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Abstract. The construction of a text classifier usually involves (i) a
phase of term selection, in which the most relevant terms for the clas-
sification task are identified, (ii) a phase of term weighting, in which
document weights for the selected terms are computed, and (iii) a phase
of classifier learning, in which a classifier is generated from the weighted
representations of the training documents. This process involves an ac-
tivity of supervised learning, in which information on the membership of
training documents in categories is used.
Traditionally, supervised learning enters only phases (i) and (iii). In this
paper we propose instead that learning from the training data should
also affect phase (ii), i.e. that information on the membership of training
documents to categories be used to determine term weights. We call
this idea supervised term weighting (STW). As an example of STW, we
propose a number of “supervised variants” of tfidf weighting, obtained
by replacing the idf function with the function that has been used in
phase (i) for term selection. The use of STW allows the terms that are
distributed most differently in the positive and negative examples of the
categories of interest to be weighted highest.
We present experimental results obtained on the standard Reuters-21578
benchmark with three classifier learning methods (Rocchio, k-NN, and
support vector machines), three term selection functions (information
gain, chi-square, and gain ratio), and both local and global term selection
and weighting.

1 Introduction

Text categorization (TC) is the activity of automatically building, by means
of machine learning (ML) techniques, automatic text classifiers, i.e. programs
capable of labelling natural language texts from a domain D with thematic
categories from a predefined set C = {c1, . . . , c|C|} [14]. More formally, the task
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is to approximate the unknown target function Φ : D×C → {0, 1} (that describes
how documents ought to be classified) by means of a function Φ̂ : D×C → {0, 1}
called the classifier, such that Φ and Φ̂ “coincide as much as possible”.

The construction of an automatic text classifier relies on the existence of an
initial corpus Ω = {d1, . . . , d|Ω|} of documents preclassified under C. A general
inductive process (called the learner) automatically builds a classifier for C by
learning the characteristics of C from a training set Tr = {d1, . . . , d|Tr|} of docu-
ments. Once a classifier has been built, its effectiveness (i.e. its capability to take
the right categorization decisions) may be tested by applying it to the test set
Te = Ω−Tr and checking the degree of correspondence between the decisions of
the classifier and those encoded in the corpus. This is called a supervised learning
activity, since learning is “supervised” by the information on the membership of
training documents in categories.

The construction of a text classifier may be seen as consisting of essentially
two phases:

1. a phase of document indexing, i.e. the creation of internal representations for
documents. This typically consists in
(a) a phase of term selection, i.e. a form of dimensionality reduction consist-

ing in the selection, from the set T (that contains of all the terms that
occur in the documents of Tr), of the subset T ′ ⊂ T of terms that, when
used as dimensions for document representation, are expected to yield
the best effectiveness, or the best compromise between effectiveness and
efficiency; and

(b) a phase of term weighting, in which, for every term tk selected in phase (1a)
and for every document dj , a weight 0 ≤ wkj ≤ 1 is computed which
represents, loosely speaking, how much term tk contributes to the dis-
criminative semantics of document dj ;

2. a phase of classifier induction, i.e. the creation of a classifier by learning
from the internal representations of the training documents.

Traditionally, supervised learning affects only phases (1a) and (2), and does not
affect phase (1b). In this paper we propose instead that information on the
membership of training documents in categories is used also in phase (1b), so
as to make the weight wkj reflect the importance that term tk has in deciding
whether document dj belongs or not to the categories of interest. We call this
idea supervised term weighting (STW).

Concerning the actual computation of term weights, we propose that phase (1b)
capitalizes on the results of phase (1a), since the selection of the best terms is
usually accomplished by scoring each term tk by means of a term selection func-
tion f(tk, ci) that measures its capability to discriminate category ci, and then
selecting the terms that maximize f(tk, ci). In our proposal the f(tk, ci) scores
are not discarded after term selection, but become an active ingredient of the
term weight.

