are both children of FREE-TIME (not included intoWord-
NetDomains(42)).

3.3.3. The experiment
We have run several experiments for different choices

of the subset of RCVI chosen as corpus of textθy, and for
different choices of the subsets ofWordNetDomains(42)
chosen as training setTry and test setTey. We first de-
scribe how we have run a generic experiment, and then
go on to describe the sequence of different experiments we
have run. For the moment being we have run experiments
consisting of one iteration only of the bootstrapping pro-
cess. In future experiments we also plan to allow for mul-
tiple iterations, in which the system learns new terms also
from previously learnt ones.

In our experiments we considered only nouns, thereby
discarding words tagged by other syntactic categories. We
plan to also consider words other than nouns in future ex-
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periments.
For each experiment, we discarded all documents that

did not contain any term from the training lexiconTry,
since they do not contribute in representing the meaning
of training documents, and thus could not possibly be of
any help in building the classifiers. Next, we discarded
all “empty” training terms, i.e. training terms that were not
contained in any document ofθy, since they could not pos-
sibly contribute to learning the classifiers. Also empty test
terms were discarded, since no algorithm that extracts terms
from corpora could possibly extract them. Quite obviously,
we also do not use the terms that occur inθy but belong
neither to the training setTry nor to the test setTey.

We then lemmatized all remaining documents and anno-
tated the lemmas with part-of-speech tags, both by means
of the TREETAGGER package (Schmid, 1994); we also
used theWordNet morphological analyzer in order to re-
solve ambiguities and lemmatization mistakes. After tag-
ging, we applied a filter in order to identify the words actu-
ally contained inWordNet, including multiwords, and then
we discarded all terms but nouns. The final set of terms
that resulted from this process was randomly divided into a
training setTry (consisting of two thirds of the entire set)
and a test setTey (one third). As negative training exam-
ples of categoryci we chose all the training terms that are
not positive examples ofci.

Note that in this entire process we have not considered
the grouping of terms into synsets; that is, the lexical units
of interest in our application are the terms, and not the
synsets. The reason is that RCVI is not a sense-tagged cor-
pus, and for any term occurrenceτ it is not clear to which
synsetτ refers to.

3.3.4. The results
Our experimental results on this task are still very pre-

liminary, and are reported in Table 2.
Instead of tackling the entire RCVI corpus head on, for

the moment being we have run only small experiments on
limited subsets of it (up to 8% of its total size), with the
purpose of getting a feel for which are the dimensions of
the problem that need investigation; for the same reason,
for the moment being we have used only a small number
of boosting iterations (500). In Table 2, the first three lines
concern experiments on the news stories produced on a sin-
gle day (08.11.1996); the next three lines use the news sto-
ries produced in a single week (08.11.1996 to 14.11.1996),
and the last six lines use the news stories produced in an en-
tire month (01.11.1996 to 30.11.1996). Only training and
test terms occurring in at leastx documents were consid-
ered; the experiments reported in the same block of lines
differ for the choice of thex parameter.

There are two main conclusions we can draw from these
still preliminary experiments. The first conclusion is that
F1 values are still low, at least if compared to theF1 val-
ues that have been obtained intext categorization research
on the same corpus (Ault and Yang, 2001); a lot of work is
still needed in tuning this approach in order to obtain sig-
nificant categorization performance. The low values ofF1

are mostly the result of low recall values, while precision
tends to be much higher, often well above the 70% mark.

Note that the low absolute performance might also be ex-
plained, at least partially, with the imperfect quality of the
WordNetDomains(42) resource, which was generated by
a combination of automatic and manual procedures and did
no undergo extensive checking afterwards.

The second conclusion is that results show a constant
and definite improvement when higher values ofx are used,
despite the fact that higher levels ofx mean a higher num-
ber of labels per term, i.e. more polysemy. This is not
surprising, since when a term occurs e.g. in one document
only, this means that only one entry in the vector that rep-
resents the term is non-null (i.e. significant). This is in
sharp contrast with text categorization, in which the number
of non-null entries in the vector representing a document
equals the number of distinct terms contained in the doc-
ument, and is usually at least in the hundreds. This alone
might suffice to justify the difference in performance be-
tween term categorization and text categorization.

However, one reason the actualF1 scores are low is that
this is a hard task, and the evaluation standards we have
adopted are considerably tough. This is discussed in the
next paragraph.

No baseline? Note that we present no baseline, either
published or new, against which to compare our results, for
the simple fact that term categorization as we conceive it
here is a novel task, and there are as yet no previous results
or known approaches to the problem to compare with.

