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ABSTRACT
Classifying companies by industry sector is an important
task in finance, since it allows investors and research analysts
to analyse specific subsectors of local and global markets for
investment monitoring and planning purposes. Tradition-
ally this classification activity has been performed manually,
by dedicated specialists carrying out in-depth analysis of a
company’s public profile. However, this is more and more
unsuitable in nowadays’s globalised markets, in which new
companies spring up, old companies cease to exist, and exist-
ing companies refocus their efforts to different sectors at an
astounding pace. As a result, tools for performing this clas-
sification automatically are increasingly needed. We address
the problem of classifying companies by industry sector via
the automatic classification of their websites, since the latter
provide rich information about the nature of the company
and market segment it targets. We have built a website
classification system and tested its accuracy on a dataset
of more than 20,000 company websites classified according
to a 2-level taxonomy of 216 leaf classes explicitly designed
for market research purposes. Our experimental study pro-
vides interesting insights as to which types of features are
the most useful for this classification task.

Keywords
Website classification, Industry sectors

1. INTRODUCTION
Having companies and activities classified by industry sec-
tor is important to research analysts, fund managers, and
investment managers, since this allows them to partition
the market into homogeneous segments and to monitor and
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compare industry trends across different sectors and sub-
sectors. Market trends indicate that stocks within the same
industry sector often perform similarly during the same tem-
poral interval; for this reason, it is important for investment
managers to know the industry sector in which a given com-
pany operates. Additionally, this allows companies to have
up-to-date views of who their competitors are, and to carry
out competitive intelligence actions.

Classification by industry sector has a long tradition, and
several taxonomies for classifying companies by industry sec-
tor have been developed and maintained over the years. One
important such taxonomy is the ICB (Industry Classifica-
tion Benchmark)1, created in 2005 by Dow Jones and the
FTSE Group, and used by the NASDAQ, NYSE and other
stock markets worldwide. ICB consists of 184 nodes organ-
ised into a 4-level taxonomy; an example path (from root to
leaf) of such a taxonomy is Financials → Insurance → Non-
life Insurance → Property & Casualty Insurance. Other such
taxonomies are the Global Industry Classification Standard
(GICS)2, a 4-level taxonomy of 256 nodes jointly developed
by MSCI Inc. and Standard & Poor’s and widely used in the
financial sector, and the Thomson Reuters Business Classifi-
cation (TRBC)3, a 5-level taxonomy of 1065 nodes operated
by Thomson Reuters.

Traditionally, the activity of classifying companies under
these taxonomies has been performed manually, by dedi-
cated specialists who perform an in-depth analysis of a com-
pany’s public profile. One problem with this way of oper-
ating is that manual classification work is expensive, espe-
cially when carried out by senior employees. Even more
importantly, manual classification work is increasingly un-
suitable in nowadays’s globalised market, in which new com-
panies spring up, old companies cease to exist, and existing
companies refocus their efforts to different sectors at an as-
tounding pace. For some applications, manual classification
work may also simply be too slow for responding to suddenly
arisen business needs. As a result, tools for performing this
classification automatically are sorely needed.

We address the problem of classifying companies by indus-
try sector via the automatic classification of their websites.
Website classification is different from webpage classification
since the decision under which class the website should be
classified should be taken based on the nature of the entire

1http://www.icbenchmark.com/
2http://www.msci.com/products/indexes/sector/gics/
3http://thomsonreuters.com/
business-classification/
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website, and not of a webpage alone.
We have built a website classification system based on

supervised learning techniques; the system can work both
in “hard classification mode”, placing each company website
into exactly one leaf node in the taxonomy, and in “soft
classification mode”, returning a ranked list of the k leaf
nodes that appear the most plausible for the website. The
system thus lends itself to working as a fully autonomous
classifier (hard classification), or as assistive technology to
users who then need to take the final classification decision
themselves (soft classification).