The TC literature discusses two main policies to perform term selection: (a)
a local policy, according to which different sets of terms T ′

i ⊂ T are selected for



different categories ci, and (b) a global policy, according to which a single set of
terms T ′ ⊂ T , to be used for all categories, is selected, by extracting a single
score fglob(tk) from the individual scores f(tk, ci) through some “globalization”
policy. In this paper we experiment with both policies, but always using the same
policy for both term selection and term weighting. Note that a consequence
of adopting the local policy and reusing the scores for term weighting is that
weights, traditionally a function of a term tk and a document dj , now also
depend on a category ci; this means that, in principle, the representation of a
document is no more a vector of |T ′| terms, but a set of vectors of T ′

i terms,
with i = 1, . . . , |C|.

The paper is organized as follows. Section 2 sets the stage, by discussing the
roles that term selection and term weighting play in current approaches to TC. In
Section 3 we describe in detail the idea behind STW, and introduce some example
weighting functions based on this idea. In Section 4 we describe the results of
experimenting these functions on Reuters-21578, the standard benchmark of text
categorization research. These results have been obtained with three classifier
learning methods (Rocchio, k-NN, and support vector machines), three term
selection functions (information gain, chi-square, and gain ratio), and both local
and global term selection and weighting. Section 5 concludes.

2 Document indexing in TC: the received wisdom

2.1 Term weighting

In text categorization, text filtering, text routing, and other applications at the
crossroads of IR and ML, term weighting is usually tackled by means of methods
borrowed from IR, i.e. methods that are unaffected by the presence of a learning
phase. Many weighting methods have been developed within IR, and their variety
is astounding. However, as noted by Zobel and Moffat [19] (from which the
passages below are quoted), there are three monotonicity assumptions that, in
one form or another, appear in practically all weighting methods:

1. “rare terms are no less important than frequent terms”. We call this the IDF
assumption;

2. “multiple appearances of a term in a document are no less important than
single appearances”. We call this the TF assumption;

3. “for the same quantity of term matching, long documents are no more im-
portant than short documents”. We call this the normalization assumption.

These assumptions are well exemplified by the tfidf function (here presented in
its standard “ltc” variant [13]), i.e.

tfidf(tk, dj) = tf(tk, dj) · log
|Tr|

#Tr(tk)
(1)



where #Tr(tk) denotes the number of documents in Tr in which tk occurs at
least once and

tf(tk, dj) =
{

1 + log #(tk, dj) if #(tk, dj) > 0
0 otherwise

where #(tk, dj) denotes the number of times tk occurs in dj . The tf(tk, dj)
component of Equation 1 enforces the TF assumption, while the log |Tr|

#T r(tk)

component of the same equation enforces the IDF assumption. Weights obtained
by Equation 1 are usually normalized by cosine normalization, i.e.

wkj =
tfidf(tk, dj)√∑|T |
s=1 tfidf(ts, dj)2

(2)

which enforces the normalization assumption.

2.2 Dimensionality reduction by term selection

Many classifier induction methods are computationally hard, and their computa-
tional cost is a function of the length of the vectors that represent the documents.
It is thus of key importance to be able to work with vectors shorter than |T |,
which is usually a number in the tens of thousands or more. For this, term se-
lection techniques are used to select from T a subset T ′ (with |T ′| � |T |) of
terms that are deemed most useful for compactly representing the meaning of
the documents. The value

ξ =
|T | − |T ′|

|T | (3)

is called the reduction factor. Usually, these techniques consist in scoring each
term in T by means of a term evaluation function f (TEF) and then selecting a
set T ′ of terms that maximize f . Often, term selection is also beneficial in that
it tends to reduce overfitting, i.e. the phenomenon by which a classifier tends to
be better at classifying the data it has been trained on than at classifying other
data.

Many functions, mostly from the tradition of information theory and statis-
tics, have been used as TEFs in TC [4, 11, 16, 18]; those of interest to the present
work are illustrated in Table 1. In the third column of this table, probabilities
are interpreted on an event space of documents (e.g. P (tk, ci) indicates the prob-
ability that, for a random document x, term tk does not occur in x and x belongs
to category ci), and are estimated by maximum likelihood.