Only (Riloff and Shepherd, 1999; Roark and Charniak,
1998) have approached the problem of extending an ex-
isting thematic lexicon with new terms drawn from a text
corpus. However, there are key differences between their
evaluation methodology and ours, which makes compar-
isons difficult and unreliable. First, their “training” terms
have not been chosen randomly our of a thematic dictio-
nary, but have been carefully selected through a manual
process by the authors themselves. For instance, (Riloff
and Shepherd, 1999) choose words that are “frequent in
the domain” and that are “(relatively) unambiguous”. Of
course, their approach makes the task easier, since it allows
the “best” terms to be selected for training. Second, (Riloff
and Shepherd, 1999; Roark and Charniak, 1998) extract
the terms from texts that are known to be about the theme,
which makes the task easier than ours; conversely, by us-
ing generic texts, we avoid the costly process of labelling
the documents by thematic categories, and we are able
to generate thematic lexicons for multiple themes at once
from the same unlabelled text corpus. Third, their evalu-
ation methodology is manual, i.e. subjective, in the sense
that the authors themselves manually checked the results
of their experiments, judging, for each returned term, how
reasonable the inclusion of the term in the lexicon is7. This
sharply contrasts with our evaluation methodology, which
is completely automatic (since we measure the proficiency

7For instance, (Riloff and Shepherd, 1999) judged a word clas-
sified into a category correct also if they judged that “the word
refers to a part of a member of the category”, thereby judging
the wordscartridge and clips to belong to the domain
WEAPONS. This looks to us a loose notion of category mamber-
ship, and anyway points to the pitfalls of “subjective” evaluation
methodologies.
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# of # of training # of test # of minimum Precision Recall F1 Precision Recall F1

docs terms terms labels # of docs micro micro micro macro macro macro
per term per term

2,689 4,424 2,212 1.96 1 0.542029 0.043408 0.080378 0.584540 0.038108 0.071551
2,689 1,685 842 2.36 5 0.512903 0.079580 0.137782 0.487520 0.078677 0.135489
2,689 1,060 530 2.55 10 0.517544 0.086131 0.147685 0.560876 0.084176 0.146383

16,003 7,975 3,987 1.76 1 0.720165 0.049631 0.092863 0.701141 0.038971 0.073837
16,003 4,132 2,066 2.02 5 0.733491 0.075121 0.136284 0.738505 0.065472 0.120281
16,003 2,970 1,485 2.15 10 0.740260 0.091405 0.162718 0.758044 0.078162 0.141712

67,953 11,313 5,477 1.66 1 0.704251 0.043090 0.081211 0.692819 0.034241 0.065256
67,953 6,829 3,414 1.83 5 0.666667 0.040816 0.076923 0.728300 0.050903 0.095155
67,953 5,335 2,668 1.92 10 0.712406 0.076830 0.138701 0.706678 0.056913 0.105342
67,953 4,521 2,261 1.99 15 0.742574 0.086445 0.154863 0.731530 0.064038 0.117766
67,953 3,317 1,659 2.10 30 0.745455 0.098439 0.173913 0.785371 0.075573 0.137878
67,953 2,330 1,166 2.25 60 0.760417 0.117789 0.203982 0.755136 0.086809 0.155718

Table 2: Preliminary results obtained on the automated lexicon generation task (see Section 3.3. for details).

of our system at discovering terms about the theme, by the
capability of the system to replicate the lexicon genera-
tion work of a lexicographer), can be replicated by other
researchers, and is unaffected by possible experimenter’s
bias. Fourth, checking one’s results for “reasonableness”,
as (Riloff and Shepherd, 1999; Roark and Charniak, 1998)
do, means that one can only (“subjectively”) measure pre-
cision (i.e. whether the terms spotted by the algorithm do
in fact belong to the theme), but not recall (i.e. whether
the terms belonging to the theme have actually been spot-
ted by the algorithm). Again, this is in sharp contrast with
our methodology, which (“objectively”) measures preci-
sion, recall, and a combination of them. Also, note that in
terms of precision, i.e. the measure that (Riloff and Shep-
herd, 1999; Roark and Charniak, 1998) subjectively com-
pute, our algorithm fares pretty well, mostly scoring higher
than 70% even in these very preliminary experiments.

