
On the Selection of Negative Examples for Hierarchical Text Categorization

Tiziano Fagni and Fabrizio Sebastiani

Istituto di Scienza e Tecnologie dell’Informazione – Consiglio Nazionale delle Ricerche
Via Giuseppe Moruzzi, 1 – 56124 Pisa, Italy
{tiziano.fagni,fabrizio.sebastiani}@isti.cnr.it

Abstract
Hierarchical text categorization (HTC) approaches have recently attracted a lot of interest on the part of researchers in human language
technology and machine learning, since they have been shown to bring about equal, if not better, classification accuracy with respect
to their “flat” counterparts while allowing exponential time savings at both learning and classification time. A typical component of
HTC methods is a “local” policy for selecting negative examples: given a category c, its negative training examples are by default
identified with the training examples that are negative for c and positive for the categories sibling to c in the hierarchy. However, this
policy has always been taken for granted and never been subjected to careful scrutiny since first being proposed ten years ago. This
paper proposes a thorough experimental comparison between this policy and three other policies for the selection of negative examples
in HTC contexts, one of which (BESTLOCAL(k)) is being proposed for the first time in this paper. We compare these policies on the
hierarchical versions of two among the most important classes of supervised learning algorithms, boosting and support vector machines,
by performing experiments on two standard TC datasets, REUTERS-21578 and RCV1-V2.

1. Introduction
Given a set of textual documents D and a predefined set
of categories (aka labels, or classes) C = {c1, . . . , cm},
multi-label (aka n-of-m) text classification (TC) is the task
of approximating, or estimating, an unknown target func-
tion Φ : D × C → {−1,+1}, that describes how doc-
uments ought to be classified, by means of a function
Φ̂ : D × C → {−1,+1}, called the classifier”. Here,
“multi-label” indicates that the same document can belong
to zero, one, or several categories at the same time.

Hierarchical text classification (HTC) refers to a vari-
ant of the TC task, namely, that in which the set C of
the categories is organized into a hierarchy; this may ei-
ther be a tree or a directed acyclic graph (DAG). HTC ap-
proaches have recently attracted a lot of interest on the part
of researchers in human language technology and machine
learning, since they have been shown to bring about equal,
if not better, classification accuracy with respect to their
“flat” counterparts while allowing exponential time sav-
ings at both learning and classification time.

Multi-label HTC is usually implemented by generating
a binary classifier for each nonroot node in the hierarchy
(be it an internal or a leaf node); the role of this classi-
fier is to decide whether the test document belongs or not
to the category associated with the node. Classification is
then performed in “Pachinko machine” style (Koller and
Sahami, 1997): the test document is first submitted to the
classifiers corresponding to the top-level nodes, and recur-
sively percolates down to (i.e., is submitted to the classi-
fiers corresponding to the nodes in) the lower levels of the
hierarchy only if the classifiers at the higher levels have
deemed that the document belong to their associated cat-
egory. In this way, entire subtrees are pruned from con-
sideration, which allows exponential savings at classifica-
tion time (Koller and Sahami, 1997). This is fundamen-
tal when tackling classification tasks characterised by very
high numbers of categories, as is the case e.g., of the YA-
HOO dataset (Liu et al., 2005), which all contain tens of
thousands of categories.

Exponential savings can also be accomplished at learn-
ing time. One way for achieving this is adopting a “local”
policy for selecting negative examples: given a category
c, its negative training examples are identified with the
training examples that are negative for c and positive for

the categories sibling to c in the hierarchy. However, this
policy (hereafter called the SIBLINGS policy) has always
been taken for granted and never been subjected to careful
scrutiny since first being proposed in (Wiener et al., 1995).

This paper proposes a thorough experimental com-
parison between this policy and three other policies for
the selection of negative examples in HTC, one of which
(BESTLOCAL(k)) is being proposed for the first time in
this paper. We provide an intuitive basis for these policies
and test them on the hierarchical versions of two among the
most important classes of supervised learning algorithms,
boosting and support vector machines, by performing ex-
periments on two standard TC datasets: (a hierarchical ver-
sion of) a small dataset consisting of approximately 11,000
documents (REUTERS-21578), and a very large dataset of
more than 800,000 documents (RCV1-V2).