We have tested the accuracy and efficiency of our system
on a dataset of more than 20,000 URLs identifying com-
pany websites. The URLs are classified according to a 2-
level taxonomy of about 250 leaf classes explicitly devised
for market research purposes. The results of our experi-
ments indicate that website classification can be performed
at a high accuracy level and with good efficiency. In report-
ing this experimental study we place particular emphasis on
the description of the impact that specific types of features
have on classification accuracy. In particular, we study the
impact of endogenous features (i.e., features extracted from
the website itself), and the impact of exogenous features
(i.e., features extracted from sources external to the website
itself, but somehow referring to the website). Our experi-
mental study provides interesting insights as to which types
of features are most useful for this classification task.

The rest of the paper is structured as follows. In Section 2
we describe our website classification system, especially fo-
cusing on the feature extraction phase. Section 3 describes
our experimental setup, and Section 4 presents and discusses
the results of our experiments. Section 5 discusses related
work, while Section 6 concludes, pointing at avenues for fu-
ture research.

2. A SYSTEM FOR WEBSITE CLASSIFI-
CATION

In this section we describe our website classification system
in detail, focusing in particular on the feature extraction
phase.

2.1 Crawling websites
The first step of the process consists in crawling the URLs
in our dataset. The crawler we have used “pretends” to be
the “googlebot” Google crawler, since some websites provide
more information about themselves when the crawler is a
search engine crawler, and this additional information may
be useful to the classification process. Preliminary experi-
ments that we had run by crawling the URLs in the standard
way had shown inferior accuracy.

The crawler works in two phases:

1. It retrieves the homepage and the subpages of the web-
sites4. In order to keep the computational cost of the

4We only retrieve HTML data, and do not instead download
any image / video content, nor perform any Javascript code
interpretation. Javascript interpretation could in principle
be used by websites to perform AJAX-based dynamic con-
tent loading. However this is usually adopted to perform
background loading of secondary information (e.g., widgets,
social buttons, multimedia content) which is unlikely to con-
tribute to our task, and is rarely used to load the main con-
tent of webpages, since this latter content should be loaded
as fast as possible.

modules downstream within reasonable limits, we limit
the crawl to the first 10 subpages found for each web-
site, in breadth-first order.

2. It retrieves exogenous information, such as Twitter
profiles or Facebook pages, if linked from the home-
page, and Alexa queries, if present; see Section 2.2.2
for details.

2.2 Feature Extraction

2.2.1 Endogenous features
The first type of features we extract are endogenous features,
i.e., information to be found in the website itself. We extract
features from the following fields marked up in the HTML
structure:

• URL: Given a URL u, after downcasing all its char-
acters we extract all character n-grams (for any n =
3, 4, 5) and all “words” contained in u, where a char-
acter n-gram is any sequence of n characters different
from separators (defined as the characters “.”, “/”, “ ”)
and a “word” is any maximal such sequence, i.e., a se-
quence of non-separator characters that occurs in u be-
tween separators. For instance, from the URL http://

www.google.com/, the words extracted are www, google,
and com, while the 4-grams extracted are goog, oogl,
and ogle. The rationale is that some of these se-
quences may be highly indicative of class member-
ship; for instance, the 3-gram xxx and the 4-gram porn

clearly point to the Adult leaf class.

The URL field is the only field from which we extract
character n-grams; the rationale is that other fields,
such as Title and Body, do not constrain the user to
be as concise as the URL field does, which means that
in fields other than URL it makes sense to consider the
word as the minimal unit of content.

• Title: Given the title of a webpage, we extract all the
words contained in it and perform stop word removal
and stemming.

• MetaDescription: Same as for “Title”.

• MetaKeywords: Same as for “Title”.

• Body: Same as for “Title”.

• Headings: Same as for “Title”, and carried out only
for tags <h1>, <h2>, <h3>, <h4>. The extracted features
are pooled together and treated as belonging to generic
“Headings” field.

In order to keep the computational cost of the modules
downstream within reasonable limits, for each of “MetaDe-
scription”, “MetaKeywords”, “Body”, we limit the content
extraction for each webpage to the first 2000 characters.

We also extract a number of “structural” features, such as

• UrlLength: Represents the length (number of char-
acters) of the URL of the website home page. This
might be useful, e.g., to identify websites (such as
https://bitly.com/) belonging to class UrlShorteners,
since such websites typically have very short URLs.
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• LinksCount: Represents the maximum (across the
pages in the website) number of outgoing links. For
instance, a high number of outgoing links might be
indicative of class WebDirectories.

