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Abstract
It has recently been proposed that term senses can be automatically ranked by how strongly they possess a given opinion-related property,
by applying PageRank, the well known random-walk algorithm lying at the basis of the Google search engine, to a graph in which nodes
are represented by eXtended WordNet synsets and links are represented by the binary relation si I sk (“the gloss of synset si contains
a term belonging to synset sk”). In other words, these properties are seen as “flowing” through this graph, from the definiendum (i.e.,
the synset being defined) to the definiens (i.e., a synset which occurs in the gloss of the definiendum), with PageRank controlling the
“hydraulics” of this flow. In this paper we contend that two other random-walk algorithms may be equally adequate to this task, and
provide an intuitive justification to support this claim. The first is a random-walk algorithm different from PageRank which we apply to
the “inverse” graph, i.e., with properties flowing from the definiens to the definiendum. The second algorithm is a bidirectional random-
walk algorithm, which assumes that properties may flow from the definiens to the definiendum and viceversa. We report results which
significantly improve on the ones obtained by simple PageRank.

1. Introduction

The automatic annotation of lexical items by means of
opinion-related properties (ORPs), such as positivity and
negativity, has recently attracted a lot of interest, due to in-
creased applicative interest in sentiment analysis and opin-
ion mining. While early works in this field (see e.g. (Hatzi-
vassiloglou and McKeown, 1997)) operated at the term
level (i.e., by assuming that ORPs qualify terms) and as-
sumed a binary model of annotation (i.e., lexical items ei-
ther possess or do not posses the property), more recent
works draw finer-grained distinctions, e.g., by working at
the term sense level (i.e., by assuming that ORPs qualify
term senses, or synsets) (Andreevskaia and Bergler, 2006a;
Esuli and Sebastiani, 2006; Ide, 2006; Wiebe and Mihal-
cea, 2006), and by assuming a graded model of annota-
tion (i.e., lexical items may possess the property only to a
certain degree) (Andreevskaia and Bergler, 2006b; Grefen-
stette et al., 2006; Kim and Hovy, 2004; Subasic and Huet-
tner, 2001).

In a recent paper (Esuli and Sebastiani, 2007) we have
contributed to this literature by proposing a method for au-
tomatically ranking term senses by how strongly they pos-
sess a given ORP. The method consists in applying PageR-
ank (Brin and Page, 1998), the well known random-walk
algorithm that lies at the basis of the Google search en-
gine, to a graph in which nodes are represented by Word-
Net synsets and links are represented by the binary rela-
tion si I sk (“the gloss of synset si contains a term be-
longing to synset sk”). The fact that the I relation is not
explicit in WordNet is circumvented by actually using eX-
tended WordNet (Harabagiu et al., 1999), a publicly avail-
able, automatically sense-disambiguated version of Word-
Net in which every term occurring in a gloss is replaced by
the synset it is deemed to belong to. The central hypoth-
esis on which (Esuli and Sebastiani, 2007) relies is that
the glosses of positive (resp. negative) synsets will mostly

contain terms belonging to positive (negative) synsets, and
that these properties may thus be seen as “flowing” through
the graph induced by the I relation, from the definiendum
(i.e., the synset si being defined) to the definiens (i.e., a
synset sk which occurs in the gloss of the definiendum),
with PageRank controlling the logic of this flow.

In this paper we contend that two other random-walk
algorithms, that we illustrate in the paper, may also be
plausible choices for controlling the logic of ORP flow.
The first is a random-walk algorithm different from PageR-
ank which is applied to the “inverse” graph, i.e., the graph
defined by the binary relation J with properties flowing
from the definiens to the definiendum. The second algo-
rithm is a bidirectional random-walk algorithm, which as-
sumes that properties may flow from the definiens to the
definiendum and viceversa. We report results which sig-
nificantly improve on the ones of (Esuli and Sebastiani,
2007).

The rest of the paper is organized as follows. In Sec-
tion 2. we briefly summarize the PageRank-based model
of ORP flow proposed in (Esuli and Sebastiani, 2007). In
Section 3. we present our modifications of this model, re-
sulting in two random-walk models each departing from
the purely PageRank-based in a different direction. Sec-
tion 4. describes the structure of our experiments and dis-
cusses the results we have obtained, comparing them to the
results obtained in (Esuli and Sebastiani, 2007). Section 5.
concludes, pointing at avenues of future research.

