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ABSTRACT

The construction of a text classifier usually involves (i) a
phase of term selection, in which the most relevant terms
for the classification task are identified, (ii) a phase of term
wesghting, in which document weights for the selected terms
are computed, and (iii) a phase of classifier learning, in
which a classifier is generated from the weighted represen-
tations of the training documents. This process involves
an activity of supervised learning, in which information on
the membership of training documents in categories is used.
Traditionally, supervised learning enters only phases (i) and
(iii). In this paper we propose instead that learning from
training data should also affect phase (ii), i.e. that informa-
tion on the membership of training documents to categories
be used to determine term weights. We call this idea su-
pervised term weighting (STW). As an example, we propose
a number of “supervised variants” of tfidf weighting, ob-
tained by replacing the idf function with the function that
has been used in phase (i) for term selection. We present ex-
perimental results obtained on the standard Reuters-21578
benchmark with one classifier learning method (support vec-
tor machines), three term selection functions (information
gain, chi-square, and gain ratio), and both local and global
term selection and weighting.
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1. INTRODUCTION

Text categorization (TC) is the activity of automatically
building, by means of machine learning (ML) techniques,
automatic text classifiers, i.e. programs capable of labelling
natural language texts from a domain D with thematic cat-
egories from a predefined set C = {c1,...,¢jc|} [10]. The
construction of an automatic text classifier relies on the
existence of an initial corpus Q = {d1,... ,d|q} of docu-
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ments preclassified under C. A general inductive process
(called the learner) automatically builds a classifier for C by
learning the characteristics of C from a training set Tr =
{d1,... ,dirr} of documents. Once a classifier has been
built, its effectiveness (i.e. its capability to take the right
categorization decisions) may be tested by applying it to
the test set Te = Q0 — T'r and checking the degree of corre-
spondence between the decisions of the classifier and those
encoded in the corpus. This is called a supervised learning
activity, since learning is “supervised” by the information
on the membership of training documents in categories.

The construction of a text classifier may be seen as con-
sisting of essentially two phases:

1. document indexing, i.e. the creation of internal repre-
sentations for documents. This typically consists in

(a) term selection, consisting in the selection, from
the set 7 (that contains of all the terms that oc-
cur in the documents of T'r), of the subset 7/ C T
of terms that, when used as dimensions for doc-
ument representation, are expected to yield the
best effectiveness; and

(b) term weighting, in which, for every term t; se-
lected in phase (1a) and for every document d;, a
weight 0 < wy; < 1is computed which represents,
loosely speaking, how much term t; contributes
to the discriminative semantics of document d;;

2. a phase of classifier learning, i.e. the creation of a clas-
sifier by learning from the internal representations of
the training documents.

Traditionally, supervised learning affects only phases (1la)
and (2). In this paper we propose instead that supervised
learning is used also in phase (1b), so as to make the weight
wy; reflect the importance of term ¢; in deciding the mem-
bership of d; to the categories of interest. We call this idea
supervised term weighting (STW).

Concerning the computation of term weights, we propose
that phase (1b) capitalizes on the results of phase (1a), since
the selection of the best terms is usually accomplished by
scoring each term t; by means of a function f(¢x,c;) that
measures its capability to discriminate category c;, and then
selecting the terms that maximize f(tr,c;). In our proposal
the f(tg,c;) scores are not discarded after term selection,
but become an active ingredient of the term weight.

The TC literature discusses two main policies to perform
term selection: (a) a local policy, where different sets of



terms 7; C 7T are selected for different categories c;, and
(b) a global policy, where a single set of terms 7’ C 7
is selected by extracting a single score fgio6(tx) from the
individual scores f(tx,c;). In this paper we experiment with
both policies, but always using the same policy for both term
selection and term weighting. A consequence of adopting
the local policy and reusing the scores for term weighting
is that weights, traditionally a function of a term ¢, and a
document dj;, now also depend on a category c;; this means
that, in principle, the representation of a document is no
more a vector of |7”| terms, but a set of vectors of 7;' terms,
withi=1,...,|C|.