• HeadingsCount: We compute the maximum (across
the pages in the website) numbers of headings of type
<h1>, <h2>, <h3>, <h4> (these are kept separate and
thus give rise to four different subtypes of features).

• ParagraphsCount: Represents the maximum (across
the pages in the website) number of paragraphs, as
identified by the <p> tag.

All of these structural features are framed as binary features
of the form c ≤ ai [3], where c is the count and ai is a natural
number. For instance, UrlLength ≤ 8 is a feature whose
value is 1 if the length of the URL of the website home page
is smaller or equal than 8, and 0 otherwise. For feature type
UrlLength, we add one binary feature for each different
home page URL length ai instantiated in the dataset; same
for the other three feature types.

2.2.2 Exogenous features
The second type of features we extract are exogenous fea-
tures, i.e., information that is to be found outside the web-
site but that refers to the website anyway. The exogenous
features we extract are the following:

• Alexa: For any given website we query (the freely ac-
cessible version of) Alexa5, a popular service for Web
analytics, and obtain back from it the 5 most frequent
queries among the ones addressed to major web search
engines that have resulted in clicks on a link to our
website. In other words, these queries are the ones
which have sent the most traffic to this specific website
during the months before we crawled it. The rationale
of using this information is that, if we know that a
user has issued, e.g., the query “replacement car bat-
tery” to Google and has clicked on a link, among the
ones returned by Google, leading to our website, we
may hypothesize that our website may belong to class
CarParts. From these queries we obtain features by
extracting all the words contained in them and per-
forming stop word removal and stemming.

• Facebook and Twitter: Many companies now have
a Facebook or a Twitter page which contains a short
textual description of the company and of its mission;
these pages are often referred to from within the com-
pany’s website, typically from the home page. When-
ever we find a link to a Facebook or a Twitter page
within a website, we extract the univocal name the
company adopts in the specific social network and we
then exploit the specific web API for retrieving the de-
sired data. We then extract all the words contained in
the retrieved page and perform stop word removal and
stemming.

Facebook company pages have several fields, of which
we consider the following: about (information about
the page); category (the page’s main category, e.g.
Product/Service, Computers/Technology); company_-
overview (the company overview); description (the

5http://www.alexa.com/

description of the page); general_info (general infor-
mation provided by the page); mission (the company
mission); name (the name of the page); products (the
products of this company). Twitter company pages
only have name and description fields.

We qualify all the features we extract, endogenous and ex-
ogenous, by a prefix that indicates which field the feature
comes from, with the goal of placing different emphasis on
features coming from different fields (e.g., a word may have
more importance if it was extracted from the page title). For
example, the word google extracted from the URL http://

www.google.com/ is represented as URL:google, while when
the same word is encountered in the title of the webpage it
is represented as TITLE:google.

2.3 Language Identification
We analyse each webpage in the website, and each page
downloaded from Facebook or Twitter, in order to classify
it according to the language the page is worded in. We de-
tect language using the Language Detection library6. This
library implements a näıve Bayesian learner trained on a
corpus of Wikipedia pages in different languages; the learner
exploits the character n-grams extracted from the texts as
features, and builds a single-label multi-class classifier for
the languages in the training set. For the purposes of this
experimentation we discard from consideration all websites
none of whose pages are deemed to be in English by this lan-
guage detector. For all other websites, only pages deemed
to be in English are retained.

2.4 Feature Selection
The feature extraction process described in Section 2.2.1 re-
turns a number of features too high to be used in practice.
In order to keep the computational effort to a manageable
level, and in order to avoid overfitting, we perform feature
selection via the usual“filtering”approach [7], which consists
in (a) scoring each feature tk according to its estimated con-
tribution to discriminating class cj from the other classes,
and (b) retaining only the highest-scoring ones. As the scor-
ing function we use information gain (also known as mutual
information), defined as

IG(tk, cj) =
∑

c∈{cj ,cj}

∑
t∈{tk,tk}

P (t, c) log2

P (t, c)

P (t)P (c)

Here P (tk) represent the fractions of instances that contain
feature tk and do not contain feature tk, respectively, and
P (cj) and P (cj) represent the fractions of instances that
belong to class cj and do not belong to class cj , respec-
tively. IG(tk, cj) measures the reduction in the entropy of
cj obtained as a result of observing tk, i.e., measures the
information that tk provides on cj .