4. Related work
4.1. Automated generation of lexical resources

The automated generation of lexicons from text corpora
has a long history, dating back at the very least to the sem-
inal works of Lesk, Salton and Sparck Jones (Lesk, 1969;
Salton, 1971; Sparck Jones, 1971), and has been the subject
of active research throughout the last 30 years, both within
the information retrieval community (Crouch and Yang,
1992; Jing and Croft, 1994; Qiu and Frei, 1993; Ruge,
1992; Scḧutze and Pedersen, 1997) and the NLP commu-
nity (Grefenstette, 1994; Hirschman et al., 1988; Riloff
and Shepherd, 1999; Roark and Charniak, 1998; Tokunaga
et al., 1995). Most of the lexicons built by these works
come in the form ofcluster-based thesauri, i.e. networks
of groups of synonymous or quasi-synonymous words, in
which edges connecting the nodes represent semantic con-
tiguity. Most of these approaches follow the basic pattern
of (i) measuring the degree of pairwise similarity between
the words extracted from a corpus of texts, and (ii) clus-
tering these words based on the computed similarity val-
ues. When the lexical resources being built are of athe-
matic nature, the thematic nature of a word is usually es-
tablished by checking whether its frequency within the-

matic documents is higher than its frequency in generic
documents (Chen et al., 1996; Riloff and Shepherd, 1999;
Schatz et al., 1996; Sebastiani, 1999) (this property is often
calledsalience (Yarowsky, 1992)).

In the approach described above, the key decision
is how to tackle step (i), and there are two main ap-
proaches to this. In the first approach the similarity between
two words is usually computed in terms of their degree
of co-occurrence and co-absence within the same docu-
ment (Crouch, 1990; Crouch and Yang, 1992; Qiu and Frei,
1993; Scḧauble and Knaus, 1992; Sheridan and Ballerini,
1996; Sheridan et al., 1997); variants of this approach are
obtained by restricting the context of co-occurrence from
the document to the paragraph, or to the sentence (Schütze,
1992; Scḧutze and Pedersen, 1997), or to smaller linguis-
tic units (Riloff and Shepherd, 1999; Roark and Char-
niak, 1998). In the second approach this similarity is com-
puted from head-modifier structures, by relying on the as-
sumption that frequent modifiers of the same word are se-
mantically similar (Grefenstette, 1992; Ruge, 1992; Strza-
lkowski, 1995). The latter approach can also deal with indi-
rect co-occurrence8, but the former is conceptually simpler,
since it does not even need any parsing step.

This literature (apart from (Riloff and Shepherd, 1999;
Roark and Charniak, 1998), which are discussed below) has
thus taken anunsupervised learning approach, which can be
summarized in the recipe “from a set of documents about
themet and a set of generic documents (i.e. mostly not
aboutt), extract the words that mostly characterizet”. Our
work is different, in that its underlyingsupervised learn-
ing approach requires a starting kernel of terms aboutt, but
does not require that the corpus of documents from which

8We say that wordsw1 andw2 co-occur directly when they
both occur in the same document (or other linguistic context),
while we say that theyco-occur indirectly when, for some other
wordw3, w1 andw3 co-occur directly andw2 andw3 co-occur di-
rectly. Perfect synonymy is not revealed by direct co-occurrence,
since users tend to consistently use either one or the other syn-
onym but not both, while it is obviously revealed by indirect co-
occurrence. However, this latter also tends to reveal many more
“spurious” associations than direct co-occurrence.
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the terms are extracted be labelled. This makes our super-
vised technique particularly suitable forextending a previ-
ously existing thematic lexical resource, while the previ-
ously known unsupervised techniques tend to be more use-
ful for generating one from scratch. This suggests an in-
teresting methodology of (i) generating a thematic lexical
resource by some unsupervised technique, and then (ii) ex-
tending it by our supervised technique. An intermediate ap-
proach between these two is the one adopted in (Riloff and
Shepherd, 1999; Roark and Charniak, 1998), which also re-
quires a starting kernel of terms aboutt, but also requires a
set of documents about themet from which the new terms
are extracted.

As anyone involved in applications of supervised ma-
chine learning knows, labelled resources are often a bottle-
neck for learning algorithms, since labelling items by hand
is expensive. Concerning this, note that our technique is ad-
vantageous, since it requires an initial set of labelled terms
only in the first bootstrapping iteration. Once a lexical re-
source has been extended with new terms, extending it fur-
ther only requires a newunlabelled corpus of documents,
but no other labelled resource. This is different from the
other techniques described earlier, which require, for ex-
tending a lexical resource that has just been built by means
of them, a newlabelled corpus of documents.

A work which is closer in spirit to ours than the above-
mentioned ones is (Tokunaga et al., 1997), since it deals
with using previously classified terms as training examples
in order to classify new terms. This work exploits a naive
Bayesian model for classification in conjunction with an-
other learning method, chosen among nearest neighbour,
“category-based” (by which the authors basically mean a
Rocchio method – see e.g. (Sebastiani, 2002, Section 6.7))
and “cluster-based” (which does not use category labels of
training examples). However, these latter learning meth-
ods and (especially) the nature of their integration with the
naive Bayesian model are not specified in mathematical de-
tail, which does not allow us to make a precise compari-
son between the model of (Tokunaga et al., 1997) and ours.
Anyway, our model is more elegant, in that it just assumes
a single learning method (for which we have chosen boost-
ing, although we might have chosen any other supervised
learning method), and in that it replaces the ad-hoc notion
of “co-occurrence” with a theoretically sounder “dual” the-
ory of text indexing, which allows one, among other things,
to bring to bear any kind of intuitions on term weighting,
or any kind of text indexing theory, that are known from
information retrieval.