The paper is organized as follows. In Section 2. we
outline the basic scheme for learning hierarchical text clas-
sifiers that, in our experiments, we will instantiate with
boosting and SVMs as base learners. Section 3. describes
in detail the four policies for the selection of negative train-
ing examples, while Section 4. describes the comparative
experiments we have run. Section 5. concludes.

2. A pattern for multi-label HTC
In this section we describe the basic pattern to which we
will conform in building a hierarchical classifier as a hier-
archy of standard binary classifiers. Let us first fix some
notation. Let H = 〈I, L〉 be a tree-structured set of cate-
gories, where I = 〈〈i1, T r+(i1)〉, . . . , 〈in, T r+(in)〉〉 and
L = 〈〈l1, T r+(l1)〉, . . . , 〈lm, T r+(lm)〉〉 are the sets of
categories of H corresponding to the internal nodes (here-
after: internal categories) and the leaf nodes (leaf cate-
gories) of H , respectively, together with their sets of pos-
itive training examples, and r ∈ I is the root category of
H . For each category cj ∈ H we will use the following
abbreviations:

Symbol Meaning
Tr+(cj) the set of positive training examples of cj
Tr−(cj) the set of negative training examples of cj
↑(cj) the parent category of cj
↓(cj) the set of children categories of cj
⇓(cj) the set of descendant categories of cj
↔(cj) the set of sibling categories of cj

procedure TREELEARNER(H,r,np,learner)
begin

if not (r is a leaf category) then
foreach child in ↓(r) do

Tr−(child) = getNegatives(H, r, child,
np);
train(child, learner);
TREELEARNER(H, child, np, learner);

end
else

do nothing;
end

end

Figure 1: The TREELEARNER scheme; H , r, np, and
learner indicate the hierarchy, its root, the chosen policy
for the selection of negative training examples, and the
chosen learner, respectively.

We also assume that documents can belong to zero, one,
or several leaf categories in L, and that the set of positive
examples of an internal category ij is always given by the
union of the positive examples of its descendant leaf cat-
egories. In other words, an internal category can contain
no documents that do not belong to at least one of its de-
scendant leaf categories. This is a common constraint in
many HTC applications, but the assumption is not restric-
tive anyway. When it comes to training examples, it thus
follows that

Tr+(cj) =
⋃

l∈⇓(cj)

Tr+(l)

We assume that all training examples belong to at least one
leaf category lj ∈ L; the training set Tr thus coincides
with ∪lj∈LTr+(lj).

Figure 1 describes the basic scheme (called TREE-
LEARNER) to which we conform in building a hierarchical
classifier. A base learner that generates binary classifiers
is passed as a parameter to TREELEARNER; in Section 4.
we will alternatively instantiate the pattern by a boosting-
based learner or by an SVM-based learner. Also the pol-
icy for the selection of negative examples is passed as a
parameter to TREELEARNER; this will allow us to com-
pare experimentally the four different policies mentioned
above. The scheme is a recursive procedure which, for
each nonroot (internal or leaf) category cj , generates a bi-
nary classifier from Tr+(cj) and the chosen Tr−(cj).

3. Choosing negative examples in HTC
In this work we have tested four different strategies for se-
lecting negative training examples for a given category. In
the following we give a description of the strategies used
and we try to explain the key ideas behind each policy.
Moreover, for each proposed method, we give details about
its computational cost by describing the cost of selecting
negative documents for each category and the impact that
the number of selected examples has on the learning phase.