Most of these functions try to capture the intuition according to which the
most valuable terms for categorization under ci are those that are distributed
most differently in the sets of positive and negative examples of ci. However,
interpretations of this basic principle may vary subtly across different functions;
see Section 4.1 for a discussion relative to the functions of Table 1.

In Table 1 every function f(tk, ci) refers to a specific category ci; in order
to assess the value of a term tk in a “global”, category-independent sense, a



Function Denoted by Mathematical form

Chi-square χ2(tk, ci)
[P (tk, ci)P (tk, ci) − P (tk, ci)P (tk, ci)]

2

P (tk)P (tk)P (ci)P (ci)

Information Gain IG(tk, ci)
∑

c∈{ci,ci}

∑
t∈{tk,tk}

P (t, c) log2

P (t, c)

P (t)P (c)

Gain Ratio GR(tk, ci)

∑
c∈{ci,ci}

∑
t∈{tk,tk}

P (t, c) log2

P (t, c)

P (t)P (c)

−
∑

c∈{ci,ci}

P (c) log2 P (c)

Table 1. Term evaluation functions used in this work.

“globalization” technique is applied so as to extract a global score fglob(tk) from
the f(tk, ci) scores relative to the individual categories. The most common glob-
alization techniques are the sum fsum(tk) =

∑|C|
i=1 f(tk, ci), the weighted sum

fwsum(tk) =
∑|C|

i=1 P (ci)f(tk, ci), and the maximum fmax(tk) = max|C|
i=1 f(tk, ci)

of their category-specific values f(tk, ci).

3 Supervised term weighting

While the normalized tfidf function of Equation 2, or other similar term weight-
ing functions from the IR literature, are routinely used in IR applications in-
volving supervised learning such as text categorization or filtering, we think
that their use in these contexts is far from being the optimal choice. In partic-
ular, the present paper challenges the IDF assumption. In standard IR contexts
this assumption is reasonable, since it encodes the quite plausible intuition that
a term tk that occurs in too many documents is not a good discriminator, i.e.
when it occurs in a query q it is not sufficiently helpful in discriminating the doc-
uments relevant to q from the irrelevant. However, if training data for the query
were available (i.e. documents whose relevance or irrelevance to q is known), an
even stronger intuition should be brought to bear, i.e. the one according to which
the best discriminators are the terms that are distributed most differently in the
sets of positive and negative training examples.

Training data is not available for queries in standard IR contexts, but is
usually available for categories in TC contexts, where the notion of “relevance
to a query” is replaced by the notion of “membership in a category”. In these
contexts, category-based functions (such as those listed in Table 1) that score
terms according to how differently they are distributed in the sets of positive
and negative training examples, are thus better substitutes of idf -like functions.
The following example will help to clarify the point.



Example 1. Suppose |C| = 1, i.e. we are just interested in deciding whether
documents fall into category c or into its complement c. Suppose there are 1000
training documents, 100 of which are positive examples of c and 900 of which
are negative examples. Suppose term t1 occurs in 90 out of the 100 positive
examples and in none of the negative examples, term t2 occurs in none of the
positive examples and in 800 out of the 900 positive examples, and term t3 occurs
in 1 out of the 100 positive examples and 9 out of the 900 negative examples. An
idf -like measure will weigh t3 higher than both t1 and t2, since it occurs in less
documents. A category-based function will instead weigh t1 and t2 higher than
t3, since they are distributed more differently across c and c than t3, which is
evenly distributed across them. The actual scores for this example are reported
in Table 2.

#(t, c) #(t, c) idf(t) IG(t, c) χ2(t, c) GR(t, c)

t1 090 000 3.474 0.267 890.110 0.822

t2 000 800 0.322 0.232 444.444 0.714

t3 001 009 6.644 0.000 000.000 0.000

Table 2. Values for idf , IG, χ2 and GR for the terms of Example 1.