2. The PageRank model of ORP flow
Let G = 〈N,L〉 be a directed graph, with N its set
of nodes and L its set of directed links; let WI

0 be the
|N | × |N | adjacency matrix of G, i.e., the matrix such that
WI

0 [i, j] = 1 iff there is a link from node ni to node
nj . We will denote by B(i) = {nj | WI

0 [j, i] = 1}
the set of the backward neighbours of ni, and by F (i) =
{nj | WI

0 [i, j] = 1} the set of the forward neighbours



of ni. Let WI be the row-normalized adjacency ma-
trix of G, i.e., the matrix such that WI[i, j] = 1

|F (i)| iff
WI

0 [i, j] = 1 and WI[i, j] = 0 otherwise.
The input to PageRank is WI matrix (plus a vec-

tor e to be discussed later), and its output is a vector
a = 〈a1, . . . , a|N |〉, where ai represents the “score” of
node ni, which in our application measures the degree to
which ni has the ORP of interest. PageRank iteratively
computes a based on the formula

a
(k)
i ← α

∑
j∈B(i)

a
(k−1)
j

|F (j)|
+ (1− α)ei (1)

where a(k)
i denotes the value of ai at the k-th iteration, ei is

a constant such that
∑

i ei = 1, and 0 ≤ α ≤ 1 is a control
parameter. In vectorial form, Equation 1 can be written as

a(k) = αa(k−1)WI + (1− α)e (2)

The value of ei amounts to an internal source of score for
ni that is constant across the iterations and independent
from its backward neighbours. For instance, attributing a
null ei value to all but a few Web pages that are about a
given topic can be used in order to bias the ranking of Web
pages in favour of this topic (Haveliwala, 2003).

In (Esuli and Sebastiani, 2007) two different and inde-
pendent rankings are produced, one for positivity and one
for negativity. The ei values are used as internal sources of
positivity (resp. negativity) by attributing a null ei value to
all but a few “seed” synsets of renowned positivity (neg-
ativity). Through its iterations PageRank will thus make
positivity (negativity) flow from the seed synsets, from
which positivity flows out at a rate constant throughout the
iterations, into other synsets along the I relation (by using
the WI matrix defined on this relation), until a stable state
is reached; at this point the ai values can be used to rank
the synsets in terms of positivity (negativity).

(Esuli and Sebastiani, 2007) lists two main reasons why
PageRank seems to be a good model of ORP flow:

1. If terms contained in synset sk occur in the glosses
of many positive synsets, and if the positivity scores
of these synsets are high, then it seems likely that sk

is itself positive (the same happening for negativity),
which justifies the summation of Equation 1.

2. If the gloss of a positive synset that contains a term in
synset sk also contains many other terms, this seems
a weaker indication that sk is itself positive (which
justifies dividing by |F (j)| in Equation 1).

3. Revising the PageRank model
In the following we refer to the model proposed in (Esuli
and Sebastiani, 2007) as the direct flow model, and we
present two other alternative models.

3.1. The inverse flow model
The basic intuition in (Esuli and Sebastiani, 2007) is that
if a synset possesses a given ORP, then also the synsets

occurring in its gloss are likely to possess the same ORP;
this is modelled as a network flow in which the ORP flows
from the definiendum to the definiens along the I rela-
tion. However, starting from the same intuition it is equally
plausible to hypothesize an inverse flow model, in which it
is the synsets that occur in the gloss of the definiendum
that influence the definiendum itself, and not viceversa. In
this model the ORP thus flows from the definiens to the
definiendum, along the J relation (defined as the symmet-
ric relation of I).

We formalize the inverse flow model by the equation

a
(k)
i ← α

|B(i)|
∑

j∈B(i)

a
(k−1)
j + (1− α)ei (3)

whereB(i) is now derived from the adjacency matrix WJ
0

defined by the J relation.
We stress that the inverse flow model is characterized

not only by a different incidence matrix wrt the direct flow
model, but by a very different equation of the “hydraulics”
of ORP flow. In fact, Equation 3 states that node ai re-
ceives the average, and not the sum, of the scores of the
nodes that point to ai, modulo α and ei. In the case of in-
verse flow we consider this a reasonable assumption since:

1. If the gloss of a synset sk contains many terms that
belong to positive synsets, and if the positivity scores
of these synsets are high, then it seems likely that sk

is itself positive (the same happening for negativity),
which justifies the summation of Equation 3.