3.1. The SIBLINGS policy
According to the SIBLINGS policy the set of negative train-
ing examples for category cj is chosen among the training
examples that are not positive for cj and may be assumed
to be most correlated to cj on topological grounds alone.
That is, it is composed of all the training examples which

are not positive for cj and positive for the categories sibling
of cj : i.e.,

Tr−(cj) =

 ⋃
c∈↔(cj)

Tr+(c)

 \ Tr+(cj) (1)

There are two main intuitions behind this policy. The first
intuition is that, if the classifier associated to ↑(cj) has
generated no false positives, the classifier associated to cj
will only be asked to classify documents that belong to cj
and/or one or more among its siblings. If this is the case,
it is clear that including in Tr−(cj) documents that are
neither positive for cj nor for any of its siblings would
distract the classifier from focusing on the only distinc-
tion that matters in this context, i.e., that between cj and
its siblings. The second intuition is that this is the policy
that most closely conforms to the divide et impera view of
HTC at the base of the TREELEARNER scheme, in which
the multi-label problem of classifying documents into a hi-
erarchy H = 〈I, L〉 is decomposed into several flat classi-
fication problems, one for each ij ∈ I , in which the set of
categories concerned is ↓(ij).

The SIBLINGS policy, originally proposed in (Wiener
et al., 1995), was subsequently adopted in, e.g., (Dumais
and Chen, 2000; Liu et al., 2005; Ng et al., 1997; Ruiz and
Srinivasan, 2002), and quickly became the standard choice
for HTC contexts.

3.2. The ALL policy
According to the ALL policy the set Tr−(cj) of negative
training examples for category cj is simply the entire train-
ing set minus the positive training examples of cj , i.e.,

Tr−(cj) = Tr \ Tr+(cj) (2)

In a sense, ALL is a “brute force” policy that disregards
the hierarchical structure of the set of categories, treating
the HTC problem as a flat classification problem in which
no particular selection criterion is used. This policy is fre-
quently used whenever the HTC classification problem is
not decomposed into recursively smaller flat classification
problems (as in, e.g., (Kiritchenko et al., 2006)).

Again, there are two main intuitions behind the ALL
policy. The first is that it is generally the case that the clas-
sifier associated to ↑(cj) may indeed generate some false
positives, typically corresponding to documents that be-
long neither to cj nor to any of its siblings, but to some
other category in H . In this case, if the classifier for cj
had been trained (according to the SIBLINGS policy) only
with training examples belonging to ↑(cj), it might be un-
equipped to correctly recognize (i.e., reject) documents
that are very different from the ones it has been tested on.

The second intuition is that “the more training data, the
better”, i.e., that using additional (albeit negative) training
examples may only bring about equally or more accurate
classifiers, provided efficiency is not an issue.

3.3. The BESTGLOBAL policy
The third policy we discuss, dubbed BESTGLOBAL, has
similarities to SIBLINGS in that it tries to substantially limit
the size of Tr−(cj), and has similarities to ALL in that
it disregards the hierarchical structure of the category set,
thus basing the selection process on non-topological con-
siderations. While it has never been used to date in a hi-
erarchical context, BESTGLOBAL simply coincides with
the “query zoning” selection strategy proposed in (Singhal

et al., 1997) for flat classification, and subsequently used
in (Schapire et al., 1998).

In order to implement BESTGLOBAL one first com-
putes the centroid of Tr+(cj), i.e., the document ζ(cj)
whose vectorial representation is obtained by1

ζ(cj) =
1

|Tr+(cj)|
∑

dp∈Tr+(cj)

dp (3)

Tr−(cj) is then defined as the set of the βj documents in
Tr\Tr+(cj) that minimize the distance from this centroid,
according to some measure δ of vector distance; i.e.,

Tr−(cj) = arg
βj

min
dn∈Tr\Tr+(cj)

δ(ζ(cj), dn)

where arg
z

min
A
f indicates the bottom-ranked z elements

of A according to function f . The rationale behind this
policy is that the documents thus selected may be viewed
as “near-positives” for cj , i.e., documents that tend to lie
just outside the region where the positive examples lie. As
such, they tend to be the most informative negative train-
ing documents since they allow a learner to fine-tune the
choice of a classifier, i.e., of a surface that separates the
above region from that of the negative examples. In this,
the notion of a near-positive training example is akin to the
notion of support vector in kernel machines.