We then adopt a “round robin” policy [5] in which the n
(internal and leaf) classes take turns in picking a feature
from the top-most elements of their class-specific orderings,
until the desired number x of features are picked. In this
way, for each class cj the final set of selected features con-
tains at least7 the x

n
features that are best at discriminating

6http://code.google.com/p/language-detection/
7The “at least” here means that, since the same feature may
be a high-scoring feature for more than one class, strictly
more than x

n
features per class may eventually get selected.
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cj , which means that all the classes are adequately champi-
oned in the final feature set.

In the experiments reported in this paper we retain 30% of
the original features, bringing the total number of 1,325,645
features to a slightly more manageable number of 397,693
features.

2.5 Feature Weighting
All the selected features are weighted by means of the well
known BM25 weighting function (see e.g., [11]); initial ex-
periments carried out on a development set and using stan-
dard tf ∗ idf had returned inferior results.

2.6 Classifier Training
As the learning algorithm we have used the TreeSVM con-
figuration described in [4]. Essentially, this consists of run-
ning a binary SVM learner8 at each nonroot node x in the
hierarchy, using as negative examples for x all examples be-
longing to the parent node of x that belong to some sibling
of x and not to x itself. As the binary SVM-based learner we
have used the freely available libsvm software package9. We
have used a linear kernel with the parameter C (the penalty
parameter of the error term) set to 1; this parameter set-
ting, while simple, achieves a good trade-off between model
complexity and effectiveness, and is the default setting used
in the libsvm software.

2.7 Classification
At the end of the learning process, TreeSVM has gener-
ated a hierarchical classifier in the form of a tree of binary
classifiers, one for each nonroot node. The classifiers work
in “Pachinko machine” style, i.e., only the instances that
have been attributed to class x by the associated binary
classifier are fed to the binary classifiers associated with the
children of x. For a given instance a binary classifier re-
turns both a binary decision (“assign” or “not assign”) and a
classification score, where high score means high probability
of belonging to the class. In “hard classification” mode the
highest-scoring leaf class is assigned to the instance, while
in “soft classification” mode the k highest-scoring leaf classes
are ranked in decreasing order of their score and associated
to the instance.

We have modified the original behaviour of TreeSVM to
better handle the simultaneous presence of the hard and soft
classification modes. The original TreeSVM is designed to
work as a multi-label classifier, so that zero, one, or sev-
eral leaf classes at the same time can be attributed to an
instance. This causes problems in our application context,
since the original TreeSVM (a) does not guarantee that the
instance is attributed to at least one leaf class, thus making
hard classification problematic, and (b) does not even guar-
antee that classification scores for at least k leaf classes are
generated for an instance10, thus making soft classification
problematic.

To overcome these two problems, when classifying an in-

8In preliminary experiments we had tried to use MpBoost
[2] as the base learner, with inferior results.
9http://www.csie.ntu.edu.tw/~cjlin/libsvm/

10To see this, assume that the taxonomy has two levels, that
the instance is rejected by all level-1 nodes but one, and that
this one node has only (k− 1) leaf classes as its children; in
this case, only for these (k − 1) leaf classes a classification
score is generated.

stance we heuristically force, at each level in the hierarchy,
the assignment of at least three internal nodes. The instance
can thus be fed to all the children of these internal nodes,
and this tends to guarantee that a large enough number of
leaf classifiers are invoked and thus return a classification
score for the instance. When in hard classification mode,
the top-scoring class is selected; when in soft classification
mode, a ranked list of the top-scoring k classes is returned
(in our experiments we take k = 5).

3. EXPERIMENTS
For our experiments we have used a classification scheme
and a dataset of URLs that were provided to us by a cus-
tomer. Note that we had no control on the design of the
classification scheme and on the choice of the dataset; we
thus take both as given11.