It might be argued that this idea is not novel, since this is what several prob-
abilistic models do. For instance, the naive Bayesian classifier (see e.g. [9]) has
the form

P (ci|dj) ∝
|T |∑
k=1

wkj log
P (tk|ci)(1 − P (tk|ci))
P (tk|ci)(1 − P (tk|ci))

(4)

The log factor in Equation 4 is computed from the training data, exactly as in
our approach1, and may be seen as a weight to be attributed to the terms which
are present in the test document dj (i.e. the terms for which wkj = 1). However,
the notion of STW we are proposing does not coincide with the learning model
(as in the naive Bayesian model above), and may instead be used together with
any learning model that admits non-binary representations as input, such as e.g.
Rocchio, k-NN, SVMs, or neural networks.

One attractive aspect of using STW measures in TC is that, when such
functions have been used for term selection, the scores they attribute to terms are
already available. The approach we propose here puts thus the scores computed
in the phase of term selection to maximum use: instead of discarding these scores
after selecting the terms that will take part in the representations, these scores
are used also in the term weighting phase.

1 The log factor is itself a well-known TEF, known as Odds Ratio (see e.g. [11]).



4 Experiments

We have conducted a number of experiments to test the validity of the STW idea.
The experiments have been run on a standard benchmark using three different
TEFs, employed both according to the local and global policies, and always using
the same TEF both as the term selection function and as a component of the
term weighting function. Therefore, when we speak e.g. of using IG(g) as a STW
technique, we mean using IG (according to the global policy, denoted by “(g)”
– local is denoted by “(l)”) both as a term selection function and as a substitute
of log |Tr|

#T r(tk) in Equation 1.

4.1 Term evaluation functions

In our experiments we have used the three TEFs illustrated in Table 1. The first
two have been chosen since they are the two most frequently used category-based
TEFs in the TC literature (document frequency is also often used as a TEF [18],
but it is not category-based), while the third has been chosen since, as we discuss
below, we consider it a theoretically better motivated variant of the second.

The first TEF we discuss is the chi-square (χ2) statistics, which is frequently
used in the experimental sciences in order to measure how the results of an
observation differ (i.e. are independent) from the results expected according to
an initial hypothesis (lower values indicate lower dependence)2. In term selection
we measure how independent tk and ci are. The terms tk with the lowest value
for χ2(tk, ci) are thus the most independent from ci; since we are interested in
the terms which are not, we select the terms tk for which χ2(tk, ci) is highest.

The second TEF we employ is information gain (IG), an information-theoretic
function which measures the amount of information one random variable con-
tains about another (or, in other words, the reduction in the uncertainty of a
random variable that knowledge of the other brings about)3; it is 0 for two inde-
pendent variables, and grows monotonically with their dependence [2]. In term
selection we measure how much information term tk contains about category ci,
and we are interested in selecting the terms that are more informative about (i.e.
more indicative of the presence or of the absence of) the category, so we select
the terms for which IG(tk, ci) is highest.

The third TEF we discuss is gain ratio (GR), defined as the ratio between
the information gain IG(X, Y ) of the two variables X and Y and the entropy of
one of them (H(X) or H(Y )) [12]. Although, to our knowledge, GR has never
been used for feature selection purposes, we claim that for term selection it is
a better alternative than IG since, as Manning and Schütze [10, p. 67] note,

2 Since χ2 is a statistics, it is usually best viewed in terms of actual counts from a
contingency table, and not in terms of probabilities. In Table 3 we have formulated
χ2 in probabilistic terms for better comparability with the other functions listed.

3 Information gain is also known as mutual information [10, pp. 66 and 583]. Although
many TC researchers have used this function under one name or the other, the fact
that the two names refer to the same object seems to have gone undetected.



IG grows not only with the degree of dependence of the two variables, but also
with their entropy. Dividing IG(tk, ci) by H(ci) = −

∑
c∈{ci,ci} P (c) log2 P (c)

allows us to compare the different values of term tk for different categories on
an equal basis. Note in fact that while 0 ≤ IG(tk, ci) ≤ min{H(tk), H(ci)}, we
have instead that 0 ≤ GR(tk, ci) ≤ 1. Comparing the different scores that tk has
obtained on the different categories is especially important when applying the
globalization techniques described in Section 2.2. For instance, it is clear that if
we choose IG as our TEF and fmax(tk) = max|C|

i=1 f(tk, ci) as our globalization
function, the score IG(tk, c1) for a category c1 with high entropy has a higher
probability of being selected that the score IG(tk, c2) for a category c2 with low
entropy. Instead, with GR these categories do not enjoy this “unfair advantage”.