Note that also the SIBLINGS policy may be viewed
as a policy for the selection of near-positives. The dif-
ference with BESTGLOBAL is that SIBLINGS makes this
choice based on topological considerations alone, i.e., by
making the assumption that the negative documents of cj
that are most similar to the positive documents of cj are
likely to be the positive documents of cj’s siblings. BEST-
GLOBAL instead equates similarity with closeness in the
vector space in which the documents are represented. SIB-
LINGS is thus a policy specific to a hierarchical setting,
while BESTGLOBAL is not.

3.4. The BESTLOCAL(k) policy
We here propose a fourth selection policy (dubbed
BESTLOCAL(k)), that essentially consists in a variant of
BESTGLOBAL aimed at improving the selection of nega-
tive training examples for categories that are not linearly
separable.

The disadvantage of the BESTGLOBAL policy is that
the centroid of Tr+(cj) may be too coarse a representation
of the region of the negative examples of cj . If cj is linearly
separable the centroid is an optimal such representation; if
cj is not (i.e., if the separating surface in the vector space
has a complex form), the BESTGLOBAL policy will select
some negative examples that are in fact far away from the
separating surface, and will miss some negative examples
that are instead close to it.

A solution to this problem might be that of selecting
the βj negative training examples whose distance from any
element of Tr+(cj) is minimum. In other words, if we de-
fine the closest cj-positive training neighbour of document
dn to be

χ(dn) = arg min
dp∈Tr+(cj)

δ(dn, dp)

1In order to simplify the notation, in this paper we will indi-
cate by the same symbol dj a document or its vectorial represen-
tation; the intended meaning will be clear from the context.

our policy selects the βj negative training documents dn
closest to χ(dn), i.e.

arg
βj

min
dn∈Tr\Tr+(cj)

δ(χ(dn), dn)

We call this policy BESTLOCAL(1). This policy avoids
selecting examples that, while close to the centroid of
Tr+(cj), are too far from the separating surface, and miss-
ing examples that, while far from the centroid of Tr+(cj),
are very close to the separating surface.

A generalization of this policy is obtained by select-
ing the βj negative training examples dn minimizing the
sum of the distances from dn and its closest k elements
of Tr+(cj). In other words, if we define the k closest cj-
positive training neighbours of document dn to be

χk(dn) = arg
k

min
dp∈Tr+(cj)

δ(dn, dp)

our policy selects the βj negative training documents dn
for whom the sum of the distances between dn and each of
the χk(dn) is minimum, i.e.

arg
βj

min
dn∈Tr\Tr+(cj)

∑
dp∈χk(dn)

δ(dp, dn)

We call this policy BESTLOCAL(k). This policy trades
the specificity (i.e, the ability to individuate documents ex-
tremely close to the separating surface) of BESTLOCAL(1)
for the robustness (i.e., the ability to avoid outliers) of
BESTGLOBAL, and may be seen as an attempt to “smooth”
BESTLOCAL(1) by insisting that, in order to be selected, a
negative example must be close not to just one but to sev-
eral elements of Tr+(cj).

Similarly to what happens for the BESTGLOBAL
policy, also the negative examples selected by
BESTLOCAL(k) allow a learner to fine-tune the choice
of a surface that separates the positive region from the
negative region, and in this case too these examples play a
role akin to the support vector in kernel machines. In this
case the k parameter is used to trade the fit of the model
for its simplicity, i.e., its generalization capability: lower
numbers of k bring about complex separating surfaces that
may tend to overfit the training data, while higher values
of k bring about simple separating surfaces that fit the
model less but tend to be more robust.

4. Experiments
The first dataset we have used in our experiments is the
“REUTERS-21578, Distribution 1.0” corpus, one of the
most widely used datasets in TC research. In origin, the
REUTERS-21578 category set is not hierarchically struc-
tured, and is thus not suitable “as is” for HTC experiments;
we have thus used a hierarchical version of it generated
in (Toutanova et al., 2001) by the application of hierarchi-
cal agglomerative clustering on the 90 REUTERS-21578
categories that have at least one positive training example
and one positive test example. The original REUTERS-
21578 categories are thus “leaf” categories in the resulting
hierarchy, and are clustered into four “macro-categories”
whose parent category is the root of the tree.