3.1 The Classification Scheme
The classification scheme consists of a taxonomy of industry
sectors of depth 2, with 27 internal (depth-1) classes and
248 (depth-2) classes. All leaf classes are at depth 2, and
all depth-1 classes have at least two children classes. The
taxonomy is severely imbalanced, with internal nodes having
from a minimum of 2 to a maximum of 21 children nodes12.

One aspect that makes classification under this taxon-
omy difficult is that the taxonomy mixes issues of topic
and genre13. For instance, the leaf classes ShoppingSearch
and ShoppingBlogs have two different parent classes (Web-
Portals&Search and Blogging, respectively); some distinc-
tions at level 1 are based on topic (e.g., Automotive vs. Com-
putersAndInternet), while some others are based on genre
(e.g., Blogging vs. NewsAndMedia). Classification within this
taxonomy is thus very challenging, since it is sometimes the
case that different nodes are very similar in meaning, making
the task of telling them apart extremely difficult.

3.2 The Dataset
Our dataset of URLs originally contained 69,100 URLs, each
labelled with exactly one leaf class from our taxonomy. Af-
ter the crawling phase we discarded from consideration the
46,893 websites that proved unreachable. Most of the errors
returned by unreachable hosts were due to bad HTTP sta-
tus (e.g., “404” errors) or unknown IP address14. We further
discarded the 2,169 websites that our language recognition
module deemed void of English-language content. This left
us with (69,100-(46,893+2,169)) = 20,038 websites to exper-
iment with. Of the original 248 leaf classes in the taxonomy
we discarded the 32 that proved empty (i.e., none of the
20,038 websites was classified under them), thus leaving 216
leaf classes to work with.

11Unfortunately the data and the classification scheme are
property of this customer, and we are not in a position to
make them publicly available.

12For reasons internal to their organization, our customer
decided not to avail themselves of the standard taxonomies
discusses in the introduction, and thus developed their own
custom taxonomy.

13Classification by genre, especially in the web domain, is
sometimes called “functional classification”; see e.g., [10].

14The dataset contains a considerable number (20,911) of
URLs directed to Google static content, i.e., gstatic.com,
which turned out to be unreachable during the crawling.
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3.3 Evaluation measures
As mentioned in previous sections, our website classification
system can work both in “hard classification mode”, placing
each company website into exactly one leaf class in the tax-
onomy, and in “soft classification mode”, returning a ranked
list of the k leaf classes that appear the most plausible for
the website. We thus evaluate our system according to two
different evaluation measures, each suitable for a different
mode.

For evaluating the effectiveness of the system at hard clas-
sification we have used the well-known F1 function. It is
customary to average the class-specific F1 scores across the
classes by computing both microaveraged F1 (denoted by
Fµ1 ) and macroaveraged F1 (FM1 ). Fµ1 is obtained by (i)
computing the class-specific values TPi, (ii) obtaining TP
as the sum of the TPi’s (same for FP and FN), and then
(iii) computing Fµ1 from the resulting contingency table. FM1
is obtained by first computing the F1 values specific to the
individual classes, and then averaging them across the cj ’s.
Both averages are computed across all classes, internal and
leaf alike.

For evaluating the effectiveness of the system at soft clas-
sification we instead use a variant of reciprocal rank (RR).
The RR of an instance di is defined as

RR(di) =
1

r(di)
(1)

where r(di) is the rank attributed by the system to di’s true
class. We use a variant of RR that we call RRk, defined as

RRk(di) =


1

r(di)
if r(di) ≤ k

0 if r(di) > k
(2)

That is, no credit at all is given to the system for placing
di’s true class at rank (k+1) or higher, since we only return
the top k classes for each website.

Again, we compute both microaveraged and macroaver-
aged versions of RRk, noted RRµk and RRMk , respectively.
RRµk is obtained as the average of RRk(di) across all the

test instances, while RRMk is obtained by first computing
the class-specific averages of RRk and then averaging the
results across the classes. Again, both averages are com-
puted across all classes, internal and leaf alike.

4. RESULTS
The results of our experiments are reported in Table 1; all
results were obtained by 10-fold cross-validation (10FCV).