4.2 Learning methods

Since a document dj can belong to zero, one or many of the categories in C, we
tackle the classification problem as |C| independent problems of deciding whether
dj belongs or not to ci, for i = 1, . . . , |C|.

In our experiments we have used three different learning methods, which
we have chosen with the aim of assembling a fairly representative sample of
methods that allow weighted (non-binary) input. The first is a standard Rocchio
method [5] for learning linear classifiers. A classifier for category ci consists of a
vector of weights

wki = β ·
∑

{dj∈POSi}

wkj

|POSi|
− γ ·

∑
{dj∈NEGi}

wkj

|NEGi|
(5)

where wkj is the weight of tk in document dj , POSi = {dj ∈ Tr | Φ(dj , ci) = 1}
and NEGi = {dj ∈ Tr | Φ(dj , ci) = 0}. Conforming to common practice we
have set the β and γ control parameters to 16 and 4, respectively. Classification
is achieved by performing a dot product between the document vector and the
classifier, and then thresholding on the result; we have individually optimized
each threshold on a validation set by the proportional thresholding method [7].

The second learning method is a standard k-NN algorithm, computing the
formula

score(dj , ci) =
∑

dz∈ Trk(dj)

(dj · dz)Φ(dz, ci) (6)

where Trk(dj) is the set of the k documents dz which maximize the dot prod-
uct dj · dz. Classification is performed by thresholding on the scores resulting
from Equation 6; here too we have individually optimized each threshold on a
validation set by proportional thresholding. The k parameter has been set to 30,
following the results in [4].

The third learning method is a support vector machine (SVM) learner as
implemented in the SVMlight package (version 3.5) [6]. SVMs attempt to
learn a hyperplane in |T |-dimensional space that separates the positive training
examples from the negative ones with the maximum possible margin, i.e. such



Precision Recall

Microaveraging π =
TP

TP + FP
=

∑|C|
i=1

TPi∑|C|
i=1

(TPi + FPi)
ρ =

TP

TP + FN
=

∑|C|
i=1

TPi∑|C|
i=1

(TPi + FNi)

Macroaveraging π =

∑|C|
i=1

πi

|C| =

∑|C|
i=1

TPi

TPi + FPi

|C| ρ =

∑|C|
i=1

ρi

|C| =

∑|C|
i=1

TPi

TPi + FNi

|C|

Table 3. Effectiveness measures used in all the experiments reported in this paper;
TP , TN , FP and FN refer to the sets of true positives, true negatives, false positives,
and false negatives, respectively.

that the minimal distance between the hyperplane and a training example is
maximum; results in computational learning theory indicate that this tends to
minimize the generalization error, i.e. the error of the resulting classifier on yet
unseen examples. We have simply opted for the default parameter setting of
SVMlight; in particular, this means that a linear kernel has been used.

4.3 Experimental setting

In our experiments we have used the “Reuters-21578, Distribution 1.0” cor-
pus, currently the most widely used benchmark in text categorization research4.
Reuters-21578 consists of a set of 12,902 news stories, partitioned (according to
the “ModApté” split we have adopted) into a training set of 9,603 documents
and a test set of 3,299 documents. The documents are labelled by 118 categories;
the average number of categories per document is 1.08, ranging from a minimum
of 0 to a maximum of 16. The number of positive examples per category ranges
from a minimum of 1 to a maximum of 3964.

All our results are reported (a) for the set of 115 categories with at least one
training example (hereafter, Reuters-21578(115)), (b) for the set of 90 categories
with at least one training example and one test example (Reuters-21578(90)),
and (c) for the set of the 10 categories with the highest number of training
examples (Reuters-21578(10)). Sets (a) and (b) are obviously the hardest, since
they include categories with very few positive instances for which inducing reli-
able classifiers is obviously a haphazard task. Reporting the results for the three
different sets has the double aim of

– allowing a finer-grained analysis of the performance of our techniques;
– assessing the relative “hardness” of the three subsets of Reuters-21578 which

have been most frequently used in the TC literature, thus allowing an “in-
direct” comparison among previously published techniques that have been
tested on different subsets.