2. If the gloss of a synset si that contains a term belong-
ing to a positive synset sk also contains many other
terms, this seems a weaker indication that si is itself
positive (which justifies dividing by |B(i)| in Equa-
tion 3).

In order to write Equation 3 in matrix form we may ex-
ploit the fact that WJ

0 happens to be equal to (WI
0 )T ,

the transpose of WI
0 , and that applying the normalization

factor |B(i)| in Equation 3 is equivalent to performing col-
umn normalization on WJ

0 . Thus WJ = (WI)T , and
Equation 3 can be written in matrix form as

a(k) = αa(k−1)(WI)T + (1− α)e (4)

where WI is the row-normalized adjacency matrix used
for the direct flow model in Equation 2. This indicates that,
even if Equation 3 is very different from the equation that
originates PageRank (Equation 1), the inverse flow model
can anyway be computed by using PageRank, with the only
difference that the WI matrix of the direct model needs to
be replaced by its transpose (WI)T .

3.2. The bidirectional model
We have argued that both the direct flow and the inverse
flow models are reasonable models of how ORPs flow be-
tween synsets. Actually, in this analysis no argument has
been put forward that either model is better than the other,
or that the two models are mutually incompatible. It seems
thus plausible that a third, bidirectional flow model could



be hypothesized, in which ORPs flow from the definien-
dum to the definiens and vice versa, pretty much as in an
electrical network. A synset sk is thus seen to distribute its
positivity score both to the synsets which occur in its gloss
(the I relation) and to the synsets whose glosses contain
it (the J relation). The binary relation JI according to
which ORPs flow in the bidirectional model is thus defined
as JI≡J ∪ I. we formalize the bidirectional flow model
by the following equation:

a
(k)
i ← α

∑
j∈BI(i)

a
(k−1)
j

|FI(j)|
+ (5)

+
α

|BJ(i)|
∑

j∈BJ(i)

a
(k−1)
j + (1− α)ei

where the BI, FI, BJ and FJ are the neighbourhood
functions of the direct and inverse flow models.

The vectorial form of Equation 5 can be easily derived
by observing that the normalized matrix WJI for the bidi-
rectional flow model induced by Equation 5 is equal to
WI + (WI)T ; we thus obtain

a(k) = αa(k−1)(WI + (WI)T ) + (1− α)e (6)

Again, this formula shows that also the bidirectional flow
model can be computed using PageRank, with the only dif-
ference that the WI + (WI)T matrix needs to be used in
place of the WI matrix of the direct model and of the
(WI)T of the inverse model.

4. Experiments
In order to provide a fair comparison with the results of the
direct model as presented in (Esuli and Sebastiani, 2007),
the gold standard, evaluation function, choice of e vec-
tors, and experimental methodology discussed below are
exactly the same as in that paper, which can thus be con-
sulted for more detail on the experimental setting.

4.1. The e vector
As in (Esuli and Sebastiani, 2007), several alternative
choices of the e vector have been tested.

The first vector (hereafter dubbed e1) consists of all
values uniformly set to 1

|N | . This is the e vector that was
originally used in (Brin and Page, 1998), and brings about
an unbiased (that is, wrt particular properties) ranking of
WordNet. Of course, it is not meant to be used for ranking
by positivity or negativity; we have used it simply in order
to evaluate the impact of ORP-biased vectors for positivity
(negativity) ranking.

The first sensible, minimalistic definition of e (dubbed
e2) is that of a vector with uniform non-null ei scores for
the synsets that contain the adjective “good” (“bad”), and
null scores for all other synsets. A further, still fairly mini-
malistic definition (dubbed e3) is that of a vector with uni-
form non-null ei scores for the synsets that contain at least
one of the seven “paradigmatic” positive (negative) adjec-
tives used as seeds in (Turney and Littman, 2003), and null
scores for all other synsets.

We have also tested a more complex version of e, with
ei scores equal to the positivity (negativity) scores assigned

to synsets si in release 1.0 of SentiWordNet, normalized
so that

∑|N |
i=1 ei = 1. SentiWordNet (Esuli and Sebas-

tiani, 2006)1 is an automatically constructed lexical re-
source which assigns to each WordNet synset a positivity
score, a negativity score, and a neutrality score. In a sim-
ilar way we also produced a further e vector (dubbed e5)
by normalizing the scores, which we obtained from the au-
thors, of release 1.1 of SentiWordNet, which was gener-
ated through a slight modification of the approach that had
brought about release 1.0.