The first observation that can be made by looking at the
microaveraged figures (Fµ1 and RRµk ) reported in the table
is that the accuracy is surprisingly high. For instance, the
system equipped with all feature types at the 30% reduc-
tion level (last row, columns 7-11) obtained Fµ1 = 0.808 and
RRµk = 0.852, which are very high values. Just to put these
values into context, the RRµk = 0.852 value resulted from the
true class of the website being ranked in 1st place 80.8% of
the cases, 5.9% of the cases in 2nd place, 2.9% in 3rd place,
1.4% in 4th place, 0.9% in 5th place, and in only 8.1% of
the cases it was ranked outside the top 5 positions. This
is a very good result especially in the light of the fact that
there are no less than 216 classes to pick from, and picking
the single one that applies to the website certainly qualifies
as finding a needle in a haystack.

Figures for macroaveraged measures (FM1 and RRMk ) are
lower, but this was to be expected in the light of the severely
imbalanced nature of the dataset. In fact, the micro- and
macro-averaged versions of a measure yield the same value
only when the dataset is perfectly balanced, while the former
yields higher values than the latter when the dataset is im-
balanced. In our case, the most frequent class (BloggingSer-
vices) totals 3347 instances while the least frequent one (Ac-
countancyAndTaxServices) has only 1 instance, which is an
indication of the severe level of imbalance of this dataset.

4.1 Effects of Different Feature Types
One of the key aspects in designing a website classification
system is feature design, i.e., (a) deciding what type of fea-
tures to extract, and (b) which among the extracted fea-
tures to retain. The reason is that the size of the full set
of features extracted via a process like the one of Section
2.2 may be daunting, even for datasets of modest size. For
the dataset that we use in the present work, no less than
1,325,645 features are generated from the 20,038 websites
the dataset consists of.

In an attempt to better understand the quality of the fea-
tures contributed from each of the fields identified in Section
2.2, for each such field we have run experiments by using
the features extracted from that field only; the results are
reported in Table 1, each row representing a specific fea-
ture type. While these experiments do not account for the
subtle interactions that may take place as a result of the co-
presence of features of different types, they nonetheless give
an indicative idea of the relative contribution that the dif-
ferent types of features can give to the overall classification
task. We have run such experiments (a) with the full feature
set (Columns 2-6 of Table 1), and (b) with the set resulting
from the feature selection process (Columns 7-11 of Table 1).
This latter process consisted in putting into a common pool
all the extracted features of all types, and then selecting the
best ones irrespective of their type, so that different feature
types compete with each other. In Column 7 we report, for
each feature type, the survival rate of a given feature type,
i.e., the percentage of features of that type that made it into
the final selected set.

The first observation we can make is that, as it could
be expected, the “All feature types” setting is overall the
best, i.e., there is no single feature type, or group of feature
types, that outperforms it; while the “Alexa” setting slightly
outperforms it for macro measures, it is substantially out-
performed by “All feature types” for micro measures.

A second observation is that some individual endogenous
feature types (e.g., “URL”,“Title”,“Body”) deliver very good
accuracy by themselves. Using URL features alone is ac-
tually competitive with using all feature types, which is
somehow surprising, given that URLs are hardly a conve-
nient means for authors to convey semantics. The success
of this feature type has likely to do with the need, on the
part of authors, to cram as much information as possible
in a short string that must be both descriptive and evoca-
tive to prospective customers. “Title” features also perform
well, and this is intuitive, since authors tend to use highly
significant words in page titles; the same argument applies,
although to a slightly smaller degree, to“Headings” features.
Also the fact that “Body” features are helpful is unsurpris-
ing, since the body of the page is where content is meant to
be conveyed.
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Table 1: Accuracy of classifiers obtained by using all extracted features (Columns 2 to 6) or by using selected
features only (Columns 7 to 11). In Column 7, percentages indicate the survival rate of the specific feature
type. Boldface indicates best results for a specific combination of feature selection level (no selection or 30%
selection) and evaluation measure.