The paper is organized as follows. Section 2 discusses the
roles that term selection and term weighting play in current
approaches to TC. In Section 3 we describe in detail the
idea behind STW, and introduce some example weighting
functions based on this idea. In Section 4 we experiment
these functions on Reuters-21578, the standard benchmark
of TC research. Experiments have been performed with one
classifier learning method (support vector machines), three
term selection functions (information gain, chi-square, and
gain ratio), and both local and global term selection and
weighting. Section 5 concludes.

2. DOCUMENT INDEXINGINTC
2.1 Term weighting

In text categorization and other applications at the cross-
roads of IR and ML, term weighting is usually tackled by
means of methods borrowed from text search, i.e. methods
that do not involve a learning phase. Many weighting meth-
ods have been developed within text search, and their va-
riety is astounding. However, as noted by Zobel and Mof-
fat [13] (from which the passages below are quoted), there
are three monotonicity assumptions that, in one form or an-
other, appear in practically all weighting methods: (i) “rare
terms are no less important than frequent terms” (the IDF
assumption); (ii) “multiple appearances of a term in a doc-
ument are no less important than single appearances” (the
TF assumption); (iil) “for the same quantity of term match-
ing, long documents are no more important than short docu-
ments” (the normalization assumption). These assumptions
are well exemplified by the ¢ fidf function (here presented in
its standard “ltc” variant [9]), i.e

|Tr|
#rr(tr)

where #r,(tx) denotes the number of documents in Tr in
which t; occurs at least once and

tf(tk,dj) _ { 1+10g#(tk,dj) if#(tk,d]’) >0

0 otherwise

tfidf (tr,d;) = tf(te,d;) - log (1)

where #(tx, d;) denotes the number of times t; occurs in d;.
The tf(tx,d;) and log #lTT’(ﬂtlk) components of Equation (1)
enforce the TF and IDF assumptions, respectively. Weights
obtained by Equation (1) are usually normalized by cosine

normalization, i.e.

wy; = tfidf(tkv dj) (2)

VST tpid(t, dy)?

which enforces the normalization assumption.

2.2 Term selection

Many classifier induction methods are computationally hard,
and their computational cost is a function of the length of
the vectors that represent the documents. It is thus of key
importance to be able to work with vectors shorter than |7,
which is usually a number in the tens of thousands or more.
For this, term selection techniques are used to select from
T asubset 7' (with |77| < |7]) of terms that are deemed
most useful for compactly representing the meaning of the
documents. The value
7| - |7"]
= 3)

is called the reduction factor. Usually, these techniques con-
sist in scoring each term in 7 by means of a category-based
term evaluation function f (TEF) and then selecting a set
T’ of terms that maximize f. Many functions, mostly from
the tradition of information theory and statistics, have been
used as TEFs in TC; those of interest to the present work
are
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which are called chi-square, information gain, and gain ratio,
respectively. In these formulae, probabilities are interpreted
on an event space of documents (e.g. P(%x,c;) indicates the
probability that, for a random document z, term t; does not
occur in = and z belongs to category c¢;), and are estimated
by maximum likelihood.

All of these functions try to capture the intuition accord-
ing to which the most valuable terms for categorization un-
der ¢; are those that are distributed most differently in the
sets of positive and negative examples of ¢;. However, inter-
pretations of this principle may vary subtly across different
functions; see Section 4.1 for a discussion.

Equations (4), (5) and (6) refer to a specific category c¢;; in
order to assess the value of a term ¢ in a “global”, category-
independent sense, a “globalization” technique is applied so
as to extract a global score fgiob(¢x) from the f(tx, c;) scores
relative to the individual categories. The most common

globalization techniques are the sum foum (tx) = Egl f(te,ci),

Zlc‘ P(c;) f(tk,ci), and the
maximum fmez(tx) = max 1f(t;c,cl) of their category-
specific values f(tk,c;).

the weighted sum fwsum(tk)

3. SUPERVISED TERM WEIGHTING

While the normalized tfidf function of Equation (2), or
other term weighting functions from the IR literature, are
routinely used in IR applications involving supervised learn-
ing such as TC, we think that their use in these contexts is
far from being the optimal choice. In particular, the present
paper challenges the IDF assumption. In standard IR con-
texts this assumption is reasonable, since it encodes the
quite plausible intuition that a term ¢, that occurs in too



many documents is not sufficiently helpful, when it occurs
in a query g, in discriminating the documents relevant to ¢
from the irrelevant. However, if training data for the query
were available (i.e. documents whose relevance or irrelevance
to g is known), an even stronger intuition should be brought
to bear, i.e. the one according to which the best discrimi-
nators are the terms that are distributed most differently in
the sets of positive and negative training examples.