The second dataset we have used is REUTERS CORPUS
VOLUME 1 version 2 (RCV1-V2), consisting of 804,414
news stories. The RCV1-V2 hierarchy is four levels deep

(including the root, to which we conventionally assign
level 0); there are four internal nodes at level 1, and the
leaves are all at the levels 2 and 3.

As the base learner for the TREELEARNER proce-
dure we have decided to use an SVM-based learner and a
boosting-based learner, since kernel machines and boost-
ing are currently two among the classes of supervised
learning devices that tend to obtain the best performance
in a variety of learning tasks and, at the same time, have
strong justifications from computational learning theory.
The first learner is the SVM implementation embodied in
the svm light package 2, which we have run with a lin-
ear kernel and its parameters set at their default values.
In the experiments this configuration will be referred to
as TREESVM. The other algorithm we have used is MP-
Boost (Esuli et al., 2006), a learner based on boosting tech-
nology, which we have obtained from the authors. In all
the experiments we have run MP-Boost with a number of
iterations fixed to 1,000. In the rest of the article this con-
figuration will be referred to as TREEBOOST.

As a measure of effectiveness that combines the con-
tributions of precision (π) and recall (ρ) we have used the
well-known F1 function, defined as

F1 =
2πρ
π + ρ

=
2TP

2TP + FP + FN
(4)

We compute both microaveraged F1 (denoted by Fµ1) and
macroaveraged F1 (FM1). Of course, only leaf categories
are considered in the evaluation.

4.1. Results
While the number βj = |Tr−(cj)| of negative training ex-
amples chosen for each category cj is not under user con-
trol for the ALL and SIBLINGS policies, it can be set by
the user for BESTGLOBAL and BESTLOCAL(k). In order
to allow a fair comparison between SIBLINGS (as argued in
the introduction, the main focus of our comparative study)
and BESTGLOBAL / BESTLOCAL(k), for these two latter
policies we always choose the same number βj of nega-
tive training examples as selected by the SIBLINGS policy.
Of course, different βj are thus chosen for different cate-
gories.

Before comparing the four policies we need to analyze
more in detail the BESTLOCAL(k) policy and how it de-
pends on the k parameter. In Figures 2 and 3 we show how
BESTLOCAL(k) behaves as a function of k on REUTERS-
21578 and RCV1-V2. We have tested all integer values of
k up to 20 by five-fold cross-validation on the training set.
As evident from these plots, BESTLOCAL(k) proves fairly
insensitive to the value of k, both for micro- and macroav-
eraged F1 and on both datasets. Only on the RCV1-V2
dataset macroaveraged F1 seems to decrease slightly as the
value of k increases. These results suggest setting k to a
low value; we have thus fixed it to 1 for all our experiments.

Table 1 shows the results obtained with the four poli-
cies discussed, on REUTERS-21578 and on RCV1-V2,
with TREEBOOST and with TREESVM; Table 2 summa-
rizes these results by averaging across datasets and learn-
ers. The most important observation we can make from
Table 1 is that ALL is always the winner in terms of preci-
sion and SIBLINGS is always the winner in terms of recall.

2http://svmlight.joachims.org/

2 4 6 8 10 12 14 16 18 20
Number of best local positives

0.4

0.5

0.6

0.7

0.8

F1

0.4

0.5

0.6

0.7

0.8

TreeBoost: MicroF1
TreeBoost: MacroF1
TreeSvm: MicroF1
TreeSvm: MacroF1

Figure 2: Influence of parameter k on the effectiveness of
the BESTLOCAL(k) policy on REUTERS-21578.

2 4 6 8 10 12 14 16 18 20
Number of best local positives

0.4

0.5

0.6

0.7

0.8

F1

0.4

0.5

0.6

0.7

0.8

TreeBoost: MicroF1
TreeBoost: MacroF1
TreeSvm: MicroF1
TreeSvm: MacroF1

Figure 3: Influence of parameter k on the effectiveness of
the BESTLOCAL(k) policy on RCV1-V2.