No Feature Selection With Feature Selection
#Features FM1 Fµ1 RRM5 RRµ5 #Features FM1 Fµ1 RRM5 RRµ5

URL 670,340 0.497 0.797 0.532 0.843 211,250 (31.5%) 0.491 0.797 0.534 0.842
Title 38,801 0.367 0.639 0.420 0.705 12,076 (31.1%) 0.331 0.621 0.390 0.694
Body 319,355 0.329 0.604 0.370 0.670 78,913 (24.7%) 0.328 0.618 0.373 0.686

Headings 153,552 0.319 0.597 0.364 0.653 46,858 (30.5%) 0.320 0.606 0.361 0.660
MetaDescription 42,897 0.299 0.492 0.321 0.542 15,297 (35.7%) 0.291 0.505 0.316 0.553
MetaKeywords 32,139 0.201 0.297 0.232 0.341 11,464 (35.7%) 0.200 0.322 0.229 0.371

LinksCount 96 0.019 0.161 0.034 0.215 96 (100.0%) 0.019 0.161 0.034 0.215
ParagraphsCount 39 0.014 0.171 0.028 0.198 39 (100.0%) 0.014 0.171 0.028 0.198
HeadingsCount 39 0.012 0.141 0.029 0.185 39 (100.0%) 0.012 0.141 0.029 0.185

UrlLength 12 0.002 0.076 0.009 0.088 12 (100.0%) 0.002 0.076 0.009 0.088
All endogenous feature types 1,257,270 0.469 0.791 0.517 0.841 376,044 (29.9%) 0.472 0.797 0.523 0.844

Alexa 36,061 0.552 0.754 0.567 0.804 9,309 (25.8%) 0.522 0.696 0.548 0.773
Facebook 24,164 0.201 0.204 0.196 0.241 9,689 (40.1%) 0.203 0.254 0.197 0.300
Twitter 8,150 0.181 0.112 0.174 0.131 2,641 (32.4%) 0.175 0.156 0.172 0.197

All exogenous feature types 68,375 0.527 0.726 0.554 0.792 21,639 (31.6%) 0.499 0.679 0.540 0.764

All feature types 1,325,645 — — — — 397,693 (30.0%) 0.490 0.808 0.539 0.852

“MetaDescription” and “MetaKeywords” features deliver
smaller accuracy levels than the previously discussed types.
We believe the main reason for this to be the fact that, for
many webpages, these fields are left completely empty by
their authors. This means that, if all pages of the website
have these fields empty, the website is classified completely
at random by the “MetaDescription” and “MetaKeywords”
classifiers. As for the remaining endogenous feature types
(“LinksCount”, “UrlLength”, “HeadingsCount”, “Paragraph-
sCount”), each of them in isolation delivers very little accu-
racy, but this is obviously due to the fact that these feature
types only contain a few dozen features each.

As for the exogenous features, the “Alexa” features de-
liver extremely high performance, even surpassing (as al-
ready noted above) “All feature types” when it comes to
macro measures. The fact that these features excel for macro
measures means that they particularly excel for infrequent
classes; this is intuitive, since queries tend to be highly de-
scriptive of the content of websites that they send clicks to,
and the information they convey can thus make up for the
scarcity of endogenous information, a problem that espe-
cially affects infrequent classes.

The“Facebook”and“Twitter” features are much less help-
ful than the “Alexa” features. However, this need not mean
that pages from social media are less informative than queries.
Indeed, one of the problems here is that, while “Alexa”
queries are available for most websites in the dataset (18,478
websites), only 4,370 websites in the dataset have a cor-
responding Facebook page, and only 4,237 have a Twit-
ter page. This means that, similarly to what happens for
the “MetaDescription” and “MetaKeywords” classifiers, the
“Facebook” and “Twitter” classifiers classify websites that
do not have a Facebook and Twitter page completely at
random. So, the percentage of websites that have a Face-
book and Twitter page is the de facto upper bound to the
percentage of websites that get correctly classified by the
“Facebook” and “Twitter” classifiers.

4.2 Effects of Feature Selection
As for feature selection, the results indicate that it is ben-
eficial when applied to endogenous features (where small
improvements are observed for all four measures), but the
contrary is true for exogenous features, where deteriorations
are observed for all four measures as a result of feature selec-
tion. This is likely due to the fact that endogenous features
are almost 20 times as many as exogenous features, which
means that the former are potentially responsible for over-
fitting much more than the latter are, and are thus much
more in need of trimming.