4 The Reuters-21578 corpus is freely available for experimentation purposes from
http://www.daviddlewis.com/resources/testcollections/ reuters21578/



In all the experiments discussed in this section, stop words have been removed
using the stop list provided in [7, pages 117–118]. Punctuation has been removed,
all letters have been converted to lowercase, numbers have been removed, and
stemming has been performed by means of Porter’s stemmer. We have measured
effectiveness in terms of precision wrt ci (πi) and recall wrt ci (ρi), defined in the
usual way. Values relative to individual categories are averaged to obtain values
of precision (π) and recall (ρ) global to the entire category set according to the
two alternative methods of microaveraging and macroaveraging, defined in Ta-
ble 3. Neither microaveraging nor macroaveraging is the “absolute” evaluation
measure, and which one should be adopted obviously depends on the applica-
tion requirements. In general, the ability of a classifier to behave well also on
categories with few positive training instances is emphasized by macroaveraging
and much less so by microaveraging.

As a measure of effectiveness that combines the contributions of π and ρ we
have used the well-known Fβ function [8], defined as

Fβ =
(β2 + 1)πρ

β2π + ρ

with 0 ≤ β ≤ +∞. Similarly to most other researchers we have set β = 1, which
places equal emphasis on π and ρ.

The results of our experiments are reported in Figures 1 and 2.
In all the experiments reported, term selection was performed with a reduc-

tion factor ξ = .90. Although we have also thoroughly tested values of ξ = .50
and ξ = 0 (i.e. no term selection), we omit to include them (i) for reasons of
space, and (ii) because the ξ = .90 experiments are the ones that have yielded
the best effectiveness for most STW functions and for tfidf too, and are then
the most significant. This is in accordance with the findings of Yang and Peder-
sen [18], who found that the effectiveness of most term selection functions peaks
close to the ξ = .90 value. The SVMs experiments we include are an exception,
since they are the ones with ξ = 0. The reason for reporting them instead of the
ξ = .90 experiments is that they were generally the best performing ones; again,
this is in accordance with results of Brank et al. [1], who found that for each
of the numerous term selection techniques they tested SVMs perform best with
ξ = 0 ([16, 17] also reached similar conclusions).

Whenever term selection has been performed according to the global policy,
the fmax(tk) = max|C|

i=1 f(tk, ci) has been used as the globalization technique,
since in preliminary experiments it consistently outperformed the other global-
ization techniques described in Section 2.2. The reason why fmax(tk) performs
well is that it prefers terms that are very good separators even on a single cat-
egory, rather than terms that are only “fair” separators on many categories. In
fact, if tk is a very good separator for ci, then f(tk, ci) is going to be very high,
so that there are good chances that fmax(tk) = f(tk, ci), which means that there
are good chances that tk is selected, which means in turn that there is a good
separator for ci in the selected term set.

In all experiments, STW techniques have been compared with a baseline
formed by cosine-normalized tfidf weighting (in the “ltc” variant of Equations 1



and 2) preceded by term selection performed with the TEF that, in combina-
tion with tfidf weighting, has yielded the best performance (namely, IG for
Rocchio, χ2 for k-NN, and no term selection for SVMs). Note that although
stronger weighting functions than “ltc” tfidf have been reported in the litera-
ture [19], all of them are based on the three monotonicity assumptions mentioned
in Section 2.1; this means that our STW techniques could be applied to them
too, probably yielding similar performance differentials.

4.4 Analysis of the results: STW functions

The thorough experiments we have performed have not shown a uniform superi-
ority of STW with respect to standard term weighting: in some cases tfidf has
outperformed all STW techniques, while in other cases some of the STW tech-
niques have improved on tfidf . Let us try to analyze the results more in detail;
for ease of discussion we will refer to the results obtained on Reuters-21578(90).