Finally, we have tested a way of combining the direct
and the inverse flow models which is inherently differ-
ent from the combination implemented in the bidirectional
model: we feed to the direct (resp., inverse) flow model a
vector e (dubbed e6) resulting from the best run (i.e., with
the optimal value of α – see Section 4.3.) of the inverse
(resp., direct) flow model. This method of combination
amounts to “concatenating” the flows of the direct and in-
verse flow model, rather than letting the two flows occur at
the same time.

4.2. The gold standard and the effectiveness measure
In order to evaluate the quality of the rankings produced
by our three alternative random-walk models we have used
the Micro-WNOp corpus as a gold standard2, according to
the same experimental protocol as used in (Esuli and Se-
bastiani, 2007). Micro-WNOp consists in a set of approx-
imately 1,000 WordNet synsets, each of which was manu-
ally assigned (by a research group different from our own)
a triplet of scores, one of positivity, one of negativity, one
of neutrality. We use a first group of 496 synsets (Group1)
as a validation set, i.e., in order to perform parameter opti-
mization, and a second group of 499 synsets (Group2) as
a test set, i.e., in order to evaluate our method once all the
parameters have been optimized.

The result of applying our three models to the various
graphs induced by the I, J and JI relations, given a vec-
tor e of internal sources of positivity (negativity) score and
a value for the α parameter, is a ranking of all WordNet
synsets in terms of positivity (negativity). By using differ-
ent e vectors and different values of α we obtain different
rankings, whose quality we evaluate by comparing them
against the ranking obtained from Micro-WNOp.

To evaluate the rankings produced by our models we
have used the p-normalized Kendall τ distance (noted τp
– see e.g., (Fagin et al., 2004)) between the gold stan-
dard rankings and the predicted rankings. For a prediction
which perfectly coincides with the gold standard, τp equals
0; for a prediction which is exactly the inverse of the gold
standard, τp is equal to 1.

See the full paper for more details on both Micro-
WNOp and τp.

4.3. The results
Table 1 shows the results obtained by our three models
with the different choices for the e vector as detailed in
Section 4.1.. PageRank is iterated until the cosine of the

1http://swn.isti.cnr.it/
2http://www.unipv.it/wnop/



Table 1: τp values obtained by the three proposed models;
I, J and JI indicate the direct, inverse, and bidirectional
models, respectively; ∆ indicates the improvement of each
model wrt the baseline (“B”), consisting of the ranking ob-
tained by the corresponding e vector before the application
of any ORP flow algorithm. Boldface indicates the best re-
sult obtained.

Ranking by positivity
e B I ∆ J ∆ JI ∆

e1 0.500 0.496 -0.8% 0.479 -4.2% 0.489 -2.1%
e2 0.500 0.467 -6.7% 0.435 -13.0% 0.457 -8.7%
e3 0.500 0.471 -5.8% 0.424 -15.1% 0.477 -4.7%
e4 0.349 0.325 -6.8% 0.292 -16.4% 0.312 -10.7%
e5 0.400 0.380 -4.9% 0.345 -13.6% 0.374 -6.4%
e6 – 0.292 0% 0.318 -2.1% – –

Ranking by negativity
e B I ∆ J ∆ JI ∆

e1 0.500 0.549 9.8% 0.461 -7.7% 0.506 1.2%
e2 0.500 0.502 0.3% 0.416 -16.8% 0.475 -5.1%
e3 0.500 0.495 -0.9% 0.387 -22.7% 0.452 -9.5%
e4 0.296 0.284 -4.3% 0.222 -25.0% 0.248 -16.4%
e5 0.407 0.393 -3.5% 0.270 -33.6% 0.319 -21.7%
e6 – 0.222 0% 0.241 -15.1% – –

angle between the vectors a(k) and a(k+1) generated by
two subsequent iterations is above a predefined threshold
χ (we use χ = 1 − 10−9). However, in order to limit the
amount of processing, we stop PageRank whenever this
condition has not been reached in 1000 iterations.

The results indicate the performance obtained on the
test set with the value of α that was determined optimal by
experimentation on the validation set; different values of α
may thus be used for different choices of e. The “B” (base-
line) column contains the values of τp as computed directly
on the e vector, i.e., before the application of PageRank.
The ∆ values shown to the right of each column denote
the relative improvement obtained by the method indicated
against the baseline (since low values of τp are better, an
improvement is indicated by a negative value).