Some feature-specific classifiers tend to lose accuracy as a
result of feature selection. One of them is “Title”; the likely
reason for this is that, since titles consist of few words only, if
all the words contained in the title of a website have been fil-
tered out by the feature selection process, this website will
be classified at random by the “Title” classifier. Also the
“Alexa” classifier loses accuracy as a result of feature selec-
tion, which is yet another confirmation of how informative
queries are, especially for infrequent classes.

Other feature-specific classifiers instead benefit from fea-
ture selection. One such example is “Body”; this confirms
well-known results from text classification [12], which had
shown that bag-of-words classifiers (i.e., classifiers using as
features the words in the body of the text) can benefit from
moderately aggressive feature selection. Even more interest-
ingly, two other such examples are “Facebook” and “Twit-
ter”; their case is similar to “Body”, in the sense that com-
pany Facebook and Twitter pages consist of free text, which
obviously contains many non-discriminative words too.

As for “LinksCount”, “UrlLength”, “HeadingsCount”, and
“ParagraphsCount” features, none of them is filtered out by
the selection process (they obtain 100% survival rate), which
means that, even if they are very few, all of them are im-
portant for the learning process.

5. RELATED WORK
Website classification. Website classification is tackled
in the work of Yang et al. [13] by framing the problem as

1058



one of webpage classification: for each website, the first 50
pages (in breadth-first fashion) from the site are crawled
and merged into a single page, which is classified via web-
page classification methods. In their work the emphasis is
comparing different methods for making sense of hyperlinks
pointing out of the website, and no sophisticated technique
is attempted for either content extraction or feature selec-
tion; the problem of language identification is not mentioned
in their paper, which seems to suggest that all the websites
in their datasets are from the English-speaking world.

Webpage classification. A survey of techniques for web-
page classification can be found in [10]. The issue of crawling
and preprocessing webpages for their classification is akin to
that of doing the same for their retrieval or for their cluster-
ing; on crawling and preprocessing for webpage clustering,
see [1, Section 4]. The already mentioned work by Yang
et al. [13] indeed tackles webpage classification according to
industry sector, using a set of 4,285 URLs classified under
a coarse-grained taxonomy of 28 classes and a more fine-
grained one of 255 classes called Hoovers-28 and Hoovers-255,
respectively; the datasets used in this research had originally
been assembled by Ghani et al. [6]. Such a dataset, being
almost 15 years old, is unfortunately unusable nowadays,
since it may safely be assumed that many of the URLs in
that dataset point to websites that do not exist anymore,
or whose content has radically changed since then. As a
consequence, results obtained nowadays are not comparable
with the results obtained then, even if obtained on the same
dataset; this is, of course, one of the problems of performing
experiments on a moving target such as the Web.

Another attempt at webpage classification according to
industry sector is the one in [9], which uses a depth-2 hi-
erarchy of 71 classes and a dataset of 6,440 webpages. It
should be noted, however, that [9, 13] are not real attempts
at maximizing the accuracy of an operational website clas-
sifier, since they only use the datasets mentioned for inves-
tigating one specific aspect of this task (text classification
under hierarchically-organized classification schemes in the
case of [9], hypertext classification in the case of [13]), leav-
ing other aspects unexplored. The use of information ex-
tracted from the URL for purposes of webpage classification
is studied in [8].

6. CONCLUSIONS
We have presented a study on automatically classifying com-
pany websites by industry sector; this is a challenging clas-
sification task since it combines issues of topic with issues
of genre, the two aspects being closely intertwined in clas-
sification schemes used for this task. The experiments we
have carried out on a dataset of more than 20,000 websites
classified according to a 2-level taxonomy of 216 classes have
shown that the system can obtain very high accuracy val-
ues, guessing the true class of the website more than 80% of
the times; this is an important feat, since picking the cor-
rect class from no less than 216 available classes amounts to
finding the classic needle in the haystack.

We are currently working on extending the system to ad-
dress the classification of websites expressed in languages
other than English. This is an important step for today’s
globalised market.
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