Rocchio, as a learning method, and macroaveraging, as an evaluation mea-
sure, are the contexts in which the different techniques exhibit the biggest differ-
ence in performance wrt each other; for the other two learning methods, and for
microaveraging in general, differences are less remarkable, although statistically
significant. Different weighting techniques are the best performers for different
learning methods: tfidf for Rocchio (with GR(g) almost as good), GR(g) for
k-NN, and both GR(g) and χ2(g) on SVMs (although on SVMs tfidf is just as
good on microaveraging). The fact that both χ2(g) and GR(g) have achieved an
11% improvement (.582 vs. .524) on macroaveraged effectiveness over the best
tfidf for SVMs, while basically maintaining the same microaveraged effective-
ness, is of particular relevance, since SVMs are currently the best performing TC
method in the literature. Analogously, the 9% improvement obtained on k-NN
by GR(g) and χ2(g) wrt tfidf is also noteworthy, since k-NN is also known as
a very good performer [17].

Among the various STW techniques, GR(g) is a uniformly high scoring one,
and often the best of the lot. From Table 4, in which we report the average
results of our 6 STW functions across the 3 different learning methods we have
used, we may see that GR(g) is the best performer for both micro- and macro-
averaging and for all three Reuters-21578 subsets examined. Chi-square is also
a good performer across the board. IG(g) is instead a disappointing performer,
sometimes disastrously so (namely, in all macroaveraged experiments). Among
the local policies, GR(l) is again generally the best, with IG(l) usually faring
better than χ2(l).

We are not surprised by the good performance of GR(g) since, as we have
remarked in Section 4.1, we consider GR(g) a theoretically superior alternative
to IG(g). The disappointing performance that this latter has produced is a
striking contrast with the well-known good performance of IG as a term selection
function [18]. Note that IG(l) and GR(l) perform identically. This is due to the
fact that the two differ only by the entropy of ci being used as a normalization
factor in GR(l). Therefore, it is quite obvious that, locally to category ci, IG(l)



χ2(g) IG(g) GR(g) χ2(l) IG(l) GR(l)

Reuters-21578(10) 0.852 0.843 0.857 0.810 0.816 0.816

Micro F1 Reuters-21578(90) 0.795 0.750 0.803 0.758 0.767 0.767

Reuters-21578(115) 0.793 0.747 0.800 0.756 0.765 0.765

Reuters-21578(10) 0.725 0.707 0.739 0.674 0.684 0.684

Macro F1 Reuters-21578(90) 0.542 0.377 0.589 0.527 0.559 0.559

Reuters-21578(115) 0.596 0.458 0.629 0.581 0.608 0.608

Table 4. Average micro- and macro-averaged F1 on the three major subsets of Reuters-
21578 described in Section 4.3 for the six STW functions discussed in this paper.

and GR(l) select the same terms and give them weights that differ only by a
constant multiplicative factor.

A surprising result is that global STW techniques are almost everywhere su-
perior to the corresponding local technique. We say this is surprising because the
global policy openly contradicts the decision to view the classification problem as
|C| independent binary classification problems. That is, if these |C| problems are
really to be seen as independent, then the problem of building representations
for them should also be viewed on a category-by-category basis, which is what
the local policy does. We conjecture that this surprising behaviour is due to the
fact that the statistics that can be collected from scarcely populated categories
are not robust enough for the local policy to be effective, and that for these
categories the global policy makes up for their unreliable statistics by providing
more robust statistics collected over the entire category set.

4.5 Analysis of the results: different Reuters-21578 subsets

As a by-product of this investigation, in Table 5 we list the average micro- and
macro-averaged effectiveness resulting from all our experiments on the three
subsets of Reuters-21578 mentioned in Section 4.3. Each average has been com-
puted across the three STW functions, each one in its local and global version,
and the three learning methods; each value is thus the average of 18 different
values. Although the absolute performance levels are not necessarily significant,
their difference is, since this is somehow indicative of the relative “hardness” of
these subsets, and allows us to compare previously published techniques that
have been tested on different subsets. Note that there is no published result, to
our knowledge, that compares these three subsets experimentally in a systematic
way5. The comparison we carry out is of some significance since, among other
things, it is performed across widely different learning methods and widely used
term selection functions.
5 An experimental comparison of subsets (a) and (c) is reported in [3]. However, note

that subset (b) is by far the most frequently used in the TC literature.