Training data is not available for queries in standard IR
contexts, but is available for categories in TC contexts. In
these contexts, category-based TEFs (such as (4), (5) and
(6)) that score terms according to how differently they are
distributed in the sets of positive and negative training ex-
amples, are thus better substitutes of idf-like functions.

An attractive aspect of using STW in TC is that, when
category-based TEFs have been used for term selection, the
scores they attribute to terms are already available. There-
fore, the approach we propose here puts the scores computed
in the phase of term selection to maximum use: instead of
discarding them after selecting the terms that will take part
in the representations, they are used also in the term weight-
ing phase.

4. EXPERIMENTS

We have conducted a number of experiments to test the
validity of the STW idea. The experiments have been run on
a standard benchmark using three different TEFs, employed
both according to the local and global policies, and always
using the same TEF both as the term selection function and
as a component of the term weighting function. Therefore,
when we speak e.g. of using IG(g) as a STW technique, we
mean using IG (according to the global policy, denoted by

“(g)” — local is denoted by “(I)”) both as a term selection
[Tr|
#rr (k)

function and as a substitute of log
and (2).

in Equations (1)

4.1 Term evaluation functions

In our experiments we have used the three TEFs illustrated
in Equations (4), (5) and (6). The first two have been chosen
since they are the two most frequently used category-based
TEFs in the TC literature (document frequency is also often
used as a TEF [12], but it is not category-based), while the
third has been chosen since, as we discuss below, we consider
it a theoretically better motivated variant of the second.

The first TEF we discuss is the chi-square (x?) statis-
tics, which is frequently used in the experimental sciences
in order to measure how the results of an observation differ
(i.e. are independent) from the results expected according
to an initial hypothesis (lower values indicate lower depen-
dence)'. In term selection we measure how independent
and c¢; are. The terms t; with the lowest value for XQ(tk, ci)
are thus the most independent from c;; since we are inter-
ested in the terms which are not, we select the terms ¢; for
which x2(tx, ¢;) is highest.

The second TEF we employ is information gain (IG), an
information-theoretic function which measures the amount
of information one random variable contains about another
(or, in other words, the reduction in the uncertainty of a ran-

1Since x? is a statistics, it is usually best viewed in terms of
actual counts from a contingency table, and not in terms of
probabilities. In (4) we have formulated x? in probabilistic
terms for better comparability with the other two TEFs.

dom variable that knowledge of the other brings about)Q; it
is 0 for two independent variables, and grows monotonically
with their dependence [1]. In term selection we measure how
much information term ¢, contains about category c;, and
we are interested in selecting the terms that are more infor-
mative about (i.e. more indicative of the presence or of the
absence of) the category, so we select the terms for which
IG(tk, c;) is highest.

The third TEF we discuss is gain ratio (GR), defined
as the ratio between the information gain /G(X,Y") of the
two variables X and Y and the entropy of one of them
(H(X) or H(Y)) [8]. Although, to our knowledge, GR has
never been used for feature selection purposes, we claim
that for term selection it is a better alternative than IG
since, as Manning and Schiitze [7, p. 67] note, IG grows
not only with the degree of dependence of the two vari-
ables, but also with their entropy. Dividing IG(tx,c;) by
H(ci) = =X ieqe ey Plc)logy P(c) allows us to compare
the different values of term ¢, for different categories on
an equal basis. Note in fact that while 0 < IG(tk,c;) <
min{H (tx), H(c;)}, we have instead that 0 < GR(tx,c;) <
1. Comparing the different scores that ¢; has obtained on
the different categories is especially important when apply-
ing the globalization techniques described in Section 2.2. For
instance, it is clear that if we choose IG as our TEF and
Fmaz(tr) = maxlczl1 (tk,ci) as our globalization function,
the score IG(tg, c1) for a category ¢1 with high entropy has a
higher probability of being selected that the score IG (¢, c2)
for a category cz with low entropy. Instead, with GR these
categories do not enjoy this “unfair advantage”.