4.2. Boosting

Boosting has been applied to several learning tasks
related to text analysis, including POS-tagging and PP-
attachment (Abney et al., 1999), clause splitting (Carreras
and Màrquez, 2001b), word segmentation (Shinnou, 2001),
word sense disambiguation (Escudero et al., 2000), text
categorization (Schapire and Singer, 2000; Schapire et al.,
1998; Sebastiani et al., 2000; Taira and Haruno, 2001),
e-mail filtering (Carreras and Ḿarquez, 2001a), document
routing (Iyer et al., 2000; Kim et al., 2000), and term ex-
traction (Vivaldi et al., 2001). Among these works, the one

somehow closest in spirit to ours is (Vivaldi et al., 2001),
since it is concerned with extracting medical terms from a
corpus of texts. A key difference with our work is that the
features by which candidate terms are represented in (Vi-
valdi et al., 2001) are not simply the documents they occur
in, but the results of term extraction algorithms; therefore,
our approach is simpler and more general, since it does not
require the existence of separate term extraction algorithms.

5. Conclusion
We have reported work in progress on the semi-

automatic generation of thematic lexical resources by the
combination of (i) a dual interpretation of IR-style text in-
dexing theory and (ii) a boosting-based machine learning
approach. Our method does not require pre-existing seman-
tic knowledge, and is particularly suited to the situation in
which one or more preexisting thematic lexicons need to
be extended and no corpora of texts classified according to
the themes are available. We have run only initial experi-
ments, which suggest that the approach is viable, although
large margins of improvement exist. In order to improve the
overall performance we are planning several modifications
to our currently adopted strategy.

The first modification consists in performingfeature se-
lection, as commonly used in text categorization (Sebas-
tiani, 2002, Section 5.4). This will consist in individually
scoring (by means of theinformation gain function) all doc-
uments in terms of how indicative they are of the occur-
rence or non-occurrence of the categories we are interested
in, and to choose only the best-scoring ones out of a poten-
tially huge corpus of available documents.

The second avenue we intend to follow consists in try-
ing alternative notions of what a document is, by consid-
ering as “documents” paragraphs, or sentences, or even
smaller, syntactically characterized units (as in (Riloff and
Shepherd, 1999; Roark and Charniak, 1998)), rather than
full-blown Reuters news stories.

A third modification consists in selecting, as the neg-
ative examples of a categoryci, all the training examples
that are not positive examples ofci and are at the same
time positive examples of (at least one of) the siblings of
ci. This method, known as thequery-zoning method or as
the method of quasi-positive examples, is known to yield
superior performance with respect to the method we cur-
rently use (Dumais and Chen, 2000; Ng et al., 1997).

The last avenue for improvement is the optimization of
the parameters of the boosting process. The obvious param-
eter that needs to be optimized is the number of boosting it-
erations, which we have kept to a minimum in the reported
experiments. A less obvious parameter is the form of the
initial distribution on the training examples (that we have
not described here for space limitations); by changing it
with respect to the default value (the uniform distribution)
we will be able to achieve a better compromise between
precision and recall (Schapire et al., 1998), which for the
moment being have widely different values.
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Xavier Carreras and Lluı́s Màrquez. 2001b. Boosting trees
for clause splitting. InProceedings of CONLL-01, 5th
Conference on Computational Natural Language Learn-
ing, Toulouse, FR.

Hsinchun Chen, Chris Schuffels, and Rich Orwing. 1996.
Internet categorization and search: A machine learning
approach. Journal of Visual Communication and Im-
age Representation, Special Issue on Digital Libraries,
7(1):88–102.

Carolyn J. Crouch and Bokyung Yang. 1992. Experiments
in automated statistical thesaurus construction. InPro-
ceedings of SIGIR-92, 15th ACM International Confer-
ence on Research and Development in Information Re-
trieval, pages 77–87, Kobenhavn, DK.

Carolyn J. Crouch. 1990. An approach to the automatic
construction of global thesauri.Information Processing
and Management, 26(5):629–640.

Susan T. Dumais and Hao Chen. 2000. Hierarchical clas-
sification of Web content. InProceedings of SIGIR-00,
23rd ACM International Conference on Research and
Development in Information Retrieval, pages 256–263,
Athens, GR. ACM Press, New York, US.

Gerard Escudero, Lluı́s Màrquez, and German Rigau.
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