Micro π Micro ρ Micro F1 Macro π Macro ρ Macro F1

Reuters-21578(10) 0.808 0.863 0.832 0.685 0.726 0.704

Reuters-21578(90) 0.754 0.805 0.773 0.669 0.481 0.522

Reuters-21578(115) 0.749 0.805 0.770 0.654 0.593 0.576

Table 5. Average micro- and macro-averaged F1 on the three major subsets of Reuters-
21578 described in Section 4.3.

The fact that Reuters-21578(10) turns out to be the easiest subset is quite
obvious, given that its categories are the ones with the highest number of positive
examples. The average decrease in performance in going from Reuters-21578(10)
to Reuters-21578(90) is much higher on macroaveraging than on microaveraging;
this is no surprise, since adding scarcely populated categories does not penalize
microaveraging much (since for microaveraging categories count proportionally
to the number of their test examples), while it does for macroaveraging (since
for microaveraging categories count all the same).

It is instead somehow surprising that Reuters-21578(90) is no easier than
Reuters-21578(115), since the 25 additional categories have on average much
fewer training examples than the other 90. A possible explanation is that many
of the classifiers learnt for these categories are frequent rejectors (namely, clas-
sifiers with very high thresholds), and that, since these categories have no pos-
itive test examples, this often results in both πi = 1 and ρi = 1. Of course,
this boosts macroaveraging, so this might also explain the apparently surpris-
ing increase of macroaveraged performance in going from Reuters-21578(90) to
Reuters-21578(115).

5 Conclusion

We have proposed supervised term weighting (STW), a term weighting method-
ology specifically designed for IR applications involving supervised learning, such
as text categorization and text filtering. Supervised term indexing leverages on
the training data by weighting a term according to how different its distribution
is in the positive and negative training examples. We have also proposed that
this should take the form of replacing idf by the category-based term evalua-
tion function that has previously been used in the term selection phase; as such,
STW is also efficient, since it reuses for weighting purposes the scores already
computed for term selection purposes.

We have tested STW in all the combinations involving three different learning
methods and three different term weighting functions, each tested in its local
and global version. One of these functions (gain ratio) was not known from
the TC term selection literature, and was proposed here since we think it is
a theoretically superior alternative to the widely used information gain (aka
mutual information) function. The results have confirmed the overall superiority
of gain ratio over information gain and chi-square when used as a STW function.



Although not proving consistently superior to tfidf , STW has given several
interesting results. In particular, a STW technique based on gain ratio has given
very good results across the board, showing an improvement of 11% over tfidf
in macroaveraging for SVMs, currently the best performing TC method in the
literature, and an improvement of 9% over tfidf in macroaveraging for k-NN,
another very good performer.

As a by-product of this investigation, we have reported a study on the rel-
ative “hardness” of the three major subsets of Reuters-21578, which will allow
researchers to compare previously published techniques that have been tested
on different subsets.
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Fig. 1. Plots of micro-averaged F1 for Rocchio (top), k-NN (middle) and SVMs (bot-
tom). The X axis indicates the three major subsets of Reuters-21578 described in
Section 4.3, while each curve represents a different term weighting function. For in-
stance, the notation Tf*Chi(g) indicates the use of χ2 (with the global policy, indicated
by the notation “(g)”) both for term selection and as a substitute of idf in tfidf . The
notation Tf*Idf always refers to tfidf weighting and term selection obtained with the
(global) method that, in connection with tfidf weighting, has performed best (IG for
Rocchio, χ2 for k-NN, no selection for SVMs). Note the different scales used for the Y
axis.
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Fig. 2. Plots of macro-averaged F1 for Rocchio (top), k-NN (middle) and SVMs (bot-
tom). Notational conventions are as for Figure 1.