When it comes to balancing precision and recall into F1,
however, the situation is more uncertain, with SIBLINGS
and ALL winning out as best performers in approximately
the same number of cases. However, Table 2 shows that, in
the average, (i) SIBLINGS performs better than ALL, and
(ii) BESTGLOBAL and BESTLOCAL(k), while never the
best performers, always perform fairly well, actually bet-
ter than ALL on average.

However, the key observation to be made is that the dif-
ferences in effectiveness (both for Fµ1 and for FM1) among
the four methods are pretty small anyway: more precisely,
they are very small on REUTERS-21578 and slightly more
marked in RCV1-V2, in particular for FM1 .

5. Conclusions
In the absence of a clear winner in terms of effectiveness,
efficiency considerations should also be considered. The
computational cost that the different policies bring about
depends on (i) the number of negative examples that are
fed to the training phase, and (ii) the cost of selecting these
negative examples.

In terms of issue (i), ALL is clearly more expen-
sive than SIBLINGS. While the average number of neg-
ative training examples per category generated by the
ALL policy was 7583.6 on REUTERS-21578 and 22419.3

πµ ρµ Fµ1 πM ρM FM1
TREEBOOST

ALL .840 .823 .831 .835 .525 .547
SIBLINGS .810 .842 .826 .747 .538 .540

BESTGLOBAL .818 .824 .821 .804 .532 .545
BESTLOCAL(1) .830 .828 .829 .812 .528 .547

TREESVM
ALL .912 .805 .855 .961 .376 .433

SIBLINGS .898 .825 .860 .951 .402 .458
BESTGLOBAL .906 .810 .855 .960 .379 .436

BESTLOCAL(1) .902 .811 .854 .959 .379 .434

πµ ρµ Fµ1 πM ρM FM1
TREEBOOST

ALL .854 .685 .760 .690 .389 .471
SIBLINGS .771 .726 .748 .569 .469 .492

BESTGLOBAL .777 .699 .736 .594 .408 .455
BESTLOCAL(1) .794 .707 .748 .597 .427 .474

TREESVM
ALL .945 .627 .754 .892 .229 .387

SIBLINGS .881 .694 .776 .807 .410 .479
BESTGLOBAL .902 .664 .765 .835 .332 .411

BESTLOCAL(1) .925 .658 .769 .865 .336 .422

Table 1: Results on REUTERS-21578 (top) and RCV1-V2
(bottom).

πµ ρµ Fµ1 πM ρM FM1
ALL .894 .705 .785 .837 .377 .446

SIBLINGS .878 .728 .792 .822 .397 .457
BESTGLOBAL .886 .716 .788 .830 .387 .452

BESTLOCAL(1) .886 .716 .788 .830 .387 .452

Table 2: Results averaged across two datasets (REUTERS-
21578 and RCV1-V2) and two hierarchical learners
(TREEBOOST and TREESVM).

on RCV1-V2, the SIBLINGS policy generated 2435.7 on
REUTERS-21578 and 4383.8 on RCV1-V2 (i.e., 68% less
on REUTERS-21578 and 80% less on RCV1-V2). Since
the computational cost of training is, for most supervised
learning algorithms, at least linear in the number of train-
ing examples (it is certainly so for the two base learners
we have used in our experiments: see (Joachims, 2006;
Esuli et al., 2006)) this translates in a considerable advan-
tage for SIBLINGS at training time. Concerning BEST-
GLOBAL and BESTLOCAL(k) nothing can be said con-
cerning this aspect, since the number of negative training
examples that are selected is chosen by the user. How-
ever, BESTGLOBAL and BESTLOCAL(k) are akin in spirit
to SIBLINGS, in that their very aim is the reduction of the
number of negative training examples to be selected; we
may thus consider them on a par with SIBLINGS.