4.2 Learning method

Since a document d; can belong to zero, one or many of
the categories in C, we tackle the classification problem as
|C| independent problems of deciding whether d; belongs or
not to ¢;, fori=1,...,|C|.

The learning method used for our experiments is a support
vector machine (SVM) learner as implemented in the SVM-
LIGHT package (version 3.5) [4]. SVMs attempt to learn a
hyperplane in |7 |-dimensional space that separates the posi-
tive training examples from the negative ones with the max-
imum possible margin, i.e. such that the minimal distance
between the hyperplane and a training example is maximum,;
results in computational learning theory indicate that this
tends to minimize the generalization error, i.e. the error of
the resulting classifier on yet unseen examples. We have sim-
ply opted for the default parameter setting of SVMLIGHT;
in particular, this means that a linear kernel has been used.

In an extended version of this paper [2] we also discuss
analogous experiments we have carried out with two other
learners (a Rocchio method and k-NN algorithm), and with
three different reduction factors (.00, .50, .90).

4.3 Experimental setting

In our experiments we have used the “Reuters-21578, Distri-
bution 1.0” corpus, currently the most widely used bench-
mark in TC research®. Reuters-21578 consists of a set of

*Information gain is also known as mutual information [7,
pp- 66 and 583]. Although many TC researchers have used
this function under one name or the other, the fact that
the two names refer to the same object seems to have gone
undetected.

3The Reuters-21578 corpus is freely avail-



12,902 news stories, partitioned (according to the “ModApté”
split we have adopted) into a training set of 9,603 documents
and a test set of 3,299 documents. The documents are la-
belled by 118 categories; the average number of categories
per document is 1.08, ranging from a minimum of 0 to a
maximum of 16. The number of positive examples per cat-
egory ranges from a minimum of 1 to a maximum of 3964.

All our results are reported (a) for the set of 115 cate-
gories with at least one training example (hereafter, Reuters-
21578(115)), (b) for the set of 90 categories with at least one
training example and one test example (Reuters-21578(90)),
and (c) for the set of the 10 categories with the highest num-
ber of training examples (Reuters-21578(10)). Sets (a) and
(b) are obviously the hardest, since they include categories
with very few positive instances for which inducing reliable
classifiers is obviously a haphazard task.

In all the experiments discussed in this section, stop words
have been removed using the stop list provided in [5, pages
117-118]. Punctuation has been removed, all letters have
been converted to lowercase, numbers have been removed,
and stemming has been performed by means of Porter’s
stemmer. We have measured effectiveness in terms of preci-
sion wrt ¢; (m;) and recall wrt ¢; (p;), defined in the usual
way. Values relative to individual categories are averaged
to obtain values of precision (7) and recall (p) global to the
entire category set according to the two alternative meth-
ods of microaveraging and macroaveraging. Note that for
the computation of macroaveraging, conforming to common
practice, we have taken m; (resp. p;) to be 1 when the de-
nominator TP; + FP; (resp. TP; + FN;) is 0.

As a measure of effectiveness that combines the contribu-
tions of 7 and p we have used the well-known Fz function [6],
defined as

(8% + Dmp

F =
T Bty

with 0 < 8 < 400. Similarly to most other researchers we
have set B = 1, which places equal emphasis on 7 and p.
The results of our experiments are reported in Figure 1.

Whenever term selection has been performed according
to the global policy, the fmaez(tx) has been used as the
globalization technique, since in preliminary experiments
we have run it consistently outperformed the other glob-
alization techniques described in Section 2.2. The reason
why fimaz(tk) performs well is that it prefers terms that are
very good separators even on a single category, rather than
terms that are only “fair” separators on many categories.
In fact, if ¢ is a very good separator for ¢;, then f(tx,c;)
is going to be very high, so that there are good chances
that fiaez(tx) = f(tk,ci), which means that there are good
chances that t; is selected, which means in turn that there
is a good separator for ¢; in the selected term set.