Table 1 clearly indicates that the inverted flow model
always produces the best results, irrespectively of the
choice of the e vector. Moreover, the best absolute val-
ues for positivity (0.292) and negativity (0.222) show a
large improvement wrt their original e vectors (−16.4%
for positivity and −25.0% for negativity). This is relevant,
since they were obtained with vectors e4 (the ones derived
from SentiWordNet 1.0); in other words, the improvement
is obtained with respect to an already high-quality lexi-
cal resource for ORPs, obtained by the same techniques
that, at the term level, are still the best-known performers
for polarity detection on the widely used General Inquirer
benchmark (Esuli and Sebastiani, 2005).

Although the direct flow model of (Esuli and Sebas-
tiani, 2007) also improves with respect to the baseline, the
inverted flow model is largely superior to it (the latter im-
proving on the former by 10.1% on positivity and by 21.8%
on negativity). Concerning the bidirectional flow model,

while it also outperforms the direct flow model, it does so
less markedly than the inverse model does; in the light of
the previously discussed results this is unsurprising, given
that it is a combination of the other two models.

The superiority of the inverse flow model is also ap-
parent from the results of the e6 experiments. Here, the
inverse flow model as applied to the best vector resulting
from the direct flow model manages to improve the quality
of this vector (by 2.1% on positivity and by 15.1% on neg-
ativity), but still underperforms wrt the best result it has
obtained (on e4). On the contrary, the direct flow model
as applied to the best vector resulting from the inverse flow
model leaves the vectors unchanged. A closer inspection of
this latter result shows that the value of α that performed
optimally in this case was α = 0, which corresponds to
. . . leaving the e vector unchanged, i.e., renouncing to let
ORPs flow through the network. All values of α > 0 man-
aged instead to obtain an inferior performance wrt the best
performance obtained by the inverse model.

4.4. Anecdotal evaluation
An analysis of the top-ranked synsets returned by each
model according to positivity and negativity (not reported
for reasons of space – see the full paper for details) shows
that some of the top-ranked synsets for the direct flow
model, especially for the ranking by positivity, contain
function words, such as the verbs “to be” and “to have”,
or words that simply occur frequently within glosses, such
as “quality” or “capable”. These synsets receive many in-
coming links in the direct flow model, and this pushes them
up in the ranking3.

This phenomenon does not appear in the inverse flow
model. For example, the synsets that appear in the glosses
of verbs such as “to be” are unlikely to be ORP-loaded;
such verbs thus obtain a low score. In the full paper we
show that the inverse flow model top-ranks those glosses
which are almost exclusively composed of semantically
oriented terms. Again, the bidirectional flow model trades
off between the other two models, producing a ranking
which appears to mix the characteristics of the other two.

5. Conclusion
We have presented two novel random-walk models for
ranking WordNet synsets according to how strongly they
possess a given ORP; the difference between the two mod-
els and the direct flow model proposed in (Esuli and Se-
bastiani, 2007) lies not only in the (obviously different)
incidence matrix, but also in the different equations that
determine the “hydraulics” of ORP flow. However, by ex-
ploiting properties of the row-normalized incidence matrix
of the inverse flow model, all the three models can be re-
cast in terms of the application of PageRank to different
matrixes.

We have shown that the inverse flow model here pro-
posed is significantly superior to the direct flow model

3In order to solve this problem we have also tested a version of
the direct flow model in which synset sk receives the average, and
not the sum, of the contributions of the synsets si such that si I
sk; however, this has produced inferior results wrt the standard
direct flow model.



proposed in (Esuli and Sebastiani, 2007). We have pre-
sented comparative results that show, both in a quantita-
tive and qualitative way, the superiority of the inverse flow
model. We can thus confidently assert that ORPs may best
be seen as flowing from definiens to definiendum, and not
vice versa, as instead hypothesized in (Esuli and Sebas-
tiani, 2007).

We have applied and discussed our models in the con-
text of opinion-related properties of synsets. However, we
conjecture that these models can be of more general use,
i.e., for the determination of other semantic properties of
term senses, such as membership in a domain (Magnini
and Cavaglià, 2000).

In the future we plan to re-apply the same algorithms
to the forthcoming manually sense-disambiguated version
of WordNet. This will allow to eliminate the effect of the
noise introduced in eXtended WordNet by the automatic
sense disambiguation phase, and test whether the results
of this paper are valid also when “correct”, manually dis-
ambiguated glosses are used.
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