In terms of issue (ii), however, ALL and SIBLINGS are
the clear winners, since they do not require any extra time
for individuating the negative training examples. For this
BESTGLOBAL and BESTLOCAL(k) instead require con-
siderable additional time. If we indicate with αj and βj
the numbers of positive and (selected) negative training
examples for cj , BESTGLOBAL requires, for each cate-
gory, O(αj) sums of vectors for computing the centroid
and O(βj log βj) vector similarity computations for rank-
ing the set of negative training examples. BESTLOCAL(k)
is even more expensive, requiring O(αjβj) vector sim-
ilarity computations for obtaining the χ(dn) values and

O(βj log βj) comparisons for finally choosing the negative
training examples.

All in all, on grounds of efficiency alone SIBLINGS
wins on the other three policies. Since it is also one of
the two most effective policies, this means it should indeed
be the policy of choice in HTC applications.

Acknowledgments
This work was carried out in the context of the “Networked
Peers for Business” (NeP4B) project, funded by the Italian
Ministry of University and Research.

6. References
Dumais, Susan T. and Hao Chen, 2000. Hierarchical classifica-

tion of web content. In Proceedings of the 23rd ACM Interna-
tional Conference on Research and Development in Informa-
tion Retrieval (SIGIR’00). Athens, GR.

Esuli, Andrea, Tiziano Fagni, and Fabrizio Sebastiani, 2006.
MP-Boost: A multiple-pivot boosting algorithm and its appli-
cation to text categorization. In Proceedings of the 13th In-
ternational Symposium on String Processing and Information
Retrieval (SPIRE’06). Glasgow, UK.

Joachims, Thorsten, 2006. Training linear SVMs in linear time.
In Proceedings of the 12th ACM International Conference on
Knowledge Discovery and Data Mining (KDD’06). Philadel-
phia, US.

Kiritchenko, Svetlana, Stan Matwin, Richard Nock, and A. Fazel
Famili, 2006. Learning and evaluation in the presence of class
hierarchies: Application to text categorization. In Proceed-
ings of the 19th Canadian Conference on Artificial Intelligence
(AI’06). Québec City, CA.

Koller, Daphne and Mehran Sahami, 1997. Hierarchically clas-
sifying documents using very few words. In Proceedings
of the 14th International Conference on Machine Learning
(ICML’97). Nashville, US.

Liu, Tie-Yan, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng
Chen, and Wei-Ying Ma, 2005. Support vector machines clas-
sification with a very large-scale taxonomy. SIGKDD Explo-
rations, 7(1):36–43.

Ng, Hwee T., Wei B. Goh, and Kok L. Low, 1997. Feature se-
lection, perceptron learning, and a usability case study for text
categorization. In Proceedings of the 20th ACM International
Conference on Research and Development in Information Re-
trieval (SIGIR’97). Philadelphia, US.

Ruiz, Miguel and Padmini Srinivasan, 2002. Hierarchical text
classification using neural networks. Information Retrieval,
5(1):87–118.

Schapire, Robert E., Yoram Singer, and Amit Singhal, 1998.
Boosting and Rocchio applied to text filtering. In Proceed-
ings of the 21st ACM International Conference on Research
and Development in Information Retrieval (SIGIR’98). Mel-
bourne, AU.

Singhal, Amit, Mandar Mitra, and Chris Buckley, 1997. Learning
routing queries in a query zone. In Proceedings of the 20th
ACM International Conference on Research and Development
in Information Retrieval (SIGIR’97). Philadelphia, US.

Toutanova, Kristina, Francine Chen, Kris Popat, and Thomas
Hofmann, 2001. Text classification in a hierarchical mixture
model for small training sets. In Proceedings of the 10th
ACM International Conference on Information and Knowl-
edge Management (CIKM’01). Atlanta, US.

Wiener, Erik D., Jan O. Pedersen, and Andreas S. Weigend, 1995.
A neural network approach to topic spotting. In Proceedings
of the 4th Annual Symposium on Document Analysis and In-
formation Retrieval (SDAIR’95). Las Vegas, US.