In all experiments, STW techniques have been compared
with a baseline formed by cosine-normalized tfidf weight-
ing (in the “ltc¢” variant of Equations (1) and (2)). Note
that although stronger weighting functions than “ltc” tfidf
have been reported in the literature [13], all of them are
based on the three monotonicity assumptions mentioned in
Section 2.1; this means that our STW techniques could be
applied to them too, probably yielding similar performance

able for experimentation purposes from

http://www.daviddlewis.com/resources/testcollections/

reuters21578/

differentials.

4.4 Analysisof theresults: STW functions

The thorough experiments we have performed have not shown
a uniform superiority of STW with respect to standard term
weighting: in some cases tfidf has outperformed all STW
techniques, while in other cases some of the STW techniques
have improved on tfidf. Let us try to analyze the results
more in detail; for ease of discussion we will refer to the
results obtained on Reuters-21578(90).

Weighting techniques GR(g) and x*(g) are the best per-
formers for SVMs (although on SVMs tfidf is just as good
on microaveraging). The fact that both x?(g) and GR(g)
have achieved an 11% improvement (.582 vs. .524) on macroav-
eraged effectiveness over the best t fidf for SVMs, while ba-
sically maintaining the same microaveraged effectiveness, is
of particular relevance, since SVMs are currently the best
performing TC method in the literature. IG(g) is instead a
disappointing performer, sometimes disastrously so (namely,
with macroaveraging). Among the local policies, GR(l) is
again generally the best, with IG(l) usually faring better
than x?(1).

We are not surprised by the good performance of GR(g)
since, as we have remarked in Section 4.1, we consider GR(g)
a theoretically superior alternative to IG(g). The disap-
pointing performance that this latter has produced is a strik-
ing contrast with the well-known good performance of IG as
a term selection function [12]. Note that IG(l) and GR(I)
perform identically. This is due to the fact that the two dif-
fer only by the entropy of ¢; being used as a normalization
factor in GR(l). Therefore, it is quite obvious that, locally
to category c¢;, IG(l) and GR(l) select the same terms and
give them weights that differ only by a constant multiplica-
tive factor.

A surprising result is that global STW techniques are al-
most everywhere superior to the corresponding local tech-
nique. We say this is surprising because the global pol-
icy openly contradicts the decision to view the classification
problem as |C| independent binary classification problems.
That is, if these |C| problems are really to be seen as in-
dependent, then the problem of building representations for
them should also be viewed on a category-by-category basis,
which is what the local policy does. We conjecture that this
surprising behaviour is due to the fact that the statistics
that can be collected from scarcely populated categories are
not robust enough for the local policy to be effective, and
that for these categories the global policy makes up for their
unreliable statistics by providing more robust statistics col-
lected over the entire category set.

5. CONCLUSION

We have proposed supervised term weighting (STW), a term
weighting methodology specifically designed for IR applica-
tions involving supervised learning, such as text categoriza-
tion and text filtering. Supervised term indexing leverages
on the training data by weighting a term according to how
different its distribution is in the positive and negative train-
ing examples. We have also proposed that this should take
the form of replacing idf by the category-based term eval-
uation function that has previously been used in the term
selection phase; as such, STW is also efficient, since it reuses
for weighting purposes the scores already computed for term
selection purposes.
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Figure 1: Plots of micro-averaged F; (leftmost) and macro-averaged Fi (rightmost) for SVMs. The X axis
indicates the three major subsets of Reuters-21578 described in Section 4.3.

We have tested STW in all the combinations involving one
learning methods and three different term weighting func-
tions, each tested in its local and global version. One of
these functions (gain ratio) was not known from the TC
term selection literature, and was proposed here since we
think it is a theoretically superior alternative to the widely
used information gain (aka mutual information) function.
The results have confirmed the overall superiority of gain
ratio over information gain and chi-square when used as a
STW function.

Although not proving consistently superior to ¢ fidf, STW
has given several interesting results. In particular, a STW
technique based on gain ratio has given very good results
across the board, showing an improvement of 11% over t fidf
in macroaveraging for SVMs, currently the best performing
TC method in the literature.
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